条件概率、全概率公式与贝叶斯公式

条件概率、全概率公式与贝叶斯公式
条件概率、全概率公式与贝叶斯公式

条件概率、全概率公式与贝叶斯公式

一、背景

一个随机事件的概率,确切地说,是指在某些给定的条件下,事件

发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的.

[例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一位,换一句话说,发生之后,发生的概率(暂且记为) 自然是.

[例2] 将一枚硬币抛掷,观察其出现正反面的情况.设事件为“两次掷出同一面”,事件为“至少有一次为正面H”.现在来求已知事件已经发生的条件下事件发生的概率.

这里,样本空间.易知此属于古典概型问题.已知事件已发生,有了这一信息,知道不可能发生,即知试验所有可能结果所成的集合就是.中共有3个元素,其中只有属于.于是,在发生的条件下,发生的概率为

对于例1,已知

容易验证在发生的条件下,发生的概率

对于例2,已知

容易验证发生的条件下,发生的概率

对一般古典概型, 容易验证:只要,则在发生的条件下, 发生的概率,

总是成立的.

在几何概率场合,如果向平面上单位正方形内等可能任投一点,则当发生的条件下, 这时发生的概率为

由此可知对上述的两个等可能性的概率模型,总有成立.

其实,还可以验证, 这个关系式对频率也是成立的.于是,从这些共性中得到启发,引入下面的一般定义.

二、条件概率

若是一个概率空间,,若,则对于任意的,称

为已知事件发生的条件下, 事件发生的条件概率.

[例3] 一盒子中装有4只产品,其中有3只是一等品,1只是二等品.从中取产品两次,每次任取一只,作不放回抽样,设事件为“第二次取到的是一等品”,事件为“第一次取到的是一等品”,试求条件概率

解:易知此属古典概型问题.将产品编号:1,2,3号为一等品,4号为二等品.以表示第一次、第二次分别取到第号、第号产品.试验E (取产品两次,记录其号码)的样本空间为

={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4), (4,1),(4,2),(4,3)}

={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4)}

={(1,2),(1,3), (2,1),(2,3), (3,1),(3,2)}

由条件概率公式得,

[例4] 一个家庭中有两个小孩,已知其中有一个是女孩,问这时另一个小孩也是女孩的概率?(假定一个小孩是女孩还是男孩是等可能的)

解:据题意样本空间为

={(男,女),(男,男),(女,女),(女,男)}

={已知有一个是女孩}={(男,女),(女,女),(女,男)}

={另一个小孩也是女孩}={(女,女)}

于是,所求概率为

三、条件概率的性质

(1)非负性:对任意的

(2)规范性:

(3)可列可加性:若为一列两两不相交的事件,有

证明:(1) 因为所以

(2)由于,所以

(3)由于两两不相交,所以也必然两两不相交,所以

四、乘法公式

由条件概率的定义知: 设,则.于是,

这就是概率的乘法公式.

如果,同样有

设且则

证明因为,依条件概率的定义,上式的右边

五、乘法公式的应用例子

[例5] 设某光学仪器厂制造的透镜,第一次落下时打破的概率为1/2,若第一次落下时未打破, 第二次落下时打破的概率为7/10, 若前两次时未打破, 第三次落下时打破的概率为9/10,试求透镜落下三次而未打破的概率.

解:以表示事件“透镜第次落下时打破”,以表示事件“透镜三次落下而未打破”. 因为,故有

[例6] 设袋中装有只红球,只白球.每次自袋中任取一只球,观察其颜色后放回,并再放入只与所取出的那个球同色的球.若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率.

解:以表示事件“第次取到红球”,分别表示事件第三、四次取到白球.所求概率为

[例7] (卜里耶模型)罐中有只黑球,只红球,随机地取一只之后,把原球放回,并加进与抽出的球同色之球只,再摸第二次,这样下去共摸次.问前次出现黑球,后面次出现红球概率是多少?

解:以表示事件“第k次取到黑球”,

表示事件“第次取到红球”,则

由一般乘法公式,

1. 在例7中,最后答案与黑球和红球出现的次数有关,而与出现的顺序无关.

2.卜里耶模型被卜里耶用来描述传染病的数学模型.

当时,它是有放回的摸球模型.

当时,它是不放回的摸球模型.

思考题: 在卜里耶模型中,取次,问正好出现次红球概率是多少?

[例8] 一批产品共100件,对其进行抽样调查,整批产品看作不合格的规定是:在被检查的5件产品中至少有一件是废品.如果在该批产品中有5%是废品,试问该批产品被拒绝接收的概率是多少?

解:设表示被检查的第件产品是正品.表示该批产品被接收.则且

因此, 该批产品被拒绝接收的概率是0.23。

作业:

P55 EX 29,30,31

六、全概率公式

设是两个事件,那么可以表示为

显然,,如果则

[例1] 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问从2号箱取出的红球的概率是多少?

解:令:最后从2号箱中取出的是红球;

:从1号箱中取出的是红球.

由上面的公式,

上例采用的方法是概率论中颇为常用的方法,为了求复杂事件的概率,往往可以把它分解成若干个互不相容的简单事件之并,然后利用条件概率和乘法公式,求出这些简单事件的概率,最后利用概率可加性,得到最终结果,这一方法的一般化就是所谓的全概率公式.

设为试验的样本空间,为的事件,为的一组事件.若

(1)

(2)

则称为样本空间的一个分割.

若为样本空间的一个分割,那么,对每一次试验,事件

必有一个且仅有一个发生.

[例2] 设试验为“掷一颗骰子观察其点数”.它的样本空间

.的一组事件是样本空间的一个分割.而事件组不是样本空间的一个分割,因为

[例3] 甲、乙、丙三人向同一飞机射击.设样本空间={无人命中飞机,一人命中飞机,二人命中飞机,全命中}.的一组事件={三人以下命中飞

机},={全命中飞机}是样本空间的一个分割.

设试验E的样本空间,为的事件, 为的一个分割,且

,则

上式被称为全概率公式.

证明: ,所以

由假设,且所以

由条件概率公式,得

代入上式,即得

[例4] 甲、乙、丙三人向同一飞机射击.设甲、乙、丙射中的概率分别为0.4,0.5,0.7.又设若只有一人射中,飞机坠落的概率为0.2,若有二人射中,飞机坠落的概率为0.6,若有三人射中, 飞机必坠落.求飞机坠落的概率.

解:记={飞机坠落},={个人射中飞机},

=(甲射中,乙丙未射中)+(乙射中,甲丙未射中)+(丙射中,甲乙未射中)

再由题设,

利用全概率公式,

[例5] 播种用的小麦种子混有2%的二等种子,1.5%的三等种子,1%的四等种子,用一等、二等、三等、四等种子长出的麦穗含有50颗麦粒以上的概率为

0.5,0.15,0.1,0.05,求这批所结出的麦穗含有50颗麦粒以上的概率.

解: 设={从这批种子任选一颗种子是等种子}, .

={从这批种子任选一颗,所结出的麦穗含有50颗麦粒以上}

由全概率公式

在例题5中, ,这对于农业技术人员来说,这个数据是重要的,但对育种专家来说,仅有这个数据是不够的.因为他们更感兴趣的是下面的问题.

[例6] 在例题5中,问由这批所结出的含有50颗麦粒以上麦穗中是一等、二等种子长出的概率.

解:

在上面的计算中,事实上建立了一个著名的公式——Bayes公式.

七、贝叶斯公式

设试验的样本空间,为的事件, 为的一个分割,且

,则

上式称为贝叶斯公式.

证明:由条件概率,知

和全概率公式

[例7] 某电子设备厂所用的元件是由三家元件厂提供的,根据以往的记录,这三个厂家的次品率分别为0.02,0.01,0.03,提供元件的份额分别为

0.15,0.8,0.05,设这三个厂家的产品在仓库是均匀混合的,且无区别的标志.

(1)在仓库中随机地取一个元件,求它是次品的概率.

(2) 在仓库中随机地取一个元件,若已知它是次品,为分析此次品出自何厂,需求出此品由三个厂家生产的概率是多少?

解:设取到的元件是次品,表示取到的元件是由第个厂家生产的.

(1)由全概率公式,

(2) 由贝叶斯公式,

以上结果表明,这只产品来自第2家工厂的可能性最大.

八、贝叶斯方法

从这道题中我们看出,“取一个元件”是进行一个试验,那么是在试验

以前就已经知道的,所以习惯地称它们为先验概率.实际上它是过去已经掌握的生产情况的反映,对试验要出现的结果提供了一定的信息.

在这个例子中,试验结果出现次品,这时条件概率反映了在试验以后,对A发生的来源的各种可能性的大小,通常称为后验概率.

如果是病人可能患的n种疾病,在诊断以前先检验与这些疾病有

关的某些指标(如体温,血压,白血球等),若病人的某些指标偏离正常值,要问病人患的是哪一种疾病,从概率论的角度考虑,若较大,而为了计算

,就可以利用上述的贝叶斯公式,并把由过去的病例中得到的先验概率

值代入,也就是医学上所说的发病率,人们常常喜欢找有经验的医生给自己

治病,因为过去的经验能帮助医生作出比较准确的诊断,能够更好地做到对症下药,而贝叶斯公式正是利用了经验的知识,由此,读者可以直觉地认识到这个公式的意义.也正因如此,这类方法在过去和现在,都受到人们的普遍重视,并称为贝叶斯方法.

[例8] 用甲胎蛋白法普查肝癌,令

={被检验者患肝癌}

={甲胎蛋白检验呈阳性}

{被检验者未患肝癌}

{甲胎蛋白检验呈阴性}

由资料已知,,又已知某地居民的肝癌发病率,在普查中查出一批甲胎蛋白检验呈阳性的人,求这批人中真的患肝癌的概率.

解:由贝叶斯公式可得,

由此可见,经甲胎蛋白检验呈阳性的人群中,其中真正患肝癌的人还是很少的,只占0.0038,把与对比一下是很有意思的.当已知病人患肝癌或未患肝癌时, 甲胎蛋白检验的准确性应该说是

比较高的,这从可以肯定这一点.但如果病人患肝癌或未患肝癌时,而要从甲胎蛋白检验结果是否为阳性这一事件出发,来判断病人是否患肝癌,那么它的准确性还是很低的,因为 .这个问题看

来似乎有点矛盾.一种检验方法准确性很高,但实际使用时准确性很低,到底是怎么一回事?

从上述计算中用到的贝叶斯公式,可以得到解释.已知是不大的,但是患肝癌的人数毕竟很少, ,这就使得相对很大,从而很小.那么,上述结果是不是说明甲胎蛋白检验法不能用了呢?完

全不是!通常医生总是先采取一些其它简单易行的辅助方法进行检查,当他怀疑某个对象有可能患肝癌时,才建议用甲胎蛋白检验法.这时, 肝癌的发病率已经

显著地增加了.比方说,在被怀疑的对象中,这时,这就有相当的准确性了.

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 1.B1,B 2....两两互斥,即B i ∩ B j = ?,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....; 2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分 设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事

全概率公式与贝叶斯公式解题归纳

全概率公式与贝叶斯公式解题归纳 来源:文都教育 在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率. 它们的定义如下: 全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =L ,则对任一事件A 有 )|()()(1 i n i i B A P B P A P ∑==. 贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则 .,,2,1,)|()() |()()|(1n i B A P B P B A P B P A B P n j j j i i i ==∑= 例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == . 解 由离散型随机变量的概率分布有: (1)(2)(3)(4)14P X P X P X P X ========. 由题意,得 (21)0,(22)12,P Y X P Y X ====== (23)13,(24)14P Y X P Y X ======,则根据全概率公式得到

(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+=== (3)(23)(4)(24)P X P Y X P X P Y X +===+=== 111113(0).423448 =?+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率. 解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33 P A P A = =令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得 128()()()2355().128221()()()()()5 355355 P A P B A P AB P A B P B P A P B A P A P B A ?====+?+? 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

最新全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

全概率公式和贝叶斯公式练习题

例题讲解: 例题 1.市场上某产品由三家厂家提供,根据以往的记录,这三个厂家的次品率分别为,0.020.,0.01,0.03,三个厂家生产的产品所占的市场份额分别0.15,0.8,0.05.产品出厂后运到仓库,见面后再进入市场,设这三个厂家的产品在仓库是均匀混合 (1)在仓库中随机的取一个产品,求它的次品的概率。 (2)在仓库中随机的取一个产品,发现为次品,如果你是管理者,该如何追究三个厂家的责任? 例题2 保险公司把被保险人分成三类”谨慎的”,”一般的”和”冒险的”,统计资料表明,上述三种人在一年内发生事故的概率依次为,0. 5. 0.15. 和0.30. 如果”谨慎的”被保险人占20%”一般的”,被保险人占50%,”冒失的”被保险人占30%,确认一个被保险人在一年内出事故的概率。

练习: 1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133 P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以 70411482110621)|()()|()()(2211=?+?= +=A B P A P A B P A P B P (2) 12 72414)(== B P

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈-CAL-FENGHAI.-(YICAI)-Company One1

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过.

全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式 推导过程 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A 1A 2 ...A n-1 ) > 0 时, 有: P(A 1A 2 ...A n-1 A n )=P(A 1 )P(A 2 |A 1 )P(A 3 |A 1 A 2 )...P(A n |A 1 A 2 ...A n-1 ) (3)全概率公式 1. 如果事件组B 1,B 2 ,.... 满足 ,B 2....两两互斥,即 B i ∩ B j = ,i≠j , i,j=1,2,....,且 P(B i )>0,i=1,2,....; ∪B 2∪....=Ω,则称事件组 B 1 ,B 2 ,...是样本空间Ω的一个划分 设B 1,B 2 ,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i ),P(A|B i ) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,

贝叶斯公式浅析

说起贝叶斯公式,学过概率论的人肯定学过(如果没学过,那就去了解下"条件概率”),一个条件概率的转换公式,如下: P(A|E)=[ P(E|A)P(A)] / P(E),稍微变形下就是最简单的等式了P(A|E)P(E)= [P(E|A)P(A) 这么一个简单的公式为什么能引起科学上的革命? 这是一个统计学上的公式,但是却被证明是人类唯一能够运用自如的东西。伯克利大学心理学家早在2004年就证明,Bayesian统计法是儿童运用的唯一思考方法,其他方法他们似乎完全不会。 废话不多说,举个例子来说明就很明白了:假设在住所门口看到自己“女朋友or男朋友”(没有的自己找去,这里不负责介绍,还假设她or他在外地)你会产生三种假设(很多人都会这么想): A1=男朋友or女朋友没告诉你就跑来你的城市 A2=自己看模糊了 A3=那个人跟自己男朋友or女朋友确实长得很像 那么这三种假想哪个更有可能? 更准确地说就是,在“事实”(看到了男朋友or女朋友的情况)那种假设更有可能呢?解释成数学语言就是 P(A1|E), P(A2|E), P(A3|E)。哪个更大些? 于是脑子就开始启动贝叶斯程序, 计算比较这三个的概率到底哪个更大: 因为P(E)对于三个式子来说都是一样的,所以贝叶斯公式可以看成P(A|E)正相关于P(E|A)P(A),先看看P(A)是什么? P(h)在这个公式里描述的是你对某个假想h的可信程度。(不用考虑当前的事实是什么) P( A1)=男朋友or女朋友没告诉你就跑来你的城市,可能性比较低 P( A2)=自己看模糊了,可能性比较高 P( A3)=那个人跟自己男朋友or女朋友确实长得很像,可能性比较高 P(E|A)表示的就是假想产生对应的这个事实的可能性多大 P(E| A1)=男朋友or女朋友想给你惊喜,来找你的,当然很高的概率出现在你住所门

贝叶斯公式论文

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (3) 第一章贝叶斯公式及全概率公式的推广概述..................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解 我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。 2、四好学生,拿到奖学金的概率是p(A2)=0.4。3、五好学生,拿到奖学金的概率是p(A3)=0.5。4、六好学生,拿到奖学金的概率是p(A4)=0.6。这些学生只能是三好四好五好六好学生种的一种,不能跨种类。这个学校学生是三好学生的概率是p(B1)=0.4,四好学生的概率是p(B2)=0.3,五好学生的概率是p(B3)=0.2,六好学生的概率是p(B4)=0.1。现在问题出来了,一个学生能够拿到奖学金的概率是多少? 慢慢来分析,导致一个学生拿到奖学金的方式有哪些?这个学生是三好学生,刚好他又凭借三好学生的身份申请到了奖学金 p1=p(A1)*p(B1|A1)=0.4*0.3=0.12;这个学生是四好学生,刚好凭借他四好学生的身份拿到了奖学金,p2=p(A2)*p(B2|A2)=0.3*0.4=0.12;这个学生是五好学生,刚好凭借他五好学生的身份拿到奖学金,p3=p(A3)*p(B3|A3)=0.2*0.5=0.10;这个学生是六好学生,刚好凭借他六好学生的身份拿到了奖学金, p4=p(A4)*p(B4|A4)=0.1*0.6=0.06。四种方式都能导致一个学生拿到奖学金,那么拿到奖学金的概率为p=p1+p2+p3+p4=0.4.所以这么理解全概率公式:导致一个事件发生的原因有很多种(各种原因互斥),那么这个事件发生的概率就是每种原因引起该事件发生的概率的总和。 一个学生已经拿到了奖学金,这个学生是三好学生的概率是多少? p=p1/(p1+p2+p3+p4)=0.3。怎么理解呢?一个事件已经发生了,有很多原因都能导致这个事件发生。那么其中的一种原因导致该事件发生的概率是多少?这就是贝叶斯概率公式解决的问题。就正如一本书现在已经被别人借走了(事件已经发生),已知只有可能是张三,李四,王五这3个人借走(事件发生的所有原因)。那么这本书被张三借走的概率会是多大呢? 现在是不是已经理解了这2个公式呢。

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例一、全概率公式 是一个完备事件组并且P P(B)= 全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下: ①找出条件事件里的某一个完备事件组,分别命名为 ②命名目标的概率事件为事件B ③带入全概率公式求解 下面是具体实例对全概率公式的运用 1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。 解:①完备事件组命名 ②目标事件B=“从乙里面取出红球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解:①完备事件组命名 ②目标事件B=“从袋子里面取出白球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、 三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解:①完备事件组命名 ②目标事件B=“射手通过选拔赛” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|+ P()P(B|+ P()P(B| =

= 二、贝叶斯公式 是一个完备事件组并且P P(|B)= 贝叶斯公式针对的是某一个过程中已知结果发生求出事件过程的某个条件成立的概率,解题步骤如下: ①找出目标条件所在的完备事件组,并命名 ②命名已知会发生的结果事件 ③带入贝叶斯公式求解 下面是具体实例对全概率公式的运用 4、某学生接连参加同一课程的考试两次,两次相互独立,第一次及格的概率是P,如果第一次及格,那么第二次及格的概率也是P,如果第一次不及格,那么第二次几个的概率就是,如果他第二次考试及格了,求第一次考试及格的概率 解:①完备事件组命名 ②目标事件B=“第二次考试及格” ③贝叶斯公式求解 == 5、设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:①完备事件组命名 ②目标事件B=“汽车停车修理” ③贝叶斯公式求解 = 6、甲袋中有4个红球,3个白球,乙袋中2个红球,5个白球,从两个袋子里任取一个袋子出来,然后从这个袋子里面拿出一个球,结果是红球,求这个球是从甲袋取出来的概率。

贝叶斯公式在处理垃圾邮件中的应用

贝叶斯公式在处理垃圾邮件中的应用

基于贝叶斯技术的垃圾邮件处理研究 易均,李晖,王歆 (江西省科学院,江西南昌 330029) 摘要:本论文首先对垃圾邮件进行了简要的描述,并叙述了反垃圾邮件技术的研究现状,介绍贝叶斯过滤技术的工作原理及技术原理,最后给出贝叶斯技术研究的发展方向。 关键词:贝叶斯技术;反垃圾邮件 1、前言 随着因特网应用的快速发展,电子邮件也逐步成为因特网的最大一个应用之一,给我们生活带来很大的方便,而且电子邮件的发展也代表了我国进入信息业高速发展的阶段。但是也同时产生了一个新的问题,即大量的垃圾邮件出现。如何把电子邮件中的垃圾邮件过滤掉,已经成为电子邮件用户此刻最关心的一大问题,这也就是所谓的“反垃圾邮件”问题。 反垃圾邮件是具有相当难度的事情,垃圾邮件每天都在增加和变化。据Radicati估计2007年,垃圾邮件的比例将达到70%。现在的垃圾邮件发送者变得更加狡猾,采用静态反垃圾邮件技术很难防范。垃圾邮件发送者只要简单的研究一下现在采用了哪些静态反垃圾邮件,然后相应的改变一下邮件的内容或发送方式,就可以逃避检查了,因此,必须采用一种新的技术来克服静态反垃圾邮件的弱点,这种技术应该对垃圾邮件发送者的各种伎俩了如指掌,还要能适应不同用户对于反垃圾邮件的个性化需求。这种技术就是贝叶斯过滤技术。 2、垃圾邮件概述以及反垃圾邮件技术的研究现状 2.1、垃圾邮件的概述 我国至今对垃圾邮件的定义有很多种,包括如下几种:①收件人没有提出要求或者同意接收的广告、及其各种形式的宣传品等宣传性的电子邮件;②在邮件中,隐藏了发件人身份、地址、标题等信息的电子邮件:③含有虚假的发件人的身份、地址等信息源的电子邮件;④收件人无法拒收或者无法删除的电子邮件。目前,垃圾邮件的定义被扩大了,除了上述对垃圾邮件定义外,病

全概率公式和贝叶斯公式

单位代码: 005 分类号: o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号: 0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete, discusses the two commonly used methods of events, and some practical applications. Full probability formula is one of the important full probability formula of calculation, it provides an effective complex events of the way the full probability of a complex events, full probability calculation problem change numerous will Jane. And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula; Bayes formula; Complete event group;

贝叶斯公式公式在数学模型中的应用

学院本科毕业论文(设计) 题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (2) 第一章贝叶斯公式及全概率公式的推广概述........................................ 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ......................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................... 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式 1. 完备事件组(或样本空间Ω的划分)n 个事件满足: 12B ,B ,,B n B B ,,1,2,,i j i j n =Φ= (1) 两两互不相容. (2) 和事件为必然事件. 1 B n k k ==Ω ∑ΩB 2 B 1B n …

2. 全概率公式 则对任一事件A ,有1 ()P(B )(/B ) n k k k P A P A ==∑设为完备事件组,且12B ,B ,,B n P(B )0,1,2,,k k n >= ①取合适的完备事件组,从导致该事件 发生的各种条件、原因着手;②各B k 的概率及有关条件概率易于计算. 类比集合分类计数思想,可得到一种计算复杂事件概率的方法.运用公式的关键 全概率公式与贝叶斯公式

证明: 由完备事件组的性质可知 1 B B ,,1,2,,B i j n k k i j n ==Φ==Ω ∑ 1 1B B ,(B )(B )n n k k i j k k A A A A A A ===Ω===Φ∑∑1 1 ()(B )(B ) n n k k k k P A P A P A ====∑∑1 (B )(/B )n k k k P P A ==∑(由乘法公式)

()i P B A = 1 ()()()(),1,2,,i i n k k k P B P A B P B P A i n B ==∑ 3. 贝叶斯公式 设为完备事件组,则 12B ,B ,,B n 利用条件概率公式与全概率公式可得到贝叶斯公式.P(A)>0,P(B )0,1,2,,k k n >= 其中:全概率公式与贝叶斯公式 ()()i P AB P A 已知结果A ,分析导致出现此结果的第i 个原因B i 发生的概率.

贝叶斯公式的应用

贝叶斯公式的应用 张利娟 摘要:贝叶斯公式是概率论中重要的公式,在实际中有广泛的应用。本文结合全概率公式,就公共生活中有关传染病防治和测谎仪是否真的能测谎两个问题,说明了它们的用法。并给出相关的意见。 关键词:全概率公式;贝叶斯公式;应用 引言 一个随试验的样本空间都可以找到有限个或可列个基本事件构成一个分割,任一复合事件都可以由这几类基本事件组合而成。例如:有一个袋子,装有白球、黑球和红球,取出两个球,则“取出两球颜色相同”这一事件,可由“取出两个白球”,“取出两个黑球”,“取出两个红球”复合而成。对这类问题从概率上表达时发生可能性之间关系的公式就是全概率公式,与其互逆的即为贝叶斯公式。1.全概率与贝叶斯公式 若事件B1,B2,…,Bn是样本空间Ω的一个划分,P(Bi)> (i= 1、2、3、…n),A是任一事件且P(A)> 0,则有 其中, P(A) 可由全概公式得到。即 我们主要应用公式的简单情形, 即对任意两个事件A 和B, 根据贝叶斯公式有其中 事件B的概率通常是根据以往的数据分析得到的,对我们而言,所求的P(A|B)通常更有用。 2 . 贝叶斯公式的应用 资料显示, 某项艾滋病血液检测的灵敏度(即真有病的人检查为阳性)

为95%, 而对没有得病的人这种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病。为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查。该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过。 现在我们用贝叶斯公式分析专家为何反对通过这项计划。 设A = { 检查为阳性} , B = { 一个人患有艾滋病} . 根据文中叙述可知, 由全概率公式 P(A)=0.001×0.95+0.999×0.01= 0.01094. 由贝叶斯公式 也就是说, 被检测患有艾滋病而此人确实患有该病的概率大约为0.087。这个结果使人难以接受, 好像与实际不符。从资料显示来看, 这种检测的精确性似乎很高。因此,一般人可能猜测,如果一个人检测为阳性, 他患有艾滋病的可能性很大。如果通过这项计划, 势必给申请登记的新婚夫妇带来不必要的恐慌。因为约有91. 3%的人并没有患艾滋病。为什么会出现与直觉如此相悖的结果呢? 这是因为人们忽略了一些基础信息, 就是患有艾滋病的概率很低, 仅为千分之一。因此,在检测出呈阳性的人中大部分是没有患艾滋病的。 但是, 我们也应该注意到, 这项检测还是为我们提供了一些新的信息. 计 算结果表明, 一个检测结果呈阳性的人患有艾滋病的概率从最初的0. 001 增加到了0. 087, 这是原来患有艾滋病概率的87倍.进一步的计算, 我们得到一个检查呈阴性而患有艾滋病的概率为 因此, 通过这项检测, 检查呈阴性的人大可放宽心, 他患有艾滋病的概率 已从千分之一降低到十万分之六。

相关文档
最新文档