食品与化学

食品与化学
食品与化学

食品添加剂以及食品安全与化学的研究与探讨

摘要:对于食品添加剂的定义与简介,介绍了常见的化学食品添加剂,近几年严重危害人民身体健康的滥用食品添加剂,日常食品里的有害化学物质,最后是个人的感悟与总结。

正文:随着化学的日益发展,化学已经深入我们生活的各个方面,它既影响一个国家的经济发展,也关系着我们平民百姓的日常生活。而食品行业是被化学影响非常巨大的一个行业,食品又与我们的身体息息相关。但随着近几年食品安全问题频出,我们不由得感到,化学的发展的带给了我们一定的负面影响。但是我们对于食品添加剂又了解多少?我们有必要深入了解一下化学工业与食品的关系,以及化学工业时代里的食品将对我们的身体又会有什么样的影响?

对于食品添加剂定义:

食品添加剂是指用于改善食品品质、延长食品保存期、便于食品加工和增加食品营养成分的一类化学合成或天然物质。食品添加剂是为改善食品色、香、味等品质,以及为防腐和加工工艺的需要而加入食品中的化合物质或者天然物质。

食品添加剂的主要作用:

1.防止变质,延长食品的保存期,防止由微生物污染引起的食物中毒作用。

2.改善食品的感官性状,用来提高食品的感官质量。

3.保持或提高食品的营养价值。

4.增加食品的品种和方便性。

5.有利于食品加工,例如塑造食品形状。

食品添加剂主要种类:

1.抗氧化剂:抗氧化剂的作用机理是比较复杂的,存在着多种可能性。如有的抗氧化剂是由于本身极易被氧化,首先与氧反应,从而保护了食品。如VE。有的抗氧化剂可以放出氢离子将油脂在自动氧化过程中所产生的过氧化物分解破坏,使其不能形成醛或酮的产物如硫代二丙酸二月桂酯等。有些抗氧化剂可能与其所产生的过氧化物结合,形成氢过氧化物,使油脂氧化过程中断,从而阻止氧化过程的进行,而本身则形成抗氧化剂自由基,但抗氧化剂自由基可形成稳定的二聚体,或与过氧化自由基ROO-。结合形成稳定的化合物。

2.漂白剂:这类物质均能产生二氧化硫(SO2),二氧化硫遇水则形成亚硫酸(H2SO3)。除具有漂白作用外,还具有防腐作用。此外,由于亚硫酸的强还原性,能消耗果蔬组织中的氧,抑制氧化酶的活性,可防止果蔬中的维生素C的氧化破坏。

3.着色剂:

合成色素大多数对人体有害。合成色素的毒性有的为本身的化学性能对人体有直接毒性;有的或在代谢过程中产生有害物质;在生产过程还可能被砷、铅或其它有害化合物污染。

4.护色剂:

①护色作用,为使肉制品呈鲜艳的红色,在加工过程中多添加硝酸盐(钠或钾)或亚硝酸盐。硝酸盐在细菌硝酸盐还原酶的作用下,还原成亚硝酸盐。亚硝酸盐在酸性条件下会生成亚硝酸。在常温下,也可分解产生亚硝基(NO),此时生成的亚硝基很快与肌红蛋白反应生成,稳定的、鲜艳的、亮红色的亚硝化肌红蛋白。故使肉可保持稳定的鲜艳。②抑菌作用:亚硝酸盐在肉制品中,对抑制微生物的增殖有一定的作用。

5.酶制剂

具有生物催化能力酶特性的物质。主要用于加速食品加工过程和提高食品产品质量。

6.增味剂

是指为补充、增强、改进食品中的原有口味或滋味的物质。有的称为鲜味剂或品味剂。

7.防腐剂

防腐剂一般分为酸型防腐剂、酯型防腐剂和生物防腐剂。

一、酸型防腐剂

常用的有苯甲酸、山梨酸和丙酸(及其盐类)。这类防腐剂的抑菌效果主要取决于它们未解离的酸分子,其效力随PH 而定,酸性越大,效果越好,在碱性环境中几乎无效。

二、酯型防腐剂

对霉菌、酵母与细菌有广泛的抗菌作用。

三、生物型防腐剂

主要是乳酸链球菌素。乳酸链球菌素的优点是在人体的消化道内可为蛋白水解酶所降解,因而不以原有的形式被吸收入体内,是一种比较安全的防腐剂。

四、其他防腐剂

如氮气和二氧化碳。如高食品中存在着大量二氧化碳可改变食品表面的PH,而使微生物失去生存的必要条件。但二氧化碳只能抑制微生物生长,而不能杀死微生物。

8.甜味剂

常见有木糖醇、山梨糖醇、麦芽糖醇、异麦芽糖醇、糖精、阿斯巴甜、果糖低聚糖。

9.香料

10.膨松剂

常用的膨松剂有碳酸氢钠、碳酸氢铵等。通过产生二氧化碳而达到使食品膨松的效果。小结:食品添加剂虽然种类繁多,但我们要对于它们有所了解,才能知道化学在食品里所具有的重大作用。

非法食品添加剂的危害:

今几年来,食品问题层出不穷。像前些年的苏丹红鸭蛋,后来的三聚氰胺奶粉,已经最近的地沟油、瘦肉精问题让我们触目惊心。也许我们知道它们的危害巨大,但到底是何方“神圣”?在化学界又有怎样的地位?

苏丹红:

“苏丹红”是一种化学染色剂,并非食品添加剂。它的化学成份中含有一种叫萘的化合物,该物质具有偶氮结构,由于这种化学结构的性质决定了它具有致癌性,对人体的肝肾器官具有明显的毒性作用。苏丹红属于化工染色剂,主要是用于石油、机油和其他的一些工业溶剂中,目的是使其增色,也用于鞋、地板等的增光。又名“苏丹”。

(苏丹红结构式)

状态:黄色粉末。

熔点:134℃

溶解性:不溶于水,易溶于油。

苏丹红有Ⅰ、Ⅱ、Ⅲ、Ⅳ号四种,经毒

最新整理食品中的化学知识讲解

食品中的化学 ——九年级化学“化学与生活”专题复习 【复习目标】 通过以食品中的化学为研究对象复习巩固所学知识,掌握化学知识,将化学与生活实际相联系。让学生体会化学与生活密切相关,更与生活中的食品密切相关。 【复习流程】 一、食品与健康 二、食品中的化学 1、厨房中的调味品 比一比:看谁答得快!说出这是厨房中的什么物质? (1)一种重要的调味品,常用来腌渍蔬菜、鱼、肉等的盐 。 (2)制作馒头时用到的一种俗称“纯碱”的物质 。 (3)用作调味剂的一种有机酸 。 (4)常用调味品,是一种甜味剂,它的主要成分是 。 还可以用其它方法鉴别它们吗? 。2、餐桌上的营养素 请你来判断5月20日是“中学生营养日”。请你用所学化学知识关注同学们的营养问题:某山区学校食堂午餐的食谱如下:大米、炖土豆、炒白菜、萝卜汤。 (1)以上食物中所含的营养素主要有糖类、 、油脂、无机盐和水。 (2)考虑到中学生身体发育对各种营养素的需要,你建议食堂应该增加的食物是 。 3、食品中的保健品 请你帮我想想 某保健食品的外包装标签上的部分内容如下: 某小组同学提出问题:

(1)该保健食品的主要功能是什么? 。(2)食用方法中嚼食的作用是什么? 。请你来参与 (3)该保健品中的碳酸钙可以用石 灰石来制备。另一小组同学设计了 一种制备碳酸钙的实验方案,流程图为上,请写出上述方案有关反应的化学方程式: ①:。②:。③:。请你来设计 (4)请你仍用石灰石为原料(其他试剂自选),设计另一种制备碳酸钙的实验方案,仿照(3)所示,将你的实验方案用流程图表示出来: 石灰石 你设计的方案优点是:。(5)怎样检验该保健食品是否含有碳酸盐? 。 4、食品中的保护气 你知道吗? 某些膨化食品包装在充满气体的小塑料袋内,袋内的气体充的鼓鼓的,看上去好象一个小“枕头”。我们小组对袋内气体提出了如下问题: (1)包装袋内为什么充入气体?。 请你说一说: (2)充入的是什么气体?。 (3)该充气包装,对所充气体的要求是什么?。 5、食品中的干燥剂 请你想一想: 现在许多食品都采用密封包装,但包装袋中的空气、水蒸气仍会使食品氧化、受潮变质,因此一些食品包装袋中需放入一些“双吸剂”,以使食品保质期更长一些。 甲、乙两同学为了探究“双吸剂”的成分,从某食品厂的月饼包装袋中取出一袋“双吸剂”,打开封口,将其倒在滤纸上,仔细观察,“双吸剂”为黑色粉末,还有少量的红色粉末。 提出问题: 该“双吸剂”中的黑色、红色粉末各是什么物质? 猜想: 甲同学认为:黑色粉末可能是氧化铜、红色粉末可能是铜。 乙同学认为:黑色粉末可能是铁粉、红色粉末是氧化铁。 (1)你认为同学的猜想正确,其理由是什么? )设计一个实验方案来验证你的猜想是正确的。请填写以下实验报告: 实验步骤预期的实验现象结论 )写出有关反应的化学方程式。。 6、食品中的安全问题 工业用盐亚硝酸钠外观酷似食盐且有咸味,我们想鉴别亚硝酸钠、氯化钠.现查阅亚硝酸钠和食 项目硝酸亚钠(NaNO2)氯化钠(NaCl) 沸点320oC会分解,放出有臭味的气体1413oC 跟稀盐酸作用放出红棕色的气体NO2无反应 水溶液中酸碱性碱性中性鉴别方案选取的试剂和方法实验现象和结论

化学与食品安全

化学与食品安全 【摘要】古语有云“民以食为天”。食品对于人类的生存发展有着至关重要的意义,而食品的生产与加工又与化学工业有着不可分割的关系。但随着现代工农业、科学技术的发展和自然环境的日益恶化,食品所带来的的安全问题直接威胁着我们人类的健康。为此,如何把化学知识与食品健康紧密联系起来将成为了我们日常生活当中相当重要的一个任务。 【关键词】化学;食品;安全 引言 随着科学技术和食品工业的发展,以及人们对食品安全的关注,人类通过漫长的摸索和实践,对于食品健康中蕴含的化学知识也越来越重视。 1.化学与食品安全的关系 生活中时刻都离不开化学,我国是世界上最大的食品生产国,有着庞大的食品从业群体,这一群体的食品安全素养的高低也直接关系着我国的食品安全。由于我国人口多,地域广大,食品行业又非常发达,食品原料用量庞大:仅化学食品添加剂就有上千种,而滥用食品添加剂会引发多种食品安全问题,食品的化学污染问题也成为当前食品健康安全的最大威胁之一。 现代食品化学污染主要分为以下几大类:农药及农药残留物、兽药残留物;有害金属元素,如汞、镉、铅、砷、铝等;N-亚硝基化合物,多环芳烃化合物,如苯并[α]芘、萘等,杂环胺类化合物;多氯联苯;二噁英。古老方法制作食品的过程中,通过添加硝酸盐腌制鱼、肉,并使其在细菌作用下转化为亚硝酸盐,达到防腐和着色(红色)双重目的。 而在现代的加工方法中,更是直接使用亚硝酸盐代替硝酸盐作为肉制品加工的着色剂。而大量动物实验表明,亚硝酸盐对绝大多数(90%以上)对动物具有致癌性,能诱发各种实验动物组织器官的肿瘤。 因此,化学一方面创新了食品加工工艺,另一方面化学物品的滥用也危害了食品安全。 2.我国食品安全的现状 我国目前的食品安全问题主要包括以下几类:(1)重金属污染、毒素污染。(2)抗生素、激素和其他有害物质残留于禽、畜、水产品体内。(3)化肥、农药等对人体有害物质残留于农产品中。(4)超量使用食品添加剂,滥用非食品加工用化学添加物。(5)腐败变质的食物上市流通。(6)食品制造中使用劣质原料,假冒伪劣食品。(7)病原微生物危害。(8)转基因食品的不确定性。 近年来,我国发生了瘦肉精事件、三鹿奶粉事件、双汇质量门、河南南阳毒韭菜、毒豆芽、福喜公司过期肉等食品安全事件,民众对食品安全的关注度日益增加。由于社会各界及时采取有效措施,2009年至2013年我国蔬菜、水果、畜禽、水产品质量安全合格率分别在

食品化学

绪论 一、名词解释 1.食品化学:是从化学的角度和分子水平上研究食品成分的结构、理化性质、营养作用、安全性及享受性,以及各种成分在食物生产、食品加工和贮藏期间的变化及其对食品属性影响的科学。 2.营养素:是指能维持人体正常生长发育和新陈代谢所必需的物质。 3.食物或食料:指含有营养素的物料。 4.食品:将食物或食料进行加工以满足人们的营养及感官需要和保障其安全的产品。 水分 一、名词解释 1.离子水合作用:即不具有氢键受体又没有给体的简单无机离子与水相互作用时,仅仅是离子-偶极结合作用。 2.疏水相互作用:水体系中存在多个分离的疏水性基团,疏水基团之间相互聚集,从而使他们雨水的接触面积减小的过程。 3.疏水水合作用:疏水性物质与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强的过程。 4.水分活度:是指食品中水分蒸汽分压与同温度下纯水的饱和蒸汽压之比。定义式为a w=P/P0 5.水分吸着等温线:在恒温条件下,食品的含水量与水分活度aw的关系曲线。 6.单分子层水:和食品中非水物质结合的第一层水。 7.滞后现象:同一种食品按回收法与解析法制作的MSI图形不一致,不相互重叠的现象。 8.状态图:描述不同含水量的食品在不同温度下所处的物理状态(平衡状态和非平衡状态的信息)的图线。 二、问答题 1. 简述食品中水分的存在状态。

食品中的水分一般分为自由水与结合水两种状态。结合水指存在于非水成分附近的、与溶质分子之间通过化学键结合的水;自由水指没有被非水物质化学结合的,而主要通过物理作用而滞留的水。 2.简述食品中结合水和自由水的性质区别。 1)食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得多。 2)结合水的冰点比自由水低得多。 3)结合水不能作为溶质的溶剂。 4)自由水能被微生物利用,而结合水不能。 3.简述食品中水分与非水成分的相互作用。 1)水与离子和离子基团的相互作用:离子-偶极的极性结合; 2)水与具有氢键键合能力的中性基团的相互作用:与水通过氢键键合; 3)水与非极性物质的相互作用: 疏水水合作用:疏水基团附近水分子之间氢键键合增强; 疏水相互作用:疏水基团与水的接触面积减小的过程。 4)水与双亲分子的相互作用。 4.论述水分活度与脂质氧化的关系,并分析可能的原因。 1)水分活度与脂质氧化的关系:在水分活度较低时食品中的水与氢过氧化物结 合而使脂质不容易产生氧自由基而导致链氧化结束的过程; 2)当水分活度小于0.35时,脂类氧化反应很迅速; 3)当水分活度为0.35-0.7时,水分活度的增加增大了食物中氧气的溶解,加 速了氧化; 4)当水分活度大于0.7反应物被稀释,脂类氧化反应速率降低。 5.论述冰在食品稳定性中的作用。 1)冷冻对反应速率有两个相反的影响。降低温度使反应变得缓慢,而冷冻所产 生的浓缩效应有时候会导致反应速率的增大。 2)不利:随着食品原料的冻结、细胞内冰晶的形成,将破坏细胞的结构,细胞 壁发生机械损伤,解冻时细胞内的物质会移至细胞外,结合水减少,使一些食物冻结后失去饱满性、膨胀性和脆性,会对食品质量造成不利影响。3)有利:食品冻结后会伴随浓缩效应,这将形成低共熔混合物,水的结构和水

食品中的化学

食品中的化学 赵帅医学部2012级学号:1210307311 摘要:民以食为天,而近年来由于各种食品安全问题的发生,民众对食品安全问题越来越重视。也因为这些事件公众谈添加剂色变,甚至不敢食用任何添加剂。民众的这种认识是否正确,食品添加剂是否是危害人们生命健康的罪魁祸首。下面就让我们从化学的角度认识食品添加剂。 关键词:化学;食品添加剂;非食品添加剂;检测,摄入量。 一、化学与我们的生活密切相关 化学是一门基础的自然科学,对人类发展有着重大意义,跟生活也有很大关系。众所周知,我们周围的事物都是由许许多多的化学元素组成的,包括我们人体不可缺少的许多元素。根据一些化学知识和现象还能帮人们做一些常见的有用的事。衣、食、住、行、用,化学无所不在。随着生产力的发展,科学技术的进步,化学与人们生活的关系越来越密切。化学在人类的生产和生活中发挥了不可估量的作用。俗话说“民以食为天”,我们每天都会接触各种食品,可以说化学与我们关系最紧密的应该是食品方面了。而近年来,食品安全事件屡有发生,苏丹红、三聚氰胺、瘦肉精......导致现在人们谈到食品添加剂和其他一些用于食品生产方面的化学试剂就会色变。公众谈食品添加剂色变,更多的原因是混淆了非法添加物和食品添加剂的概念,把一些非法添加物的罪名扣到食品添加剂的头上显然是不公平的。因此,我们应该正确认识食品添加剂,了解食品中的化学。 二、食品添加剂 国际食品法典委员会(CAC)定义的食品添加剂是指无论有无营养价值,其本身通常不作为食品食用,也不作为食品中常见配料的任何物质,在食品中添加该物质的原因是出于生产、加工、制作、处理、包装、运输或者盛放过程中技术(包括感观上)原因,或希望其(直接或者)间接合理地成为食品的一部分,或其副产品成为食品的一部分,或影响食品的特征。从以上定义可以看出,食品添加剂本身不是食品、是人为添加到食品中并且希望在食品或食品生产过程中发挥一定

化学与食品安全(正式版)

文件编号:TP-AR-L8439 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 化学与食品安全(正式版)

化学与食品安全(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 食物是人类赖生存的基本物质,是人类生活中最 基本的必需品。人体通过不断摄取食物,以满足机体 对各种营养物质的需要。食品的营养和安全不仅是人 体预防疾病、增进健康的保证,而且关系国计民生。 随着经济社会不断进步,经济全球化不断深入发展, 食品质量要求越来越高,需求也越来越大。近些年 来,食品安全的恶性事件越来越多,食品安全与食品 卫生成为了人们高度关注的话题。然而,食品安全问 题不断地涌现却离不开食品加工过程中化学品的新技 术的广泛使用。接下来,本文将会从化学的角度分析 化学物质对食品的影响以及提出一些解决问题的对

策。 俗话说“民以食为天”,人民的生活离不开食物。食品安全,关乎到每个人的健康与生命。能否保障食品安全,让人吃得健康、吃得安全,对每个人来说都是“天大的事”。随着科学技术的快速发展和人们生活水平的不断提高,各种新型食品层出不穷。然而,由于社会中有着那么一群黑心的生产厂家,他们为了谋取暴利,不按照国家规定,随意添加化学物质,以提高食品的参数,蒙混过关,这大大降低了食品的质量,严重影响了广大人民群众的身心健康! 一、化学物质对食品的影响 1、农药残留对食品的影响 农药残留对食品安全构成的威胁就是农残超标。农药对人畜的毒性可以分为急性毒性和慢性毒性。急性毒性是一次服用或接触大量药剂而表现出的毒性,

食品化学知识点

第一章绪论 1、食品化学:是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、贮存和运销过程中的变化及其对食品品质和食品安全性影响的科学,是为改善食品品质、开发食品新资源、革新食品加工工艺和贮运技术、科学调整膳食结构、改进食品包装、加强食品质量控制及提高食品原料加工和综合利用水平奠定理论基础的学科。 2、食品化学的研究范畴 第二章水 3、在温差相等的情况下,为什么生物组织的冷冻速率比解冻速率更快? 4、净结构破坏效应:一些离子具有净结构破坏效应(net structure-breaking effect),如:K+、Rb+、Cs+、NH4+、Cl- 、I- 、Br- 、NO3- 、BrO3- 、IO3-、ClO4- 等。这些大的正离子和负离子能阻碍水形成网状结构,这类盐溶液的流动性比纯水更大。 净结构形成效应:另外一些离子具有净结构形成效应(net structure-forming effect),这些离子大多是电场强度大、离子半径小的离子或多价离子。它们有助于形成网状结构,因此这类离子的水溶液的流动性比纯水的小,如:Li+、Na+、Ca2+、Ba2+、Mg2+、Al3+、F-、OH-等。 从水的正常结构来看,所有离子对水的结构都起到破坏作用,因为它们都能阻止水在0℃下结冰。

5、水分活度 目前一般采用水分活度表示水与食品成分之间的结合程度。 aw=f/f0 其中:f为溶剂逸度(溶剂从溶液中逸出的趋势);f0为纯溶剂逸度。 相对蒸气压(Relative Vapor Pressure,RVP)是p/p0的另一名称。RVP与产品环境的平衡相对湿度(Equilibrium Relative Humidity,ERH)有关,如下: RVP= p/p0=ERH/100 注意:1)RVP是样品的内在性质,而ERH是当样品中的水蒸气平衡时的大气性质; 2)仅当样品与环境达到平衡时,方程的关系才成立。 6、水分活度与温度的关系: 水分活度与温度的函数可用克劳修斯-克拉贝龙方程来表示: dlnaw/d(1/T)=-ΔH/R lnaw=-ΔH/RT+C 图:马铃薯淀粉的水分活度和温度的克劳修斯-克拉贝龙关系 7、食品在冰点上下水分活度的比较: ①在冰点以上,食品的水分活度是食品组成和温度的函数,并且主要与食品的组成有关;而在冰点以下,水分活度仅与食品的温度有关。 ②就食品而言,冰点以上和冰点以下的水分活度的意义不一样。如在-15℃、水分活度为0.80时微生物不会生长且化学反应缓慢,然而在20℃、水分活度为0.80 时,化学反应快速进行且微生物能较快地生长。 ③不能用食品在冰点以下的水分活度来预测食品在冰点以上的水分活度,同样也不能用食品冰点以上的水分活度来预测食品冰点以下的水分活度。 8、水分吸附等温线 在恒定温度下,用来联系食品中的水分含量(以每单位干物质中的含水量表示)与其水分活度的图,称为水分吸附等温线曲线(moisture sorption isotherm,MSI)。 意义: (1)测定什么样的水分含量能够抑制微生物的生长; (2)预测食品的化学和物理稳定性与水分含量的关系; (3)了解浓缩和干燥过程中样品脱水的难易程度与相对蒸气压(RVP)的关系; (4)配制混合食品必须避免水分在配料之间的转移; (5)对于要求脱水的产品的干燥过程、工艺、货架期和包装要求都有很重要的作用。 9、MSI图形形态

食品化学与分析

食品化学与分析 第一章绪论 1、食品化学的定义:从化学角度与分子水平上研究食品的化学组 成、结构、理化性质、营养与安全性质以及它们在生产、加工。 贮藏与运销过程中发生的变化与这些变化对食品品质与安全性 影响的科学。 2、食品化学的分类:㈠根据研究内容分为:食品营养化学、食品色 素化学、食品风味化学、食品工艺化学、食品物理化学与食品 有害成分化学㈡根据研究对象分为:食品碳水化合物化学、食品 油脂化学、食品蛋白质化学、食品酶学、食品添加剂化学、维 生素化学、食品矿质元素化学、调味品化学、食品香味化学、 食品色素化学、食品毒物化学、食品保健成分化学。 3、食品化学的研究内容:1、确定食品的组成、营养价值、安全性 与品质等重要特性2、食品贮藏加工过程中各类化学与生物化 学反应的步骤与机制3、确定影响食品品质与安全性的主要因 素4、研究化学反应的热力学参数与动力学行为及其环境因素 的影响 4、食品分析的定义:对食品中的化学组成以及可能存在的不安全 因素的研究与探讨食品品质与食品卫生及其变化的一门学科。 5、食品分析检验的内容:㈠食品营养成分的检验㈡食品添加剂的 检验㈢食品中有毒有害物质的检验㈣食品新鲜度的检验㈤掺假 食品的检验

6、食品分析所采用的分析方法:㈠感官分析法(所使用的感觉器官 不同,感官检验分为视觉检验、嗅觉检验、味觉检验、触觉检验、听觉检验。常用的检验方法:差别检验法、类别检验法、分析或 描述性检验法)㈡理化分析法(根据原理与操作方法不同可以分 为物理分析法、化学分析法、仪器分析法⑴光学分析法⑵电化 学分析法⑶色谱分析法)㈢微生物分析法㈣酶分析法 第二章食品成分及其结构与性质 1、生物体系的基本成分包括蛋白质、碳水化合物、脂质、核酸、 维生素、矿物质与水。 2、自由水:食品中与非水成分有较弱的作用或基本没有作用的水, 这部分水主要靠毛细管力维系,称为游离水或体相水。 3、结合水:存在于食品中的与非水成分通过氢键结合的水。就是食 品中与非水成分结合的最牢固的水。水通过氢键与大分子结合 的那部分水又称为束缚水,通过氢键与离子结合的那部分水又 称为离子化水。 4、单分子层水:与食品中非水成分的强极性基团如羧基、氨基、羟 基等直接以氢键结合的第一个水分子层。在-40℃下不结冰,也 不能为被微生物利用。一般来说,食品干燥后安全贮藏的水分含 量要求即为该食品的单分子层水。 5、多分子层水:单分子层水之外的几个水分子层包含的水,这部分 水占据单分子覆盖层旁边未覆盖的非水物表面位置以及单分子 覆盖层外位置。

食品化学

食品化学 ①根据化学结构和化学性质,碳水化合物是属于一类多羟基醛或酮的化合物。 ②糖苷的溶解性能与配体有很大关系。 ③淀粉溶液冻结时形成两相体系,一相为结晶水,另一相是玻璃态。 ④一次摄入大量苦杏仁易引起中毒,是由于苦杏仁苷在体内彻底水解产生氢氰酸,导致中毒。 ⑤多糖分子在溶液中的形状是围绕糖基连接键振动的结果,一般呈无序的无规线团状。 ⑥喷雾或冷冻干燥脱水食品中的碳水化合物随着脱水的进行,使糖-水的相互作用转变成糖-风味 剂的相互作用。 ⑦环糊精由于内部呈非极性环境,能有效地截留非极性的风味成分和其他小分子化合物。 ⑧碳水化合物在非酶褐变过程中除了产生深颜色类黑精色素外,还产生了多种挥发性物质。 ⑨褐变产物除了能使食品产生风味外,它本身可能具有特殊的风味或者增强其他的风味,具有这种 双重作用的焦糖化产物是麦芽酚和乙基麦芽酚。 ⑩糖醇的甜度除了木糖醇的甜度和蔗糖相近外,其他糖醇的甜度均比蔗糖低。 11甲壳低聚糖是一类由N-乙酰-(D)-氨基葡萄糖或D-氨基葡萄糖通过β-1,4 糖苷键连接起来的低聚合度的水溶性氨基葡聚糖。 12卡拉胶形成的凝胶是热可逆的,即加热凝结融化成溶液,溶液放冷时,又形成凝胶。 13硒化卡拉胶是由亚硒酸钠与卡拉胶反应制得。 14褐藻胶是由糖醛酸结合成的大分子线性聚合物,大多是以钠盐形式存在。 15儿茶素按其结构,至少包括有A、B、C三个核,其母核是α-苯基苯并吡喃衍生物。 16食品中丙烯酰胺主要来源于高温加工过程。 17低聚木糖是由2~7个木糖以β(1→4)糖苷键结合而成。 18马铃薯淀粉在水中加热可形成非常黏的透明溶液。 19淀粉糊化的本质就是淀粉微观结构从有序转变成无序 20N-糖苷在水中不稳定,通过一系列复杂反应产生有色物质,是引起美拉德褐变的主要原因。 21脂肪酸是指天然脂肪水解得到的脂肪族一元羧酸。 22天然脂肪中主要是以三酰基甘油形式存在。 23乳脂的主要脂肪酸是棕榈酸、油酸和硬脂酸。 24花生油和玉米油属于油酸一亚油酸酯。 25海产动物油脂中含大量长链多不饱和脂肪酸,富含维生素A和维生素D。 26种子油脂一般来说不饱和脂肪酸优先占据甘油酯Sn-2位置。 27人造奶油要有良好的涂布性和口感,这就要求人造奶油的晶型为细腻的β’型。 28在动物体内脂肪氧化酶选择性的氧化花生四烯酸,产生前列腺素、凝血素等活性物质。 29脂类的氧化热聚合是在高温下,甘油酯分子在双键的α-碳上均裂产生自由基。 30酶促酯交换是利用脂肪酶作催化剂进行的酯交换。 31自然界中的油脂多为混合三酰基甘油酯,构型为L-型。 32月桂酸酯来源于棕榈植物,其月桂酸含量高,不饱和脂肪酸含量少,熔点较低。 豆油、小麦胚芽油、亚麻籽油和紫苏油属于亚麻酸酯类油脂。 33动物脂肪含有相当多的全饱和的三酰甘油,所以熔点较高。 34精炼后的油脂其烟点一般高于240℃。 35α 型油脂中脂肪酸侧链为无序排列,它的熔点低,密度小,不稳定。 36β型的脂肪酸排列得更有序,是按同一方向排列的,它的熔点高,密度大,稳定性好。 37天然油脂中,大豆油、花生油、橄榄油、椰子油、红花油、可可脂和猪油等容易形成β型晶体38棉子油、棕榈油、菜籽油、乳脂和牛脂易形成稳定的β’型晶体。

化学与食品的关系1

豆腐和豆腐脑是这么制作的:把黄豆浸在水里,泡胀变软后,磨成豆浆,再滤去豆渣,煮开。这时候,黄豆里的蛋白质团粒被水簇拥着不停地运动,聚不到一块儿,形成了“胶体”溶液。要使胶体溶液变成豆腐,必须点卤。点卤用盐卤或石膏,盐卤主要含氯化镁,石膏是硫酸钙,它们能使分散的蛋白质团粒很快地聚集到一块儿,成了白花花的豆腐脑。再挤出水分,豆腐脑就变成了豆腐。豆腐、豆腐脑就是凝聚的豆类蛋白质。 加盐卤制豆腐是一个聚沉的过程,是由于正负电荷中和导致浊液内粒子稳定性下降,严格意义上来说不是化学反应。蛋白质溶液溶质分子太大(介于1nm-100nm),形成胶体溶液(液溶胶)。当加入电解质(及溶液)等物质时由于胶粒带电与电解质离子相互吸引发生凝聚。当凝聚的颗粒足够大时胶粒就从溶液里聚沉出来。豆腐就是豆浆(蛋白质胶体溶液)的聚沉产物。 制皮蛋的主要原料是生石灰、纯碱、食盐、红茶叶、水和植物灰(含有氧化钙、氧化钾).把原料按一定的比例溶于水制成料液(或料泥)时,发生一系列的化学反应,生成氢氧化钠、氢氧化钾、碳酸钙,并电离出氢氧根离子、钾离子、钠离子和钙离子. 把蛋浸入料液(或包入料泥)中,这些离子渗入蛋壳内.蛋白中的蛋白质在氢氧根的作用下开始“凝固”与水形成胶冻,同时钠离子、钾离子、钙离子和红茶中的鞣质都促使蛋白质凝固和沉淀,也使蛋黄凝固和收缩.蛋白质在氢氧根离子的作用下还会逐步分解成多种氨基酸,氨基酸进一步分解出氢、氨和微量的硫化氢等,加上渗入的咸味、茶香味使皮蛋具有特殊的风味和较高的营养价值.分解出来的氨基酸与渗入的碱反应生成的氨基酸盐,在蛋黄表面或蛋白中结晶出来,形成一朵朵美丽的“松花”. 含硫较高的蛋黄蛋白质在氢氧根离子的作用下,分解成多种氨基酸的同时产生了硫氢基和二硫基与蛋黄中的色素和蛋内的各种金属离子结合,使蛋黄出现了墨绿、草绿、茶色、暗绿、橙红等颜色,加上外层蛋白的红褐色(或黑褐色)形成了五彩缤纷的色层皮蛋,所以皮蛋又叫彩蛋. 材料:纯碱、生石灰、草木灰(内含K2CO3)和冷开水. CaO+H2O==Ca(OH)2 Na2CO3+Ca(OH)2==CaCO3↓+2NaOH K2CO3+Ca(OH)2==CaCO3↓+2KOH 从化学的角度阐述生

食品化学名词解释

食品化学名词解释 1、食品化学:一门将基础学科和工程学的理论用于研究食品基本的物理、化学和生物化学性质以及食品加工原理的学问,是一门主要涉及细菌学、化学、生物学和工程学的综合性学科。它是一门涉及到食品的特性及其变化、保藏和改性原理的科学。 2、结合水:是一个样品在某一个温度和较低的相对湿度下的平衡水分含量 3、疏水水合:热力学上,水与非极性物质,如烃类、稀有气体以及脂肪酸、氨基酸和蛋白质的非极性基团相混合无疑是一个不利的过程(ΔG >0)。ΔG= ΔH- T ΔS ΔG为正是因为ΔS是负的。熵的减少是由于在这些不相容的非极性物质的邻近处形成了特殊的结构。此过程被称为疏水水合。 4、疏水缔合(疏水相互作用):当两个分离的非极性基团存在时,不相容的水环境会促使它们缔合,从而减小了水-非极性界面,这是一个热力学上有利的过程(ΔG<0)。此过程是疏水水合的部分逆转,被称为“疏水相互作用”。R(水合的)+R(水合的)→R2(合的)+H 2O 5、水分活度:AW=f/f0 f:溶剂(水)的逸度。逸度:溶剂从溶液逃脱的趋势f0 :纯溶剂的逸度。 6、相对蒸汽压”(RVP)p/p0 是测定项目,有时不等于A w,因此,使用p/p0 项比A w 更为准确。在少数情况下,由于溶质特殊效应使RVP成为食品稳定和安全的不良指标。 7、吸着等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对P/P0作图得到水分吸着等温线(moisture sorption isotherms,缩写为MSI)。 8、滞后现象:滞后现象就是样品的吸湿等温线和解吸等温线不完全重叠的现象 9、玻璃化温度(Tg):非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称玻璃化温度 10、美拉德反应(羰氨反应):食品在油炸、焙烤、烘焙等加工或贮藏过程中,还原糖(主要是葡萄糖)同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应,这种反应被称为美拉德反应。 11、糊化:当β-淀粉在水中加热到一定温度时,淀粉发生膨胀,体积变大,结晶区消失,双折射消失,原来的悬浮液变成粘稠胶体溶液的过程。

传统美食里的化学奥秘

豆腐―点浆 豆腐向来颇受人们喜爱,麻婆豆腐、豆腐干、小葱拌豆腐……都是我们经常吃的美食。 豆腐好吃,做豆腐难,不过也很有趣。 豆腐的制作方法是: 将大豆浸泡一定时间,加水磨成生豆浆,然后煮沸成熟豆浆;然后是点豆腐,南豆腐用石膏,北豆腐用卤水,卤水的主要成分是氯化镁,石膏是硫酸钙。点完豆腐后豆浆就凝固,直接用勺子舀着吃,就是我们爱吃的豆腐脑;如果用纱布包裹压掉一些水分就成了我们所吃的豆腐。 在制作豆腐的过程中,豆乳的凝固是影响豆腐质量的关键因素之一,也是各种豆腐之间形成质构差别的主要原因。点豆腐时用的凝固剂不同,做出的豆腐质量和口感也就不同。凝固剂用石膏做出的豆腐,因其凝固进度缓慢,做出的豆腐保水性好、光滑细嫩;用卤水点豆浆做豆腐,可使豆浆中蛋白质迅速凝固,豆腐蛋白凝胶中所携带的水分较少,豆腐的持水性较差,所以做出的豆腐较干,豆腐干一般就是用卤水点豆浆做成的。 那么,点豆腐的原理到底是什么呢?这个过程中究竟发生了什么变化? 盐卤或石膏进入豆浆后,其中所带的正离子与负离子会和豆浆中的水分子结合,打破蛋白质和水的交融状态,使蛋白质颗粒凝聚,形成沉淀。分散的蛋白质团粒会很快聚集到一起,就变成了白花花的豆腐脑;再挤出水分,豆腐脑就变成了豆腐。豆腐、豆腐脑就是凝聚的豆类蛋白质。 酒酿―发酵 酒酿的历史由来已久,不过,古时候人们叫它“醪糟”。《说文解字》里记载“古者仪狄作酒醪,禹尝之而美,遂疏仪狄。”其中“酒醪”可能就是与醪糟相似的食品。

酒酿的做法是用蒸熟的糯米拌上酒药,然后发酵而成。在我国不同地方,它也有不同的称呼,醪糟、酒娘、米酒、酒糟等。酒药又称“酒母”或者“曲”,所含的成分主要是用于发酵的微生物,包括细菌和真菌,其作用是使糯米发酵。 酒酿在发酵过程中发生了什么变化呢?糯米的主要成分是淀粉(多糖的一种),以支链淀粉为主。将酒药撒上后,酒药中含有多种发酵微生物,首先根霉和酵母开始繁殖,并分泌淀粉酶,将糯米里的淀粉水解成为葡萄糖,醪糟的甜味即由此得来。然后,醪糟表面会长出一层白醭,这其实是根霉的菌丝。随后,葡萄糖在无氧条件下在真菌细胞内发生糖酵解代谢,将葡萄糖分解成为酒精和二氧化碳,就使得酒酿有了类似酒的香味。酒酿就基本做好了。 酒酿的发酵时间要控制得恰到好处: 过长淀粉会被分解完,酒味过大,没有嚼头;时间不够,则米尚未酥烂,口感黏,像糯米饭。另外,在发酵过程中最好不要打开盖子,这个过程不喜欢太多氧气,而且空气中的其他细菌也可能进入引起杂菌污染。 泡菜―腌渍 在四川,善于做泡菜的人被称为拥有一双“泡菜手”。在东北,冬季来临前人们也要做好泡菜,东北泡菜被当地人称为雪地里的“迎春菜”。以前,反季蔬菜还不流行,没有一手好的泡菜功夫,冬天可是很难熬的。在韩国,泡菜俨然成了国家名片,他们还给泡菜起了一个名字叫辛吉穆奇(kimchi)。 泡菜的做法,是用一些新鲜的蔬菜,白菜、辣椒各种蔬菜都行,风干表面,放入泡菜坛里,别装得太满,加入水和盐,如果喜欢,还可以加点花椒等香辛料,然后盖上坛子,在坛子的边沿倒上水,放到阴凉干燥的地方即可。不过,放到坛子里的泡菜究竟发生了什么变化呢? 从外面看起来,泡菜在坛子里似乎没有动静。不过,大量的微生物其实已经开始活跃了,这里主要发挥作用的是乳酸菌,泡菜坛里正在酝酿着一场发酵活动,而泡菜坛也被认为是最古老的生化反应器。乳酸菌将蔬菜里的糖分分解发酵产生乳酸,这就是为什么泡菜吃起来都是酸酸的。而泡菜脆嫩的口感也是乳酸菌的缘故,原来,乳酸菌体内缺少分解蛋白质的蛋白酶,所以,它不能消化植物组织细胞内的原生质,而只利用蔬菜渗出汁液中的糖分及氨基酸等可溶

食品与化学论文

食品生物化学论文 论文题目:食品与微生物 姓名:谢培钧 学部:工程与设计学学部 专业班级:数字媒体技术131 学号:1338350103 摘要:食品的微生物污染是指食品在加工、运输、贮藏、销售过程中被微生物及其毒素的污染。其中微生物污染食品而危害人类健康最易发生,而且较为多见。所以,了解微生物与食品安全、人类健康意义重大。 关键词:微生物食品安全人类健康应用前景 前言:人类对食品微生物的利用,起源很早。远在公元前16~前11世纪,中国就会利用微生物酿酒。古书曾记载有:“仪狄作酒,禹饮而甘之”。《商书》中也记载有:“若作酒醴,尔维曲;若作禾羹,尔维盐媒”。“曲”是用谷物培养霉菌等微生物制成,“禾”是发芽的谷物,如作啤酒的麦芽,“媒”是含有乳酸菌之类的菜卤。当时人们还不知道这是微生物的存在和作用。直到16世纪,荷兰人A.van列文虎克首次制成了放大200~300倍的显微镜后,才看到微生物。1857年,微生物学家L.巴斯德证实酒精的发酵过程由酵母引起,并经长期研究,奠定了微生物学的基础,解决了当时法国由于酒的变质给酿造业带来的重大损失问题,开创了巴斯德灭菌法(现称巴氏灭菌法)。这种灭菌方法至今仍应用于酒、醋、酱油、牛奶、果汁等食品的灭菌。20世纪以来,由于电子显微镜的发明,生物化学和化学分析技术等学科的发展,促进了微生物学从细胞水平、亚细胞水平进入分子水平。尤其是70年代遗传工程科学的发展,有力地推动了食品微生物学的发展。通过诱变、细胞融合等技术,选育出高产的发酵食品微生物优良菌株,可提高产量,改变食品工业的面貌。 正文: 1.1微生物,有时也称细菌,实际上包括细菌、霉菌、酵母和病毒等引起食物中毒的有害微生物(注意:有些微生物是有益的,如乳酸菌、面包酵母等)。由于这些生物个体十分微小,要通过显微镜才能看到,因此称为微生物。微生物无处不在,可在食物链的任何环节侵入食品:从动物到田间的植物、从加工的食品到端上餐桌的食物。如果我们食用的食物中有微生物繁殖,就可能造成疾病。食品从生产原料、加工,一直到食用以前都有可能遭到微生物污染。食品微生物包括3大类: ①: 通过它的作用,可生产出各种饮料、酒、醋、酱油、味精、馒头和面包等发酵食品。 ②:是引起食品变质败坏的微生物。 ③:又称食源性病原微生物。包括能引起人们食物中毒和使人、动植物感染而发生传染病的病原微生物。 1.2可能对食品造成污染的微生物主要来自以下几个方面: ㈠土壤土壤是微生物的大本营。 ㈡空气空气中的微生物数量随与地面高度、人口疏密等条件而异。一般来讲,越接近地面的空气,含微生物越多。尘埃越多,微生物也越多。相反,下雨或下雪后,微生物就显著减少。㈢水各种水域如海洋、湖泊、江河具有微生物生存的一定条件,自然界的水源中都含有不同量的无机物质和有机物质。水的表面含氧量较多,淡水pH在7.0~7.4之间,水的温度随气温变化而改变。因此,不同性质的水源中可有不同类群的微生物在其中活动和生存。 ㈣人和动植物当人和动物有病原微生物寄生而造成病害时,患者体内就会有大量的病原微生物通过呼吸道和消化道排泄物向体外排出,其中少数菌是人、畜共患病原微生物,如沙门氏

传统美食里的化学奥秘

传统美食里的化学奥秘 豆腐―点浆 豆腐向来颇受人们喜爱,麻婆豆腐、豆腐干、小葱拌豆腐……都是我们经常吃的美食。豆腐好吃,做豆腐难,不过也很有趣。 豆腐的制作方法是:将大豆浸泡一定时间,加水磨成生豆浆,然后煮沸成熟豆浆;然后是点豆腐,南豆腐用石膏,北豆腐用卤水,卤水的主要成分是氯化镁,石膏是硫酸钙。点完豆腐后豆浆就凝固,直接用勺子舀着吃,就是我们爱吃的豆腐脑;如果用纱布包裹压掉一些水分就成了我们所吃的豆腐。 在制作豆腐的过程中,豆乳的凝固是影响豆腐质量的关键因素之一,也是各种豆腐之间形成质构差别的主要原因。点豆腐时用的凝固剂不同,做出的豆腐质量和口感也就不同。凝固剂用石膏做出的豆腐,因其凝固进度缓慢,做出的豆腐保水性好、光滑细嫩;用卤水点豆浆做豆腐,可使豆浆中蛋白质迅速凝固,豆腐蛋白凝胶中所携带的水分较少,豆腐的持水性较差,所以做出的豆腐较干,豆腐干一般就是用卤水点豆浆做成的。 那么,点豆腐的原理到底是什么呢?这个过程中究竟

发生了什么变化? 盐卤或石膏进入豆浆后,其中所带的正离子与负离子会和豆浆中的水分子结合,打破蛋白质和水的交融状态,使蛋白质颗粒凝聚,形成沉淀。分散的蛋白质团粒会很快聚集到一起,就变成了白花花的豆腐脑;再挤出水分,豆腐脑就变成了豆腐。豆腐、豆腐脑就是凝聚的豆类蛋白质。 酒酿―发酵 酒酿的历史由来已久,不过,古时候人们叫它“醪糟”。《说文解字》里记载“古者仪狄作酒醪,禹尝之而美,遂疏仪狄。”其中“酒醪”可能就是与醪糟相似的食品。 酒酿的做法是用蒸熟的糯米拌上酒药,然后发酵而成。在我国不同地方,它也有不同的称呼,醪糟、酒娘、米酒、酒糟等。酒药又称“酒母”或者“曲”,所含的成分主要是用于发酵的微生物,包括细菌和真菌,其作用是使糯米发酵。 酒酿在发酵过程中发生了什么变化呢?糯米的主要成分是淀粉(多糖的一种),以支链淀粉为主。将酒药撒上后,酒药中含有多种发酵微生物,首先根霉和酵母开始繁殖,并分泌淀粉酶,将糯米里的淀粉水解成为葡萄糖,醪糟的甜味即由此得来。然后,醪糟表面会长出一层白醭,这其实是根霉的菌丝。随后,葡萄糖在无氧条件下在真菌细胞内发生糖酵解代谢,将葡萄糖分解成为酒精和二氧化碳,就使得酒

食品化学简答题

水分 1 简要概括食品中的水分存在状态。 食品中的水分有着多种存在状态,一般可将食品中的水分分为自由水(或称游离水、体相水)和结合水(或称束缚水、固定水)。其中,结合水又可根据被结合的牢固程度,可细分为化合水、邻近水、多层水;自由水可根据这部分水在食品中的物理作用方式也可细分为滞化水、毛细管水、自由流动水。但强调的是上述对食品中的水分划分只是相对的。 2简述食品中结合水和自由水的性质区别 食品中结合水和自由水的性质区别主要在于以下几个方面:⑴食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得很多,随着食品中非水成分的不同,结合水的量也不同,要想将结合水从食品中除去,需要的能量比自由水高得多,且如果强行将结合水从食品中除去,食品的风味、质构等性质也将发生不可逆的改变;⑵结合水的冰点比自由水低得多,这也是植物的种子及微生物孢子由于几乎不含自由水,可在较低温度生存的原因之一;而多汁的果蔬,由于自由水较多,冰点相对较高,且易结冰破坏其组织;⑶结合水不能作为溶质的溶剂;⑷自由水能被微生物所利用,结合水则不能,所以自由水较多的食品容易腐败。 3比较冰点以上和冰点以下温度的αW差异。 在比较冰点以上和冰点以下温度的αW时,应注意以下三点:⑴在冰点温度以上,αW 是样品成分和温度的函数,成分是影响αW的主要因素。但在冰点温度以下时,αW与样品的成分无关,只取决于温度,也就是说在有冰相存在时,αW不受体系中所含溶质种类和比例的影响,因此不能根据αW值来准确地预测在冰点以下温度时的体系中溶质的种类及其含量对体系变化所产生的影响。所以,在低于冰点温度时用αW值作为食品体系中可能发生的物理化学和生理变化的指标,远不如在高于冰点温度时更有应用价值;⑵食品冰点温度以上和冰点温度以下时的αW值的大小对食品稳定性的影响是不同的;⑶低于食品冰点温度时的αW不能用来预测冰点温度以上的同一种食品的αW。 4MSI在食品工业上的意义 MSI即水分吸着等温线,其含义为在恒温条件下,食品的含水量(每单位干物质质量中水的质量表示)与αW的关系曲线。它在食品工业上的意义在于:⑴在浓缩和干燥过程中样品脱水的难易程度与αW有关;⑵配制混合食品必须避免水分在配料之间的转移;⑶测定包装材料的阻湿性的必要性;⑷测定什么样的水分含量能够抑制微生物的生长;⑸预测食品的化学和物理稳定性与水分的含量关系。 5滞后现象产生的主要原因。 MSI的制作有两种方法,即采用回吸或解吸的方法绘制的MSI,同一食品按这两种方法制作的MSI图形并不一致,不互相重叠,这种现象称为滞后现象。产生滞后现象的原因主要有:⑴解吸过程中一些水分与非水溶液成分作用而无法放出水分;⑵不规则形状产生毛细管现象的部位,欲填满或抽空水分需不同的蒸汽压;⑶解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高的αW;⑷温度、解吸的速度和程度及食品类型等都影响滞后环的形状。 6 简要说明αW比水分含量能更好的反映食品的稳定性的原因。αW比用水分含量能更好地反映食品的稳定性,究其原因与下列因素有关:(1)αW对微生物生长有更为密切的关系;(2)αW与引起食品品质下

化学与食品安全问题.docx

化学与食品安全问题 人类生活的各个方面,社会发展的各种需要都与化学息息相关。 从社会发展来看,化学对于实现农业和科学技术现代化具有重要的作用。农业的增产离不开化学,需要化肥、农药、植物生长激素和除草剂等化学产品的支持。由此可见化学与我们的生活息息相关,她是我们生活的必要因素,没有化学反应无法开动,生物界无法正常循环,我们的生活离不开化学的贡献。 然而有句话叫“任何事物都有两面性”。随着社会的发展,我们不得不承认,化学在造福于人类的同时也给我们带来了许多问题。如能源问题、环境污染问题、材料问题等。他们已经对人类的生存发展构成了严重的威胁。这些问题都给人类的生存和发展带来了严重的影响。因为我个人对食品安全问题比较感兴趣,下面我就化学与食品安全问题谈谈我的看法。 食品添加剂 所谓食品添加剂是指用于改善食品品质、延长食品保存期、便于食品加工和增加食品营养成分的一类化学合成或天然物质。食品添加剂是为改善食品色、香、味等品质,以及为防腐和加工工艺的需要而加入食品中的化合物质或者天然物质。据统计现在几乎所有的出售食品都或多或多或少的含有一些添加剂。有些是为了延长食品的保质期而添加的。如各种抗氧化剂、防腐剂等,添加这些化学物质,主要是为了推迟食品的氧化变质,以提供食品的稳定性和耐藏性。有的是为了增

加食品的视觉效果的,如苋菜红、胭脂红、赤鲜红新红、诱惑红、柠檬黄、日落黄等色素。有的是为了增加味觉的,如谷氨酸钠(味精)、-鸟苷酸二钠等。 这些如果按照国家标准去添加,是不会对人体造成危害的。然而现在很多厂商为了自身的利益关系,往食品里添加一些有害的化学物质来代替安全的食品添加剂,或者为了达到更为明显的效果厂家超标的使用某种添加剂。我们知道,虽然一些添加剂在一定浓度范围不会造成什么危害,但是一旦超标,其后果不亚于毒药,从而给消费者的身体健康造成严重的危害。 曾经在一段时间内有些消费者很热衷于红心鸭蛋,他们认为鸭蛋的营养价值就体现在红色的蛋黄上,而蛋黄红色的深浅跟鸭子吃小鱼小虾的多少有关,“鸭子吃小鱼小虾多了,蛋黄的‘红色'就深点,吃得少就浅点。”因此在那段时间内红心鸭蛋很畅销,据一个老板说,一天就能卖掉几千斤。因此很多养殖场便看中了这一点,便往鸭子的饲料里添加一些“红药”,也就是工业染料“苏丹红ⅠⅤ号”,这样产下的便是红心鸭蛋。问题就出在这个“红药”上面,学过生物的同学都有这个常识,苏丹红是一种著名的化学染色剂,共分为Ⅰ、Ⅱ、Ⅲ、Ⅳ号,都是工业染料。比起苏丹红Ⅰ号,苏丹红Ⅳ号不但颜色更加红艳,毒性也更大。国际癌症研究机构将苏丹红Ⅳ号列为三类致癌物,其初级代谢产物邻氨基偶氮甲苯和邻甲基苯胺均列为二类致癌物,对人可能致癌。可想而知,人们吃了这种含有苏丹红Ⅳ将会对自身造成多大的危害。

(完整版)食品化学名词解释

食品化学名词解释 离子水合作用:在水中添加可解离的溶质,会使纯水通过氢键键合形成的四面体排列的正常结构遭到破坏,对于不具有氢键受体和给体的简单无机离子,它们与水的相互作用仅仅是离子-偶极的极性结合。这种作用通常被称为离子水合作用。 疏水水合作用:向水中加入疏水性物质,如烃、脂肪酸等,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,处于这种状态的水与纯水结构相似,甚至比纯水的结构更为有序,使得熵下降,此过程被称为疏水水合作用。 疏水相互作用:如果在水体系中存在多个分离的疏水性基团,那么疏水基团之间相互聚集,从而使它们与水的接触面积减小,此过程被称为疏水相互作用。 笼形水合物:指的是水通过氢键键合形成像笼一样的结构,通过物理作用方式将非极性物质截留在笼中。通常被截留的物质称为“客体”,而水称为“宿主”。 结合水:通常是指存在于溶质或其它非水成分附近的、与溶质分子之间通过化学键结合的那部分水。 化合水:是指那些结合最牢固的、构成非水物质组成的那些水。 状态图:就是描述不同含水量的食品在不同温度下所处的物理状态,它包括了平衡状态和非平衡状态的信息。 玻璃化转变温度:对于低水分食品,其玻璃化转变温度一般大于0℃,称为Tg;对于高水分或中等水分食品,除了极小的食品,降温速率不可能达到很高,因此一般不能实现完全玻璃化,此时玻璃化转变温度指的是最大冻结浓缩溶液发生玻璃化转变时的温度,定义为Tg′。 自由水:又称游离水或体相水,是指那些没有被非水物质化学结合的水,主要是通过一些物理作用而滞留的水。 自由流动水:指的是动物的血浆、植物的导管和细胞内液泡中的水,由于它可以自由流动,所以被称为自由流动水。 水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示: 其中,P为某种食品在密闭容器中达到平衡状态时的水蒸汽分压;P0表示在同一温度下纯水的饱和蒸汽压;ERH是食品样品周围的空气平衡相对湿度。 水分吸着等温线:在恒温条件下,食品的含水量(用每单位干物质质量中水的质量表示)与αW的关系曲线。 解吸等温线:对于高水分食品,通过测定脱水过程中水分含量与αW的关系而得到的吸着等温线,称为解吸等温线。

相关文档
最新文档