基于自抗扰控制算法的两轮自平衡车分析

基于自抗扰控制算法的两轮自平衡车分析
基于自抗扰控制算法的两轮自平衡车分析

两轮平衡车说明书

双轮自平衡车 学校:德州学院 学生:唐文涛焦方磊李尧 指导老师:孟俊焕 时间:二О一四年7 月10日~10 月 6 日共12 周

中文摘要 两轮自平衡车是动态平衡机器人的一种。2008年我国奥运会的时候安全保卫工作使用过它,到今年两轮平衡车已经发展的相对成熟。在国家节能、降耗、环保、低碳、经济的方针政策下,两轮平衡车进行了资源整合、技术升级,在原来的两轮单轴式自平衡的基础上采取两轴双轮可折叠设计,两轮自平衡车具有运动灵活、智能控制、操作简单、驾驶姿势多样、节省能源、绿色环保、转弯半径为0等优点。适用于在狭小空间内运行,能够在大型购物中心、国际性会议或展览场所、体育场馆、办公大楼、大型公园及广场、生态旅游风景区、大学校园、城市中的生活住宅小区等各种室内或室外场合中作为人们的中、短距离代步工具。也是集娱乐、代步、炫酷为一体的,主打形象是汽车伴侣解决停车后几公里内的代步问题。 两轮自平衡车主要由驱动电机、锂电池组、车轮、车身等组成。其工作原理:车体内置的精密固态陀螺仪来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。 关键词:陀螺仪,动态稳定,折叠,驱动系统,平衡。 English abstract Two rounds of self-balancing vehicle is one of the dynamic balance of the robot. In 2008 the Olympic Games security work used it in our country, in the year to balance two rounds of car has developed relatively mature. In the national energy saving, consumption reduction, environmental protection, low carbon, economic policies and regulations, the two rounds of balance of resource integration, technology upgrades, in the original two rounds of single shaft type taken on the basis of self balancing two shaft double folding design, two rounds of self-balancing vehicle movement, flexible, intelligent control, simple operation and driving posture diversity, save energy, green environmental protection, the advantages of turning radius of 0. Apply to run in narrow space, can in a large shopping center, the international conference and exhibition venues, sports venues, office buildings, large parks and square, ecological tourism scenic spot, the university campus, city life in residential quarters and other indoor or outdoor situations as the medium and short distance transport of people. Is entertainment, walking, cool as a whole, the main image is car partner solve the problem of parking within a few kilometers after walking. Two rounds of self-balancing vehicle is mainly composed of drive motor, lithium battery pack, wheel, body, etc. Its working principle: the body's built-in precision solid-state gyroscope to judge the body's position, through sophisticated and high-speed central microprocessor

两轮自平衡车

两轮自平衡送餐车 【摘要】:本项目为“两轮自平衡车送餐机器人”系统的研究与实现,从加速度计和陀螺仪传感器得出的角度。运用卡尔曼滤波优化,补偿陀螺仪的漂移误差和加速度计的动态误差,得到更优的倾角近似值。根据PID控制调节参数,实现两轮直立行走。通过电磁传感器对电磁线的检测和GPS模块精确定位,实现了平衡车的自动送餐功能。 【关键字】:加速度计陀螺仪卡尔曼滤波PID控制调节电磁传感器GPS模块 【Abstract】:This is a project of "research and Realization of a two wheeled self balancing robot car room" system, from the accelerometer and gyro sensor of angle. Using the Calman filter optimization, the dynamic error of gyroscope drift error and acceleration compensation plan, to get better approximations angle. According to the PID control parameters, achieve two upright. Through the detection and accurate positioning of GPS module electromagnetic sensors on the magnet wire, the balance of the car automatic room function. 【Keyword】:saccelerometer gyroscope Calman filtering PID control electromagnetic sensor GPS module

自抗扰算法介绍报告

自抗扰算法(ADRC )介绍报告 自抗扰控制器自PID 控制器演变过来,采取了PID 误差反馈控制的核心理念。传统PID 控制直接引取输出于参考输入做差作为控制信号,导致出现响应快速性与超调性的矛盾出现。自抗扰控制器主要由三部分组成:跟踪微分器(tracking differentiator),扩展状态观测器 (extended state observer) 和非线性状态误差反馈控制律(nonlinear state error feedback law)。跟踪微分器的作用是安排过渡过程,给出合理的控制信号,解决了响应速度与超调性之间的矛盾。扩展状态观测器用来解决模型未知部分和外部未知扰动综合对控制对象的影响。虽然叫做扩展状态观测器,但与普通的状态观测器不同。扩展状态观测器设计了一个扩展的状态量来跟踪模型未知部分和外部未知扰动的影响。然后给出控制量补偿这些扰动。将控制对象变为普通的积分串联型控制对象。设计扩展状态观测器的目的就是观测扩展出来的状态变量,用来估计未知扰动和控制对象未建模部分,实现动态系统的反馈线性化,将控制对象变为积分串联型。非线性误差反馈控制律给出被控对象的控制策略。系统结构框图如图1 图1 过程和扩张状态观测器方程: 1y x =22302220(1)()*(()*(,,)*())z k z k h z k fal b u k βεαδ+=+-+1120111(1)()*(()*(,,))z k z k h z k fal βεαδ+=+-12212;()();()(,,,)x x x a t u t a t f x x t ω==+= 330312(1)**(,,) z k z h fal βεαδ+=-

两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计 摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。 关键词:控制;自平衡;实时性 近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。 1 小车控制系统总体方案 小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。小车控制系统总体架构。 2 小车控制系统自平衡原理 两轮小车能够实现自平衡功能,并且在受到一定外力的干扰下,仍能保持直立状态,是小车可以沿着赛道自动循线行走的先决条件。为了更好地控制小车的行走方式,得到最优的行走路径,需要对小车分模块分析与控制。 本控制系统维持小车直立和运行的动力都来自小车的两个轮子,轮子转动由两个直流电机驱动。小车作为一个控制对象,它的控制输入量是两个电机的转动速度。小车运动控制可以分解成以下3个基本控制任务。 (1)小车平衡控制:通过控制两个电机正反方向运动保持小车直立平衡状态; (2)小车速度控制:通过调节小车的倾斜角度来实现小车速度控制,本质上是通过控制电机的转速来实现小车速度的控制。 (3)小车方向控制:通过控制两个电机之间的转动差速实现小车转向控制。 2.1 小车平衡控制 要想实现小车的平衡控制,需要采取负反馈控制方式[2]。当小车偏离平衡点时,通过控制电机驱动电机实现加、减速,从而抵消小车倾斜的趋势,便可以保持车体平衡。即当小车有向前倾的趋势时,可以使电机正向加速,给小车一个向前的加速度,在回复力和阻尼力的作用下,小车不至于向前倾倒;当小车有向后倾的趋势时,可以使小车反向加速,给小车一个向后的加速度,从而不会让小车向后倾倒,。

新adrc自抗扰控制技术

3.3自抗扰控制技术的MATLAB仿真 自抗扰控制技术是由韩京清教授根据多年实际控制工程经验提出的新的控制理论。在传统的工业和其他控制领域,PID一直占据主导地位。目前,PID 在航空航天、运动控制及其他过程控制领域,仍然占据90%以上的份额。但是,PID自身还是存在缺陷,而韩京清教授正是出于对P1D控制算法的充分认知,尤其是对其缺陷的清晰分析,提出了自抗扰控制技术。 3.3.1自抗扰控制技术概述 自抗扰控制技术的提出是根据对PID控制技术的充分认知,扬其优点,抑其缺点而提出的。传统PID控制技术应用领域很广泛,其控制结构如图3-9所示。 图3-9 传统PID结构 其中, ? + + ? =e k e k d e k u t 2 1 ) (τ τ。众所周知,PID控制原理是基于误差来生成 消除误差控制策略:用误差的过去、现在和变化趋势的加权和消除误差。其优点有:靠控制目标与实际行为之间的误差来确定消除此误差的控制策略,而不是靠被控对象的“输入一输出”关系,即不靠被控对象的“输入-输出”模型来决定控制策略,简单易行,只要选择PID增益使闭环稳定,就能使对象达到静态指标。当然PID控制仍有缺点,其缺点如下 1、采用PID校正系统闭环动态品质对PID增益的交化太敏感,当被控对象处于变化的环 境中时,根据环境的变化经常需要变动PID的增益。 2、“基于误差反馈消除误差”是PID控制技术的精髓,但实际情况中直接取目标与实际 行为之间的误差常常会使初始控制力太大而使系统行为出现超调,而这正是导致使用PID控制技术的闭环系统产生“快速性”和“超调”不可调和矛盾的主要原因。3、PID是用误差的比例、积分、微分的加权和形式来形成反馈控制量的,然而在很多场 合下,由于没有合适的微分器,通常采用PI控制规律,限制了PID的控制能力。 4、PID是用误差的过去、现在和将来的适当组合来产生程制量的。经典PID一般采用线 性取和方法,但是实际系统多为非线性系统,所以非线性拉制器更适合实际情况。5、PID中的误差积分反馈对抑制常值扰动确实有效,但在无扰动作用时,误差积分反馈

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计 摘要 两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用STC 公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。 整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。通过蓝牙,还可以控制小车前进,后退,左右转。 关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法 Design of Control System of Two-Wheel Self-Balance Vehicle based on Microcontroller Abstract Two-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer

基于自抗扰控制(ADRC)的无刷直流电机控制与仿真

一、研究意义 1.研究意义 由于无刷直流电机在四旋翼飞行器控制中的关键作用以及在生产实践中日益广泛的应用,设计快速且平稳的控制系统成为首要任务。目前, 基于现代控制理论的高性能异步电机调速方法主要是依靠精确的数学模型加上传统的P ID控制。PID控制实际应用效果较好,但又无法避免对负载变化的适应能力差、抗干扰能力弱和受系统参数变化影响等弱点,而且交流调速系统具有非线性、强耦合、多变量及纯滞后等特性, 很难用精确的数学模型描述, 这就使得基于精确数学模型的传统控制方法面临严重的挑战。另外, 经典P ID控制需要根据运行工况的不同而调节控制器参数, 无刷直流电机又具有数学模型复杂,非线性等特点,这给现场调试增加了难度。 2.国内外研究状况及发展 (1)无刷直流电机基本控制方法 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 直流无刷电动机的电机本身是机电能量转换部分,无刷电机的转子上装有永磁体,定子上是电枢,与有刷电机正好是相反的。它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。 直流无刷驱动器包括电源部及控制部,电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(V1~V6)分为上臂(V1、V3、V5)/下臂(V2、V4、V6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。电机驱动电路如图?所示。 图1 无刷直流电机的控制电路

大学毕业设计---基于arm的两轮自平衡车模型系统设计课程

中北大学 课程设计说明书 学生姓名: *杰学号:* 学院: 仪器与电子学院 专业: * 题目: 基于ARM的两轮自平衡车模型系统设计 指导教师:李锦明职称: 副教授 2015 年1 月30 日

摘要 近年来,两轮自平衡车的研究与应用获得了迅猛发展。本文提出了一种两轮自平衡小车的设计方案,采用陀螺仪L3G4200以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用飞思卡尔32位单片机Kinetis K60为控制核心,通过滤波算法实现车身控制,人机交互等。 整个系统制作完成后,各个模块能够正常并协调工作,小车可以在无人干预条件下实现自主平衡。同时在引入适量干扰情况下小车能够自主调整并迅速恢复稳定状态。 关键词:两轮自平衡陀螺仪姿态检测卡尔曼滤波数据融合

目录 1 课程设计目的 (1) 2 设计内容和要求 (1) 2.1 设计要求 (1) 2.2 研究意义 (1) 2.3 研究内容 (2) 3 设计方案及实现情况 (2) 3.1 两轮平衡车的平衡原理 (2) 3.2 系统方案设计 (3) 3.3 系统最终方案 (6) 3.4 系统软件设计 (9) 3.5 电路调试 (16) 4 课程设计总结 (18) 参考文献 (19) 附录 (20) 致谢 (21)

1 课程设计目的 (1)掌握嵌入式系统的一般设计方法和设计流程; (2)学习嵌入式系统设计,掌握相关IDE开发环境的使用方法; (3)掌握ARM的应用; (4)学习掌握嵌入式系设计的全过程; 2 设计内容和要求 2.1 设计要求 (1)学习掌握基于ARM Cortex-M4内核的Kinetis K60系列单片机的工作原理及应用;(2)学习掌握加速度计、陀螺仪的工作原理及应用; (3)设计基于PID控制的两轮自平衡车模型系统的工作原理图及PCB版图; 2.2 研究意义 近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科 学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也 越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。比如,户外 移动机器人需要在凹凸不平的地面上行走,有时环境中能够允许机器人运行的地方比 较狭窄等。如何解决机器人在这些环境中运行的问题,逐渐成为研究者关心的问题[1]。 两轮自平衡机器人的概念正是在这样一个背景下提出来的,这种机器人区别于其 他移动机器人的最显著的特点是:采用了两轮共轴、各自独立驱动的工作方式(这种驱 动方式又被称为差分式驱动方式),车身的重心位于车轮轴的上方,通过轮子的前后移 动来保持车身的平衡,并且还能够在直立平衡的情况下行驶。由于特殊的结构,其适 应地形变化能力强,运动灵活,可以胜任一些复杂环境里的工作。 两轮自平衡机器人自面世以来,一直受到世界各国机器人爱好者和研究者的关 注,这不仅是因为两轮自平衡机器人具有独特的外形和结构,更重要的是因为其自身 的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高 的研究价值。

自抗扰控制技术简介

自抗扰控制技术简介 1.自抗扰控制技术概述 1.1 什么是自抗扰控制技术 自抗扰控制器(Auto/Active Disturbances Rejection Controler,ADRC)技术,是发扬PID控制技术的精髓并吸取现代控制理论的成就,运用计算机仿真实验结果的归纳和总结和综合中探索而来的,是不依赖被控对象精确模型的、能够替代PID控制技术的、新型实用数字控制技术。 1.2 自抗扰控制技术的提出者——韩京清 韩京清,朝鲜族, 1937生,系统与控制专家,中国科学院数学与系统科学研究院系统科学研究所研究员、博士生导师,长期从事控制理论与应用研究工作,是我国控制理论和应用早期开拓者之一。 韩京清先生于1998年正式提出自抗扰控制这一思想。在这个思想提出之后,国内外许多研究者都围绕着“自抗扰控制”展开实际工程应用的研究。同时,自抗扰控制的理论分析的研究也在不断的深入。 1.3 自抗扰控制技术的特点和优点 (1)自抗扰控制器采用“观测+补偿”的方法来处理控制系统中的非线性与不确定性,同时配合非线性的反馈方式,提高控制器的动态性能。 (2)自抗扰控制器算法简单、易于实现、精度高、速度快、抗扰能力强。 (3)统一处理确定系统和不确定系统的控制问题;扰动抑制不需外扰模型或者外扰是否观测;控制算法不需辨识控制对象;统一处理非线性和线性系统;可以进行时滞系统控制;解耦控制只要考虑静态耦合,不用考虑动态耦合等。 2.自抗扰控制技术提出的背景

2.1 现代控制理论的缺点和改进 现代控制理论以状态变量描述为基础,以状态反馈实现极点配置来改善全局动态特性的问题。因而,此种控制的主要手段是状态反馈。“这种全局控制方法需要知道关于开环动态特性的先验知识和状态变量的信息,这在许多工程实际中是很不现实的,因为工程实际提供不了有关开环动态特性的多少先念知识,因此这种全局控制方法是很难在实际中得到应用。”这就是现代控制理论的缺点,这也限制了这种控制方法在工程实际中的应用。 事实上,要实现控制目的,不一定要知道系统的开环动态特性。实现控制的主要目的是施加控制力,使目标值与输出值之间的误差衰减下去,因而只需要知道开环动态特性的具体表现量。这就是将状态反馈的理念转换为误差反馈的理念。图(1)、图(2)是这两种控制方式的框图。 图(1)基于状态反馈的全局控制方法 图(2)基于误差反馈的“过程的控制” 2.2 PID控制的优缺点 PID控制的主要优点是:“不用被控对象的精确模型,只用控制目标与对象实际行为的误差来产生消除此误差的控制策略的过程控制思想,是PID留给人类的宝贵思想遗产,是PID控制技术的精髓。”也正是因为这个原因,PID控制才能在控制工程实践中得到广泛有效的应用。

自平衡车模型分析

自平衡车模型分析

一、 求解车体除两轮外部分动能 车体沿X 轴方向速度: R L V R L x 2 )(cos θθθθ&&&++= 车体沿Y 轴方向速度: R D L V R L y )(sin θθθ&&-= 车体沿Z 轴方向速度 θθsin &L V z = 车体沿过质心的Z 轴的转动惯量为: m yz J J J y z z ???++=d sin cos 22θθθ 由于假设车体关于ZY 平面对称,因此 0d =???m yz 因此 θθθ22sin cos y z z J J J += 则可以得到车体的平动动能: ??? ? ??+-+++=2221)sin ())(sin ()2)(cos 21θθθθθθθθθ&&&&&&L R D L R L E R L R L kp ( 车体的转动动能为: ??? ? ??+-+=22222 ))()(sin cos (21θθθθθ&&&x R L y z kp J R D J J E 则车体的总动能为: 21kp kp kp E E E += 二、 求解车轮动能 左车轮平动速度为:

R V L x w L θ&= 右车轮平动速度为 R V R x w R θ&= 两轮有同样的绕垂直于半径的转动速度: R D R L w )(θθω&&-= 则左车轮的动能为: 2 22)(2121)(21??? ? ??-++=D R J J R m E R L R L L kw L θθθθφ&&&& 则右车轮的动能为: 222)(2121)(21??? ? ??-++=D R J J R m E R L R R R kw R θθθθφ&&&& 三、 求解车体势能 由于在平地上行进,车轮势能不变。车体整体势能可变部分表示为: θcos g m E p p = 四、 拉格朗日函数的求解 得到最终的拉格朗日函数为: p kw kw kp kp E E E E E L L R -+++=21 依据拉格朗日动力学法求解,进行如下运算: R L M M L dt L d --=??-??θ θ& L L L M L dt L d =??-??θθ& R R R M L dt L d =??-??θθ& 得到动力学方程: 方程一: () R L R L z y p p R L p x p M M R D J J L m gL m R L m J L m --=??? ? ??--+--+++222 )(cos sin sin 2)(cos )θθθθθθθθθ&&&&&&&&(

两轮自平衡车

两轮自平衡车 算法:和大家的一样,一个倾角环,一个车速环。取得角度、角速度、车速、车位移四个量后经过运算送给PWM驱动电机。 硬件: 主控:atmega16; 角度传感器:角速度传感器(陀螺仪)ENC-03MB(直接接AD输入,未加硬件滤波)、加速度传感器MMA7260,二者kalman融合取得角度、角速度。PS:抄zlstone的,呵呵。 电机速度传感器:每个电机两个霍尔传感器(AB相)。 电机:型号不清楚,很常见的减速电机。额定电压6V,功率3W。 电机驱动:L298N 电源:变压器整流桥那种普通电源,几块钱一个。两个,电机、MCU分开供电。电机电源电压打到最高不接电机时15V多,接了电机5V多,汗。。 显示器:LCD1602B 遥控:电视红外遥控器

引用图片 (原文件名:20110110_0104.jpg) 引用图片 源代码WINAVR20100110+AVRStudio4.18ourdev_610434C8FD1C.rar(文件大小:104K)(原文件名:Balance.rar)原理图: atmega16最小系统版ourdev_610214M89OEI.pdf(文件大小:30K)(原文件名:M16迷你板电路图.pdf)

上位机,带波形、数据显示ourdev_610318TY8G24.rar(文件大小:48K)(原文件名:串口调试.rar) 车速未滤波之前波形(原文件名:车速未滤波之前波形.JPG)

车速10Hz低通滤波后波形(原文件名:车速10Hz低通滤波后波形.JPG) 视频在这里https://www.360docs.net/doc/a48073246.html,/v_show/id_XMjM1OTQ3NzU2.html 现在还不是很稳,我想有两个原因,一个是参数没调到最佳,调了好久,先这样吧。再有就是电源太烂了,电机是额定6V的可实际电压空载的时候才打到5伏多一点,在平衡的时候没测,肯定更低了。 陀螺仪ENC-03是直接接AD输入端的,因为按照datasheet上边的参考电路有过冲问题,这个问题有个帖子已经讨论过,很多人都是 围绕怎么补救这个问题,我来算一下为什么这样子,呵呵~如下: 高通滤波脉冲响应(原文件名:QQ截图未命名.jpg) 因为有这个问题,会给倾角数据造成影响,所以我就去掉了滤波,直接接到AD。这样1deg/s有0.67mv,10位AD参考电压是3.36V,最小才能测到3.28mv,小于4.8deg时就测不到了。本来担心这个问题,但试了下KALMAN滤波,真是强啊!角度很精确,就这么用了。 车体研究了好久,没有用钢化玻璃的设备,就一直没动工。有天去打水突然看到旁边有个大的三合板,呵呵,于是乎。。

自抗扰控制技术在微机电换能器中的应用

第30卷第12期2013年12月 控制理论与应用 Control Theory&Applications V ol.30No.12 Dec.2013自抗扰控制技术在微机电换能器中的应用 DOI:10.7641/CTA.2013.31016 董莉莉? (克里夫兰州立大学,俄亥俄州克里夫兰市44115,美国) 摘要:自抗扰技术,作为一门新兴的鲁棒控制技术,能够成功补偿微机电制造上的缺陷以及周围环境的扰动,从而提高微机电传感器和执行器的性能,增加它们的测量及移动精度.本文介绍了自抗扰技术在微机电陀螺仪和静电执行器两大微机电换能器上的应用.通过使用此项控制技术,微机电陀螺仪可精确测量并输出匀速及时变角速度.此外,一种模型辅助自抗扰控制器被首次应用到微执行器上.此模型辅助自抗扰控制器建立在部分模型已知的基础上.它能够在外干扰存在的情况下,把静电执行器的位移范围提高到电容间距的99%.模型辅助自抗扰控制器的抗噪声能力也优于传统的自抗扰控制器.作者用仿真和实验结果向读者展示了自抗扰技术在微机电领域的鲁棒性,有效性和实用性. 关键词:微机电系统;微机电陀螺仪;静电执行器;自抗扰控制;鲁棒性 中图分类号:TP202+.1文献标识码: Application of active disturbance rejection control to micro-electro-mechanism system transducers DONG Li-li? (Cleveland State University,Cleveland,OH44115,USA) Abstract:Active disturbance rejection control(ADRC)is an emerging robust control technology.It improves the performance of micro-electro-mechanism system(MEMS)sensors and actuators and increases their measurement and displacement accuracies through effectively compensating the imperfections in micro-fabrications and environmental vari-ations.The applications of an ADRC to MEMS gyroscopes and electrostatic actuators are introduced in this paper.The ADRC facilitates accurate sensing of both constant and time-varying rotation rates for MEMS gyroscopes.In addition, an alternative ADRC is initially applied to an electro-static actuator.The alternative ADRC is constructed based on par-tially known model information.It drives and stabilizes the displacement output of an electrostatic actuator to99%of full capacitor gap despite of the presence of disturbance.The alternative ADRC also has better noise rejection capability than traditional ADRC.Simulation and experimental results demonstrate the robustness,effectiveness and feasibility of the ADRC in MEMS area. Key words:micro-electro-mechanism system(MEMS);MEMS gyroscope;electro-static actuator;active disturbance rejection control;robustness 1引言(Introduction) 微机电陀螺仪和静电执行器同属于微机电(micro-electro-mechanical system,MEMS)换能器.微机电陀螺仪是角速度和角位移传感器.静电执行器负责将静电信号转换成机械移动.随着微机电制造技术的日新月异,MEMS换能器在近20年来得到了飞速的发展.它们体积小(只有微米或者毫米量级)、重量轻、成本低、耗能少、便于携带,已经被广泛应用到航天系统、军事制导、家用电器和汽车工业中[1]. 微机电陀螺仪的测量精度主要取决于硅片的机械振动.然而微机电制造技术的缺陷会造成微陀螺仪内部驱动机构的错位,驱动和感应部位的非对称,以及质量与中心轴的偏离[2].这些机械系统的缺陷将引起微陀螺系统参数的不确定性,再加上周围环境变化所带来的外扰动,最终会导致测量误差的产生.传统的机械补偿能够减少一部分由于制造缺陷所带来的误差.然而机械补偿不但耗时、成本高,而且很难在一个小如硬币的微陀螺仪上实行.因此,需要一个能够成功消除(或大大减少)机械误差,提高微陀螺测量精度和稳定性的鲁棒控制器进行电补偿. 一个自由度的平板静电执行器(又称作微执行器)由固定和移动电板组成.两个平行电板在电场中充电后会形成电容.当改变电容器的控制电压时,移动电板可离开原始位置,上下移动.然而由于系统本 收稿日期:2013?09?26;收修改稿日期:2013?12?07.?通信作者.E-mail:L.Dong34@https://www.360docs.net/doc/a48073246.html,.

基于PID控制器的两轮自平衡小车设计

本科毕业设计 基于PID控制器的两轮自平衡小车设计 摘要 两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。 本文在总结和归纳国内外对两轮自平衡小车的研究现状,提出了自己的两轮自平衡小车软硬件设计方案,小车硬件采用陀螺仪和加速度传感器检测车身的重力方向的倾斜角度和车身轮轴方向上的旋转加速度,数据通过控制器处理后,控制电机调整小车状态,使小车保持平衡。由于陀螺仪存在温漂和积分误差,加速度传感器动态响应较慢,不能有效可靠的反应车身的状态,所以软件使用互补滤波算法将陀螺仪和加速度传感器数据融合,结合陀螺仪的快速的动态响应特性和加速度传感器的长时间稳定特性,得到一个优化的角度近似值。 文中最后通过实验验证了自平衡小车软硬件控制方案的可行性。 关键词:自平衡互补滤波数据融合倒立摆 Two-wheeledSelf-balancingRobot MaXuedong (CollegeofEngineering,SouthChinaAgriculturalUniversity,Guangzhou510642,China) Abstract:Thetwo-wheeledself-balancingrobotissmallinmechanism,withsimplest ructureandcanmakeflexiblemotion,目录 华南农业大学本科生毕业设计成绩评定表

双轮自平衡车设计报告

双轮自平衡车设计报告 学院………….......... 班级…………………… 姓名………………..手机号…………………..姓名………………..手机号…………………..姓名………………..手机号…………………..

目录 一、双轮自平衡车原理 二、总体方案 三、电路和程序设计 四、算法分析及参数确定过程

一.双轮自平衡车原理 1.控制小车平衡的直观经验来自于人们日常生活经验。一般的人通过简单练习就可以让一个直木棒在手 指尖上保持直立。这需要两个条件:一个是托着木棒的手掌可以移动;另一个是眼睛可以观察到木棒的倾斜角度和倾斜趋势(角速度)。通过手掌移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立。这两个条 件缺一不可,让木棒保持平衡的过程实际上就是控制中的负反馈控制。 图1 木棒控制原理图 2.小车的平衡和上面保持木棒平衡相比,要简单一些。因为小车是在一维上面保持平衡的,理想状态下,小车只需沿着轮胎方向前后移动保持平衡即可。 图2 平衡小车的三种状态 3.根据图2所示的平衡小车的三种状态,我们把小车偏离平衡位置的角度作为偏差;我们的目标是通过 负反馈控制,让这个偏差接近于零。用比较通俗的话描述就是:小车往前倾时车轮要往前运动,小车往后倾时车轮要往后运动,让小车保持平衡。 4.下面我们分析一下单摆模型,如图4所示。在重力作用下,单摆受到和角度成正比,运动方向相反的回复力。而且在空气中运动的单摆,由于受到空气的阻尼力,单摆最终会停止在垂直平衡位置。空气的阻尼力与单摆运动速度成正比,方向相反。 图4 单摆及其运动曲线

类比到我们的平衡小车,为了让小车能静止在平衡位置附近,我们不仅需要在电机上施加和倾角成正比的回复力,还需要增加和角速度成正比的阻尼力,阻尼力与运动方向相反。 5 平衡小车直立控制原理图 5.根据上面的分析,我们还可以总结得到一些调试的技巧:比例控制是引入了回复力;微分控制是引入了阻尼力,微分系数与转动惯量有关。 在小车质量一定的情况下,重心位置增高,因为需要的回复力减小,所以比例控制系数下降;转动惯量变大,所以微分控制系数增大。在小车重心位置一定的情况下,质量增大,因为需要的回复力增大,比例控制系数增大;转动惯量变大,所以微分控制系数增大。 二.总体方案 ■小车总框图

双轮自平衡小车机器人系统设计与制作

燕山大学 课程设计说明书题目:双轮自平衡小车机器人系统设计与制作 学院(系):机械工程学院 年级专业:12级机械电子工程 组号:3 学生: 指导教师:史艳国建涛艳文史小华庆玲 唐艳华富娟晓飞正操胡浩波 日期: 2015.11

燕山大学课程设计(论文)任务书院(系):机械工程学院基层教学单位:机械电子工程系

摘要 两轮自平衡小车是一种非线性、多变量、强耦合、参数不确定的复杂系统,他体积小、结构简单、运动灵活,适合在狭小空间工作,是检验各种控制方法的一个理想装置,受到广大研究人员的重视,成为具有挑战性的课题之一。 两轮自平衡小车系统是一种两轮左右并行布置的系统。像传统的倒立一样,其工作原理是依靠倾角传感器所检测的位姿和状态变化率结合控制算法来维持自身平衡。本设计通过对倒立摆进行动力学建模,类比得到小车平衡的条件。从加速度计和陀螺仪传感器得出的角度。运用卡尔曼滤波优化,补偿陀螺仪的漂移误差和加速度计的动态误差,得到更优的倾角近似值。通过光电编码器分别得到车子的线速度和转向角速度,对速度进行PI控制。根据PID控制调节参数,实现两轮直立行走。通过调节左右两轮的差速实现小车的转向。 制作完成后,小车实现了在无线蓝牙通讯下前进、后退、和左右转向的基本动作。此外小车能在正常条件下达到自主平衡状态。并且在适量干扰下,小车能够自主调整并迅速恢复稳定状态。 关键词:自平衡陀螺仪控制调试

前言 移动机器人是机器人学的一个重要分支,对于移动机器人的研究,包括轮式、腿式、履带式以及水下式机器人等,可以追溯到20世纪60年代。移动机器人得到快速发展有两方面原因:一是其应用围越来越广泛;二是相关领域如计算、传感、控制及执行等技术的快速发展。移动机器人尚有不少技术问题有待解决,因此近几年对移动机器人的研究相当活跃。 近年来,随着移动机器人研究不断深入、应用领域更加广泛,所面临的环境和任务也越来越复杂。机器人经常会遇到一些比较狭窄,而且有很多大转角的工作场合,如何在这样比较复杂的环境中灵活快捷的执行任务,成为人们颇为关心的一个问题。双轮自平衡机器人概念就是在这样的背景下提出来的。两轮自平衡小车是一个高度不稳定两轮机器人,是一种多变量、非线性、强耦合的系统,是检验各种控制方法的典型装置。同时由于它具有体积小、运动灵活、零转弯半径等特点,将会在军用和民用领域有着广泛的应用前景。因为它既有理论研究意义又有实用价值,所以两轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。 本论文主要叙述了基于stm32控制的两轮自平衡小车的设计与实现的整个过程。主要容为两轮自平衡小车的平衡原理,直立控制,速度控制,转向控制及系统定位算法的设计。通过此设计使小车具备一定的自平衡能力、负载承载能力、速度调节能力和无线通讯功能。小车能够自动检测自身机械系统的倾角并完成姿态的调整,并在加载一定重量的重物时能够快速做出调整并保证自身系统的自我平衡。能够以不同运动速度实现双轮车系统的前进、后退、左转与右转等动作,同时也能够实现双轮自平衡车系统的无线远程控制操作

基于自抗扰控制(ADRC)的无刷直流电机控制与仿真

研究意义 1?研究意义 由于无刷直流电机在四旋翼飞行器控制中的关键作用以及在生产实践中日益广泛的应用,设计快速且平稳的控制系统成为首要任务。目前,基于现代控制理论的高性能异步电机调速方法主要是依靠精确的数学模型加上传统的 P ID控制。PID控制实际应用效果较好,但又无法避免对负载变化的适应能力差、抗干扰能力弱和受系统参数变化影响等弱点,而且交流调速系统具有非线性、强耦合、多变量及纯滞后 等特性,很难用精确的数学模型描述,这就使得基于精确数学模型的传统控制方法面临严重的挑战。另 外,经典P ID控制需要根据运行工况的不同而调节控制器参数,无刷直流电机又具有数学模型复杂,非 线性等特点,这给现场调试增加了难度。 2?国内外研究状况及发展 (1)无刷直流电机基本控制方法 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷 和换向器(或集电环)的电机,又称无换向器电机。 直流无刷电动机的电机本身是机电能量转换部分,无刷电机的转子上装有永磁体,定子上是电枢,与有刷电机正好是相反的。它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。 直流无刷驱动器包括电源部及控制部,电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流 电就得先经转换器(con verter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须 先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率 晶体管(V1?V6)分为上臂(V1、V3、V5)/下臂(V2、V4、V6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-se nsor),做为速度之闭回路控制,同时也做 为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。电机驱动电路如图?所示。 图1无刷直流电机的控制电路

相关文档
最新文档