关于计量型低压电流互感器如何选型的总结

关于计量型低压电流互感器如何选型的总结
关于计量型低压电流互感器如何选型的总结

HCT240(241)测量用电流互感器

HCT240(241)测量用电流互感器 ·额定工作频率:50Hz ·额定电流比:1A/2mA 1A/2.5mA 、1A/20mA ·精 度:<0.1% ·非线性度:<0.1% ·相位差: 特殊要求可以定做 HCT240 HCT241 电气特性参数 说明:*定货时需确定二次负载;表中所列相位差指不经过补偿,互感器本身的相位差。若经过外部电路补偿后相位差在80%-120%范围内可以做到1到2分。型号HCT240、HCT241的差别在于二次电流输出引脚的不同。 应用电路:

图1 图2 HCT240、HCT241是一种测量用精密电流互感器,如:HCT240AC-1A/2.5mA,额定一 次电流为1A,二次绕组会产生一个2.5mA的电流,比差允许±0.1%,角差允许±10’,0负载。 使用方法一: 典型应用电路如图1所示。二次负载基本为0。精密互感器应选用0负载互感器。通过运算 放大器,用户可以调节反馈电阻R值在输出端得到所要求的电压输出。而电容C及电阻r 是用来补偿相位差的。如用户使用软件补偿或不需要补偿相位差的场合,电容C及电阻r 可以不接。图中运算放大器为OP07系列。图1中反馈电阻R的精度与输出电压的精度要求 有关,温度系数优于50ppm。电容C选用CBB电容,D1、D2二极管为1N4148起保护用。 C0为抗干扰电容,取1000P左右(注:此电容根据用户的电路及运放技术参数来定,否则 会引起输出信号振荡)。 使用方法二: 图2为并电阻R直接输出电路,二次负载为R。直接输出电路由于负载大相位差变大,动态 范围减小。但是线性基本不变,仍优于0.1%。适合要求不高场合使用。图2中C可以起到 一定的相位补偿作用,无相位要求可以不加。 补偿量:Δδ= -100πCR×3438’ 此电路应选用负载为R的精密互感器。若还是采用0负载精密互感器的实际误差往负方向 偏移,但是线性度基本不变。

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

如何正确选择及使用电流互感器,民熔

如何正确选择及使用电流互感器,民熔 1.前言近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。 电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以策各位读者朋友。 2电流互感器的原理互感器,一般W14W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。 原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通m的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变m,但U1一定时,m是基本不变的,即保持IOW1 不变,因为I2的出现,必使原边电流I1增加,以抵消I2W2的去磁作用,从而保证IOW1不变,故有:IW=IW+(-IW)(1) 即IO=I1+WI/W(2)在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得:IW=-I2W2 有:T1/T2=-W2/W1 3电流互感器的选择3.1电流互感器选择与检验的原则1)电流互感器额定电压不小于装设点线路额定电压;2)根据一次负荷计算电流IC选择电流互感器变化;3)根据二次回路的要求选择电流互感器的准确度并校验准确度;4)校验动稳定度和热稳定度。 3.2电流互感器变流比选择电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=Iln/I2n ~N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1电流互感器准确级和误差限值3.3电流互感器准确度选择及校验所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。 准确度选择的原则:计费计量用的电流互感器其准度为0.2~0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0-3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:52≤s2n。 二次回路的负荷1:。取决于二次回路的阻抗Z2的值,则:S2=In'|z.|~In-(Z|zil+R+Rc) 或SV~Si+Ian'(R,+Rx)式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.12,L为二次回路导线电阻,计算公式化为:Rm=L/(r×s)。

电流互感器的参数选择计算方法

附件3: 电流互感器的核算方法参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。项目名称 代号 参数 备注 额定电流比 Kn 600/5 额定二次电流 Isn 5A 额定二次负载视在功率 Sbn 30VA(变比:600/5) 50VA(变比:1200/5) 不同二次绕组抽头对应的视在功率不同。 额定二次负载电阻 Rbn

1.2Ω 二次负载电阻 Rb 0.38Ω 二次绕组电阻 Rct 0.45Ω 准确级 10 准确限值系数 Kalf 15 实测拐点电动势 Ek 130V(变比:600/5) 260V(变比:1200/5) 不同二次绕组抽头对应的拐点电动势不同。

最大短路电流 Iscmax 10000A 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)Es1:CT额定二次极限电动势(稳态); (2)Kalf:准确限制值系数; (3)Isn:额定二次电流; (4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。(5)Rbn :CT额定二次负载,计算公式如下: Rbn=Sbn/ Isn 2=30/25=1.2Ω; ——Rbn :CT额定二次负载; ——Sbn :额定二次负荷视在功率; ——Isn :额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT 额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 Es1=127.5V

电流互感器与电能表的配合选用

电能表与电流互感器的合理选用 低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。特别在农村用电中,存在问题更为普遍。例如,有一个用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左右。像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。 1 TA的合理选用 1.1 本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。 1.2 现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确定穿绕匝数要注意铭牌标注方法,否则容易出错。通常穿绕匝数是以穿绕入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。 1.3 TA如何选择,简单说来就是怎样确定额定一次电流的问题。它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。如有一台100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。1.4 TA变比选大,在实际工作中常发生。当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。 1.5 TA变比选小,这种状况仅发生在电工对实际负荷调查不清,或用电户增加了用电负荷的时候。曾有书上介绍TA最大工作电流可达其一次额定电流值的180%,这与DL/T448—2000规程规定不符。TA长时间过负荷运行也会增大误差,并且铁心和二次线圈会过热使绝缘老化。所以,工作人员应经常测试实际负荷,及时调整TA变比。 2 电能表的合理选用 2.1 新规程规定,对于Ⅳ类、Ⅴ类计量装置应选用准确级次2.0级的有功电能表。无功电能表用于Ⅳ类计量装置时配3.0级,而对于第Ⅴ类计量装置没有作规定。 2.2 许多资料(也包括老的电能计量规范)介绍或规定,电能表应工作在50%~100%标定电流范围内,误差才小。当它工作在30%轻载负荷以下,误差变化很大。特别是工作在标定电流10%以下时,因电能表的补偿装置调整限制,不能保证其准确度,超出允许范围的负误差更大。所以,新颁规程提出“为提高低负荷计量的准确性,应选用过载4倍及以上的电能表”。目前,D86系列表属此类型,其计量负荷范围宽,正在广泛推广使用。2.3 在低压供电线路中,老的规程规定负荷电流为80A及以下时,宜采用直接接入式电能表。新规程作了修正,降为负荷电流为50A及以下宜采用直接接入式电能表,而且标明选配方法:“电能表的标定电流为正常运行负荷电流的30%左右。”例如,正常运行负荷电流为30A,按30%选择它的标定电流就是9A,规范D86系列表就是选用10(40)A规格表。这样,既保证了在轻负荷运行时不小于30%标定电流,也满足了满负荷运行时不超过它的最大电流。 3 TA与电能表的最优联用 3.1 新规程规定“经电流互感器接入的电能表,其标定电流宜不超过电流互感器额定二

电流互感器的分类及功能

测量用电流互感器 测量用电流互感器(或电流互感器的测量绕组。在正常工作电流范围内,向测量、计量等装置提供电网的电流信息。 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。 测量用微型电流互感器主要要求: 1、绝缘可靠; 2、足够高的测量精度; 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表; 保护用电流互感器 保护用电流互感器(或电流互感器的保护绕组。在电网故障状态下,向继电保护等装置提供电网故障电流信息。 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用微型电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。 保护用互感器主要要求: 1、绝缘可靠; 2、足够大的准确限值系数; 3、足够的热稳定性和动稳定性; 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P。 互感器分为电压互感器和电流互感器两大类测量用电压互感器(或电压互感器的测量绕组。在正常电压范围内,向测量、计量装置提供电网电压信息。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供

电流互感器二次容量的选型及计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。 一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。 电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA 或30VA,特殊情况可选的更大一些。 电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想; 2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点; 3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点: 1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。电流互感器二次容量的计算及选择 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。

低压互感器的种类及作用

低压互感器是工业上用于1KV以下,36V以上交流互感器。包含低压电流互感器及低压电压互感器两种。 低压电流互感器:低压互感器的品种较为繁多较为常见的为LMZ(含LMZJ)系列,LMK(含BH)系列,SDH系列,LQZ系列,AKH系列等,常用于0.5kv,0.66kv等电压等级,精度为0.5级,0.5s级,0.2级,0.2s级等,一次输入为20~6000A二次输出为1A或5A,适用于测量或保护。 LMZ1-0.5 系列电流互感器供额定频率为50Hz、额定电压为0.5kV及以下的交流线路中作电流、电能测量或继电保护用。本型互感器为浇注绝缘式,穿心母线型电流互感器,下部有底座,供固定安装之用。 LMK-0.66系列产品适用于额定频率50Hz,额定电压0.66kV及以下电力系统中作电能计量、电流测量和继电保护用。本型互感器用于户内配电柜、箱内部型,电流互感器为母线型塑料壳式绝缘,产品下部有安装板供固定安装用,中间窗孔供一次母线排通过用。 LMZ1-0.66系列电流互感器供额定频率为50Hz、额定电压为0.66kV及以下的交流线路中作电流、电能测量或继电保护用。本型互感器为浇注绝缘式,穿心母排型电流互感器,上端有安装螺丝供固定用。 SDH-0.66系列产品适用于额定频率50Hz,额定电压0.66kV及以下电力系统中作电能计量、电流测量和继电保护用。本型互感器用于户内配电柜、箱内部型,电流互感器为母线型塑料壳式绝缘,产品下部有安装板供固定安装用,中间窗孔供一次母线排通过用。 LQZ(LQG)-0.66型电流互感器用于户内,供额定电压660V,额定频率50Hz 的交流电路中作电流、电能测量和继电保护用。LQG(LQZ)-0.66电流互感器是为小电流(5~150A)免去用户穿心多匝的麻烦而新开发的产品,具有用铜排布线能直接连接、安装方便、容量大等特点。 AKH-0.66系列电流互感器[1]外壳采用阻燃、耐温120℃的进口聚碳酸酯注塑成形,铁芯采用取向冷轧硅钢带卷绕而成,二次导线采用高强度电磁漆包线,产品结构新颖,造型美观,安装方便,体积小,质量轻,准确度高,容量大。产品符合国标GB1208-2006(等效IEC60044-1:2003),并通过CE认证。 低压电压互感器:低压电压互感器品种较少,较常见的为JDG系列型号,主要起到变压器的作用为用电设备供电。

电流互感器与电表的选配

电流互感器与电表的选配 低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。特别在农村用电中,存在问题更为普遍。例如,有一个用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左右。像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。 1.TA的合理选用 1.1本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。 1.2现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确定穿绕匝数要注意铭牌标注方法,否则容易出错。通常穿绕匝数是以穿绕入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。

1.3TA如何选择,简单说来就是怎样确定额定一次电流的问题。它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。如有一台100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。 1.4TA变比选大,在实际工作中常发生。当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。 1.5TA变比选小,这种状况仅发生在电工对实际负荷调查不清,或用电户增加了用电负荷的时候。曾有书上介绍TA最大工作电流可达其一次额定电流值的180%,这与DL/T448—2000规程规定不符。TA长时间过负荷运行也会增大误差,并且铁心和二次线圈会过热使绝缘老化。所以,工作人员应经常测试实际负荷,及时调整TA变比。 2.电能表的合理选用 2.1新规程规定,对于Ⅳ类、Ⅴ类计量装置应选用准确级次2.0级的有功电能表。无功电能表用于Ⅳ类计量装置时配3.0级,而对

(完整版)电流互感器二次容量的计算及选择

电流互感器容量选择 电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。 电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。 电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想; 2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点; 3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了; 另外提醒注意以下几点: 1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。 电流互感器二次容量の计算及选择

400V低压电流互感器技术规范

江苏省电力公司低压电流互感器技术规范 1、总则 本规范适用于江苏省电力公司系统内交流50Hz、额定电压0.38kV的计量用电流互感器(浇注式)。 本技术规范未明确之处,参照引用标准中相关标准执行。 供方提供的设备运行使用寿命应不小于30年,并提供设备投运后3年的质保期,投标报价应包含质保期内系统的维护费用,包括硬件更换、维修,定期检查,保养,系统软件升级,以及卖方维修人员的其它人工费用。设备软件及所有损坏(人为或不可抗力除外)的零部件所产生的费用由卖方支付。如采用全寿命周期招标,则产品保质期覆盖全寿命周期。 2、引用标准 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB1208 电流互感器 JJG313 测量用电流互感器检定规程 DL/T725 电力用电流互感器订货技术条件 DL/T448 电能计量装置技术管理规程 DL/T5137 电测量及电能计量装置设计技术规程 GB/T16934 电能计量柜 3、技术要求 3.1使用环境条件 3.1.1 环境温度 最高:40℃ 最低:-20℃ 3.1.2 使用条件所涉及到的海拔高度、风速、环境湿度、耐受地震能力、污秽等级、系统接地方式等应符合DL/T725的有关规定。 3.2 额定参数

3.2.1 额定一次电流标准值的选择 额定一次电流标准值宜在下述范围内进行选择: 75A、100A、150A、200A、250A、300A、400A、500A、600A、800A、1000A、1200A。 3.2.2 额定二次电流标准值 5A 3.2.3 准确度等级 0.2S级 3.2.4 额定二次负荷 10V A、15V A,功率因数:0.8~1.0 3.3 动热稳定要求 应符合GB1208和DL/T725的有关规定。 3.4 绝缘要求 应符合GB1208和DL/T725的有关规定。 3.5 误差特性 3.5.1 互感器检定误差控制 电流互感器二次计量绕组在接额定负荷和1/4额定负荷时,其检定误差应不大于JJG313规定误差限值的60%。 对于电流互感器额定一次电流值小于1200A规格时,在200%额定一次电流标准值时的比值差和相位差应不超过120%额定一次电流下JJG313规定的限值。 二次绕组输出电流波形失真度不大于1%。 3.5.2 检定互感器误差时二次负荷范围 互感器(计量绕组)应在25%~100%额定负荷下检测基本误差;额定二次电流为5A 的电流互感器最低下限负荷为2.5V A。 3.5.3 检定电流互感器误差时剩磁的影响 在电流互感器充磁和退磁两种情况下,剩磁影响不得大于误差限值的三分之一。 3.5.4 在高于下限使用温度5K和上限温度的情况下,施加50%额定电流120min,两种情况和常温条件情况的误差变化量不得大于误差限值的三分之一。误差测量时间不大于2min。 3.6 试验

电流互感器的选择

电流互感器的选择 电流互感器的选择和配置应按下列条件: (1)形式的选择:根据安装的地点及使用条件,选择电流互感器的绝缘结构、安装方式、一次绕组匝数等。 对于6-20KV 屋内配电装置,可采用瓷绝缘结构和树脂浇注绝缘结构的电流互感器。对于35KV 及以上配电装置,一般采用油浸式瓷箱式绝缘结构的独立式流互感器。有条件时,应尽量采用套管式电流互感器。选用母线式互感器时,应该校核其窗口允许穿过的母线尺寸。 (2)额定电压:电流互感器一次回路额定电压不应低于安装地点的电网额定电压,即:U c ≥U e (3)额定电流:电流互感器一次回路额定电流不应小于所在回路的最大持续工作电流,即: I le >I gmax (4)准确等级:要先知道电流互感器二次回路所接测量仪表的类型及对准确等级的要求,并按准确等级要求高的表计来选择。 (5)二次负荷的效验:互感器按选定准确级所规定的额定容量S 2N 应大于或等二次侧所接负荷 ,即 S 2e ≥S 2 其中 S 2 =I 2e Z 2 S2e=I 2e Z 2 z 2 =r v +r f +r d +r e 式中,rv 、rf 分别为二次侧回路中所接仪表和继电器的电流线圈电阻(忽略电抗); re 为接触电阻,一般可取0. 1 Ω;rd 为连接导线电阻。 (6)热稳定:电流互感器热稳定能力常以1s 允许通过的热稳定电流It 或一次额定电流I1N 的倍数Kt 来表示,热稳定校验式为:(K r I le )2≧I 2∝t dz 式中I le 为电流互感器一次侧额定电流,K r 为电流互感器的1s 热稳定倍数,K r =Ir/I le ,由制造厂家提供。 (7)动稳定: 内部动稳定校验式为: i es ≥i sh 或 12N e s s h I K i 式中i es 、K es 是电流互感器的动稳定电流及动稳定电流倍数,有制造厂提供。 外部动稳定校验式为: Fy ≧Fmax

电流互感器的参数选择计算方法

电流互感器的参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: E s1=K alf I sn(R ct+R bn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)E s1:CT额定二次极限电动势(稳态); (2)K alf:准确限制值系数;

(3)I sn:额定二次电流; (4)R ct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值: 5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。 (5)R bn:CT额定二次负载,计算公式如下: R bn=S bn/ I sn 2=30/25=1.2Ω; ——R bn:CT额定二次负载; ——S bn:额定二次负荷视在功率; ——I sn:额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 E s1=127.5V

路电流下CT裕度是否满足要求) 1、计算最大短路电流时的二次感应电动势: E s=I scmax/K n(R ct+R b)=10000/600×5×(0.45+0.38)=69.16V 参数说明: (1)K n:采用的变流比,当进行变比调整后,需用新变比进行重新校核; (2)I scmax:最大短路电流; (3)R ct:二次绕组电阻;(同上) 当通过改变CT二次绕组接线方式调大CT变比时,应重新测量CT额定二次绕组电阻 (4)R b:CT实际二次负荷电阻(此处取实测值0.38Ω),当有实测值时取实测值,无实测值时可用估算值计算,估算值的计 算方法如下: 公式:R b = R dl+ R zz ——R dl:二次电缆阻抗; ——R zz:二次装置阻抗。 二次电缆算例: R dl=(ρl)/s =(1.75×10-8×200)/2.5×10-6 =1.4Ω ——ρ铜=1.75×10-8Ωm; ——l:电缆长度,以200m为例; ——s:电缆芯截面积,以2.5mm2为例; 二次装置算例:

低压计量装置在实际工作中常常出现电流互感器

低压计量装置在实际工作中常常出现电流互感器(TA)和电能表选用不当、联用不妥的现象,给企业造成很大损失。特别在农村用电中,存在问题更为普遍。例如,有一个 用电户安装了一台20kV·A变压器,电工在计量装置中配3只50/5A的TA,再联用一只DT8—25(50)的电能表,一个月下来只计得用电量450kW·h左 右。像TA变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。笔者结合工作实际,针对计量装置的一些技术问题和有关规章,谈一些肤浅认识,以供大家参考。 1TA的合理选用 1.1本地区用电户多属第Ⅳ类、第Ⅴ类电能表计量装置,老规程要求TA准确级次为0.5级就可以,而新的DL/T448—2000《电能计量装置技术管理规程》要求,应配置准确级次为0.5S级的TA。 1.2现在安装的低压电流互感器多采用穿心式,灵活性大,可根据实际负荷电流大小选择变比,但确

定穿绕匝数要注意铭牌标注方法,否则容易出错。通常穿绕匝数是以穿绕 入互感器中心的匝数为准,而不是以绕在外围的匝数为准,当误为外围匝数时,计算计量电能将会出现很大差错。 1.3TA如何选择,简单说来就是怎样确定额定一次电流的问题。它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。如有一台 100kV·A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA,这 样就保证了轻负荷时工作电流不低于30%额定值,同时也满足了对TA的二次侧实际负荷的要求。1.4TA变比选大,在实际工作中常发生。当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。

如何选择合适的电流互感器

如何选择合适的电流互感器,用以设计高性能和经济的电功率测量表2009-9-15 10:01:52 Bertrand KLAIBER Pierre TURPIN 供稿 摘要:电功率计算包括根据不同应用领域的具体电气和机械特性进行电流测量。在实芯电磁感应技术已经能够暂时以低成本提供良好性能的同时,一些钳形互感器最近在技术上取得了重大进展,重新彰显了其在涉及将功率表加进现有设备进行更新等应用场合方面的价值。钳形互感器并非新鲜出炉,但是在过去这些互感器又大又笨重,所采用的传统技术有着诸多弊病。这些互感器不是采用昂贵的材料制造就是在精确度方面性能很差。在这种情况下,不确定度指的不是读数本身,而是线性度、输出电流的移相误差和读数超时的持续性。下文对传统的电流感应技术和一些创新技术进行了分析,侧重这些互感器在不同功率测量应用领域的优点和缺点。 功率测量应用 电功率测量已经成为1)电源管理、2)用电控制3)状态监控等工业领域中众多应用场合的重中之重。 1)由于电源管理是所有工业和商业活动的根本,因此是基本的功率测量应用领域。电源管理主要侧重发电和配电公司,但是也兼顾工业专业人士,这些人员通过监控其电力质量和功率因数来实现对其设备征收的费率进行控制,尤其是当操作低功率因数的负载时。 2)由于实施能量二次计量可以对能量成本进行跟踪并对其进行分配,同时也对电量消耗进行进一步的分析,从而提高其效率,因此逐步引起设备和工厂经理的关注。电源选型和计费通常取决于峰值消

耗,对整个系统进行动态管理可以降低运营成本并防止故障发生。了解和管理主要消费对象以及确定通常由于故障电器或设备用量不足(比如不合适的照明、加热或空气调节)而造成的能量浪费需要对能量进行二次计量。 3)状态监控要求对故障进行及时检测并做出反应,从而防止对设备造成损坏或临界进程发生中断。电功率测量给出一套反映电机负载特性(比如传送机、轴承、泵、切削刀具等)的综合信息(电流、有效功率、功率因数、频率等)。通常情况下,这种监控对异常情况的检测速度要比传统互感器快,比如温度、压力、振荡等。及时对这些电气参数的变化进行分析甚至能够实现对故障进行估计,从而可以计划有效的预先维护。 功率测量不仅在工业领域受到关注,在监控商业和住宅负载方面也是如此。不管从成本还是从环境保护方面来考虑,节约能源在全球日益成为公众关注的话题。关键问题是如何实现能源消耗实质性的持续降低。最可靠的解决方案是要了解用户如何消耗他们的能量以及如何使其对这些能量负责。锁定该领域仍然是一个工业课题,而且日益成为政府机构的关注重点。许多国家正在开展各种减少能源消耗的运动并且制定各种激励预算。这些激励措施的启用要求各种机构开发各种精确的测量性能。 电流互感器要求 工程师设计功率监控系统应该根据非常具体的特性谨慎选择所需要的电流互感器:

电流互感器型号及主要参数

电流互感器的型号由字母符号及数字组成,通常表示电流互感器绕组类型、绝缘种类、使用场所及电压等级等。字母符号含义如下:第一位字母:L——电流互感器。 第二位字母:M——母线式(穿心式);Q——线圈式;Y——低压式;D——单匝式;F——多匝式;A——穿墙式;R——装入式;C——瓷箱式。 第三位字母:K——塑料外壳式;Z——浇注式;W——户外式;G——改进型;C——瓷绝缘;P——中频。 第四位字母:B——过流保护;D——差动保护;J——接地保护或加大容量;S——速饱和;Q——加强型。 字母后面的数字一般表示使用电压等级。例如:LMK-型,表示使用于额定电压500V及以下电路,塑料外壳的穿心式S级电流互感器。LA-10型,表示使用于额定电压10k V电路的穿墙式电流互感器。 电流互感器型号及主要参数 一、电流互感器型号: 第一字母:L—电流互感器 第二字母:A—穿墙式;Z—支柱式;M—母线式;D—单匝贯穿式;V—结构倒置式;J—零序 接地检测用;W—抗污秽;R—绕组裸露式

第三字母:Z—环氧树脂浇注式;C—瓷绝缘;Q—气体绝缘介质;W—与微机保护专用 第四数字:B—带保护级;C—差动保护;D—D级;Q—加强型;J—加强型ZG 第五数字:电压等级产品序号 二、主要技术术要求 额定容量:额定二次电流通过二次额定负荷时所消耗的视在功率。额定容量可以用视在功率表示,也可以用二次额定负荷阻抗Ω表示。 一次额定电流:允许通过电流互感器一次绕组的用电负荷电流。用于电力系统的电流互感器一次额定电流为5~25000A,用于试验设备的精密电流互感器为~50 000A。电流互感器可在一次额定电流下长期运行,负荷电流超过额定电流值时叫做过负荷,电流互感器长期过负荷运行,会烧坏绕组或减少使用寿命。 二次额定电流:允许通过电流互感器二次绕组的一次感应电流。 额定电流比(变比):一次额定电流与二次额定电流之比。 额定电压:一次绕组长期对地能够承受的最大电压(有效值以kV为单位),应不低于所接线路的额定相电压。电流互感器的额定电压分为,3,6,10,35,110,220,330,500kV等几种电压等级。 10%倍数:在指定的二次负荷和任意功率因数下,电流互感器的电流误差为-1 0%时,一次电流对其额定值的倍数。10%倍数是与继电保护有关的技术指标。 准确度等级:表示互感器本身误差(比差和角差)的等级。目前电流互感器的准确度等级分为~1多种级别,与原来相比准确度提高很大。用于发电厂、变电站、用电单位配电控制盘上的电气仪表一般采用级或级;用于设备、线路的继电保护一

电流互感器准确级大全完整版

电流互感器准确级大全 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。

5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 2、暂态保护用电流互感器的准确级分为TPX、TPY、TPZ。 TPX:电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±5%,相位差不大于±30度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的5%,电流过零时相位差不大于3度。 TPY:电流互感器环形铁芯中带小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减。在额定电流和负载下,其电流误差不大于±1%,相位差为1度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的7.5%,电流过零时相位差不大于4.5度。 TPZ:电流互感器环形铁芯中带较大气隙,气隙长度约为磁路平均长度的0.1%,由于气隙使铁芯不易饱和,特别适合快速重合闸。间隙大,剩磁可以忽略,铁芯磁化曲线线性度好,二次回路时间常数小,对交流分量的传变性能好,但是传变直流分量能力差。 500KV线路保护用的互感器一般选用TPY级暂态型互感器。 采用暂态型电流互感器的必要性? (1)500KV电力系统的时间常数增大。22KV系统时间常数一般小于60MS,而500KV系统时间常数在80MS-200MS之间,系统时间常数增大,导致短路电流非周期分量的衰减时间加长,短路电流的暂态持续时间加长。 (2)系统容量增大,短路电流的幅值也增大。 (3)由于系统稳定的要求,500KV系统主保护动作时间一般在20MS左右,总的切除故障时间小于100MS,系统主保护是在故障的暂态过程中动作的。 由于电力系统短路,暂态电流流过电流互感器时,在互感器内产生一个暂态过程。如果不采取措施,电流互感器铁芯很快趋于饱和。特别是在装有重合闸的电路上,在第一次故障造成的暂态过程尚未衰减完毕的情况下,再叠加另一次短路的暂态过程,由于电流互感器剩磁的存在,有可能使铁芯更快的饱和。其结果是电流互感器传变电流信息准确性受到破坏,造成继电保护不正确动作。

相关文档
最新文档