平行四边形的性质及判定-典型例题

平行四边形的性质及判定-典型例题
平行四边形的性质及判定-典型例题

平行四边形的性质及判定(典型例题)

1.平行四边形及其性质

ABCD对角线的交点.△OBC是的周长为59例1 如图,O,BD=38,AC=24,则AD=____若△OBC与△OAB的周长之差为

AB=ABCD,则的周长=____.

15

分析:

AC,可得BC,再由平行四边形对边相等知AD=BC,由平行四边形的对角线互相平分,可知△OBC与△OAB的周长之差就为BC

,进而可得ABCDAB的周长.AB与之差,可得

对角线互相平分)

∴△OBC的周长=OB+OC+EC

34

/ 1

=19+12+BC=59

∴BC=28

ABCD中,

∴BC=AD(平行四边形对边相等)

∴AD=28

△OBC的周长-△OAB的周长

=(OB+OC+BC)-(OB+OA+AB)

=BC-AB=15

∴AB=13

∴ABCD的周长

=AB+BC+CD+AD

=2(AB+BC)

=2(13+28)

=82

说明:本题条件中的“△OBC占△OAB的周长之差为15”,用符34 / 2

号语言表示出来后,便容易发现其实质,即BC与AB之差是15.例2 判断题

(1)两条对边平行的四边形叫做平行四边形.( )

(2)平行四边形的两角相等.( )

(3)平行四边形的两条对角线相等.( )

(4)平行四边形的两条对角线互相平分.( )

(5)两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.( )

(6)平行四边形的邻角互补.( )

分析:根据平行四边形的定义和性质判断.

解:

(1)错

“两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD∥BC.显然四边形34 / 3

ABCD不是平行四边形.

(2)错

平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.

(3)错

平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).

(4)对

根据平行四边形的性质定理3可判断是正确的.

(5)错

线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.

(6)对

由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.

34

/ 4

,在ABCD中,E、1F是AC上的两点.且例3 .如图AE=CF.求证:ED∥BF.

分析:欲址DE∥BF,只需∠DEC=∠AFB,转证=∠ABF≌△CDF, ABCD,从而有∠BAC=∠CDA.再由AF=CF因ABCD,则有得AF=CE.满足了三角形全等的条件.

证明:

∵AE=CF

AE+EF=CF+EF

∴AF=CE

在ABCD中

AB∥CD(平行四边形的对边平行)

∴∠BAC=∠DCA(两直线平行内错角相等)

34

/ 5

AB=CD(平行四边形的对边也相等)

∴△ABF≌△CDE(SAS)

∴∠AFB=∠DCE

∴ED∥BF(内错角相等两直线平行)

说明:解决平行四边形问题的基本思想是化为三角形问题不处理.

例4 如图已知在△ABC中DE∥BC∥FG,若BD=AF、求证;DE+FG=BC.

分析1:要证DE+FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH∥AB(或DM ∥AC),得到DE=BH、只需证HC=FG,因AF=BD=EH,∠CEH=∠A.∠AGF=∠C所以△AFG≌∠EHC.此方法称为截长法.

分析2:过C点作CK∥AB交DE的延长线于K,只需证FG=EK,

34

/ 6

转证△AFG≌△

CKE.

证法1:

过E作EH∥AB交于H

∵DE∥BC

∴四边形DBHE是平行四边形(平行四边形定义)

∴DB=EH

DE=BH(平行四边形对边也相等)

又BD=AF

∴AF=EH

∵BC∥FG

∴∠AGF=∠C(两直线平行同位角相等)

同理∠A=∠CEH

∴△AFG≌△EHC(AAS)

34

/ 7

∴FG=HC

∴BC=BH+HC=DE=FG

即CE+FG=BD

证法2:

. 过C作CK∥AB交DE的延长线于K.

∵DE∥BC

∴四边形DBCK是平行四边形(平行四边形定义) ∴CK=BD DK=BC

(平行四边形对边相等)

又BD=AF

∴AF=CK

∵CK∥AB

∴∠A=∠ECK(两直线平行内错角相等)

34

/ 8

∵BC∥FG

∴∠AGF=∠AED(两直线平行同位角相等)

又∠CEK=∠AED(对顶角相等)

∴∠AGF=∠CEK

∴△AFG≌△CKE(AAS)

FG=EK

DE+EK=BC

∴DE+FG=BC

如图ABCD中,∠ABC=3∠A,点E在CD上5 例,CE=1,EF⊥CD 交CB延长线于F,若AD=1,求BF的长.

分析:根据平行四边形对角相等,邻角互补,可得∠C=∠F=45°进而由勾股定理求出CF,再根据平行四边形对边相等,得BF的长.

34

/ 9

在ABCD中,AD解:∥BC

∴∠A+∠ABC=180°(两直线平行同旁内角互补)

∵∠ABC=3∠A

∴∠A=45°,∠ABC=135°

∴∠C=∠A=45°(平行四边形的对角相等)

∴EF⊥CD

∴∠F=45°(直角三角形两锐角互余)

∴EF=CE=1

∵AD=BC=1

,ABCD中,对角线AC长为10cm,∠CAB=30°,如图例6 1

ABCD的面积.6cm长为AB,求

34

/ 10

2) 图.(AB,交AB的延长线于点H解:过点C作CH⊥∵∠CAB=30°

5=30(cm2) =6×=AB·CH∴ABCDS

.ABCD的面积为30cm2答:

由于说明:×底高,题设中已知AB的长,须求出与底AB=的高,故选择相应的高,由于本题条件的制约,不便于求出过点D C作高.过点

∥上,且BCEF、的边ABCD、如图,例7 EF分别在CDBD

34

/ 11

求证:S△ACE=S△ABF

分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角

形.

证明:将EF向两边延长分别交AD、AB的延长线于G、H.

ABCD DE∥AB

∴∠DEG=∠BHF(两直线平行同位角相等)

∠GDE=∠DAB(同上)

AD∥BC

∴∠DAB=∠FBH(同上)

∴∠GDE=∠FBH

∵DE∥BH,DB∥EH

∴四边形BHED是平行四边形

∵DE=BH(平行四边形对边相等)

34

/ 12

∴△GDE≌△FBH(ASA)

∴S△GDE=S△FBH(全等三角形面积相等)

∴GE=FH(全等三角形对应边相等)

∴S△ACE=S△AFH(等底同高的三角形面积相等)

∴S△ADE=S△ABF

S=a·ha即.a说明:平行四边形的面积等于它的底和高的积.可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.

如图,在ABCD中,BE平分∠B8 例交CD于点E,DF平分∠D交AB于点F,求证BF=DE.

34

/ 13

证明:ABCD是平行四边形∵四边形平行四边形的对边也平行对角相ADC(,∠ABC=∠∴DE∥FB)

等)

两直线平行内错角相等∠3(∴∠1=

2 1=∠∴∠3

∠2=∴∠)

同位角相等两条直线平行∥BE(DF∴) 平行四边形定义(∴四边形BEDF为平行四边形)

平行四边形的对边相等(BF=DE∴.34

/ 14

说明:此例也可通过△ADF≌△CBE来证明,但不如上面的方法简捷.

例9 如图,CD的Rt△ABC斜边AB上的高,AE平分∠BAC交CD 于E,EF∥AB,交BC于点F,求证

CE=BF.

分析作EG∥BC,交AB于G,易得EG=BF.再由基本图,可得EG=EC,从而得出结

论.

证明:

过E点作EG∥BC交AB于G点.

∴∠EGA=∠B

34

/ 15

∵EF∥AB

∴EG=BF

∵CD为Rt△ABC斜边AB上的高

∴∠BAC+∠B=90°.∠BAC+∠ACD=90°

∴∠B=∠ACD

∴∠ACD=∠EGA

∵AE平分∠BAC

∴∠1=∠2

又AE=AE

∴△AGE≌△ACE(AAS)

∴CE=EG

∴CE=BF.

说明:

(1)在上述证法中,“平移”起着把条件集中的作用.本题也可(2)以设

法平移G)

ABAEFGF(AE.连点作∥,交于34

/ 16

如图,已知ABCD的周长为32cm,AB∶BC=5例10 ∶3,AE⊥BC 于E,AF⊥DC于F,∠EAF=2∠C,求AE和AF的

长.

分析:

从化简条件开始

①由ABCD的周长及两邻边的比,不难得到平行四边形的边

长.

②∠EAF=2∠C告诉我们什么?

这样,立即可以看出△ADF、△AEB都是有一个锐角为30°的直角三角形.

34

/ 17

再由勾股定理求出32cm

的周长为解:ABCDAB+BC+CD+DA=32

即)

平行四边形的对边相等∵AB=CD BC=DA(

3

∶BC=5∶AB又

) 360°四边形内角和等于∠C+∠CEA=360°(EAF+∠∠AFC+ AEC=90°⊥BC ∠AE∵∠AFC=90°DC AF⊥∠C=180°∴∠EAF+C ∠∠EAF=2 C=60°∴∠34

/ 18

∵AB∥CD(平行四边形的对边平行)

∴∠ABE=∠C=60°(两直线平行同位角相等)

同理∠ADF=60°

说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.

2.平行四边形的判定

例1 填空题

(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则34 / 19

四边形AEFD是__,理由是__

(2) 如图2,D、E分别在△ABC的边AB、AC上,DE=EF,AE=EC,DE∥BC则四边形ADCF是__,理由是__,四边形BCFD是__,理由是___

分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定

理4可得.(2)由AE=EC,DE=EF,由判定定理3可得四边形ADCF 是平行四边形,从而得AD∥CF即BD∥CF,再由条件,可得四边形BCFD是平行四边形.

解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.

34

/ 20

说明:平行四边形的定义(两组对边分别平行的四边形叫做平行四边形,既是平行四边形的一个性质,又是平行四边形的一个判定方法.

例2 如图,四边形ABCD中,AB=CD.∠ADB=∠CBD=90°.求证:四边形ABCD是平行四边

形.

分析:判定一个四边形是平行四边形,有三类五个判定方法,这三类也是按边、角和对角线分类,具体的五个方法如下表:

因此必须根据已知条件与图形结构特点,选择判定方法.

证法一:

∵AB=CD.∠ADB=∠CBD=90°,BD=DB.

34

/ 21

∴Rt△ABD≌Rt△CDB.

∴∠ABD=∠CDB,∠A=∠C.

∴∠ABD+∠CBD=∠CDB+∠ADB

即∠ABC=∠CDA.

∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形).

证法二:

∵∠ADB=∠CBD=90°,AB=CD、BD=DB.

∴Rt△ABD≌Rt△CDB.

∴∠ABD=∠CDB.

∴AB∥CD.(内错角相等两直线平行)

∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).

证法三:

由证法一知,Rt△ABD≌Rt△CDB.

34

/ 22

∴DA=BC

又∵AB=CD

∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四

边形)

说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.

如图,ABCD中,E、G、F例3 、H分别是四条边上的点,且AE=CF,BG=DH,求证:EF与GH互相平

分.

分析:只须证明EGFH为平行四边形.

34

/ 23

证明:连结EG、GF、FH、HE.

∵四边形ABCD是平行四边形

∴∠A=∠C,AD=CB.

∵BG=DH

∴AH=CG

又AE=CF

∴△AEH≌△CFG(SAS)

∴HE=GF

同理可得EG=FH

∴四边形EGFH是平行四边形(两组对边分别相等的四边形是平行四边形)

∴EF与GH互相平分(平行四边形的对角线互相平分).

说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.

34

/ 24

如图,ABCD中,AE⊥BD于E,例4 CF⊥BD于F.

求证:四边形AECF是平行四边

形.

分析:由平行四边形的性质,可得△ABE≌△CDF

∴AE= CF

进而可得四边形AECF是平行四边

形.

平行线的判定

这个定理可简单地写成:同旁内角互补,两直线平行. 注意:(1)已给的公理,定义和已经证明的定理以后都能 够作为依据.用来证明新定理.(2)证明中的每一步推理 都要有根据,不能“想当然”.这些根据,能够是已知条件, 也能够是定义、公理,已经学过的定理.在初学证明时, 要求把根据写在每一步推理后面的括号内. ②证明:内错角相等,两直线平行. 师:小明用下面的方法作出了平行线,你认为他的作法对 吗?为什么?(见相关动画) 生:我认为他的作法对.他的作法可用上图来表示:∠ CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平 角,所以∠FEA=180°-∠BEF=180°-45°=135°.而 ∠CFE与∠FEA是同旁内角.且这两个角的和为180°, 所以可知:CD∥A B. 师:很好.从图中可知:∠CFE与∠FEB是内错角.所以可 知:“内错角相等,两直线平行”是真命题.下面我们来用 规范的语言书写这个真命题的证明过程. 师生分析:已知,∠1和∠2是直线a、b被直线c截出的 内错角,且∠1=∠2. 求证:a∥b 证明:∵∠1=∠2(已知)∠1+∠3=180°(平角 通过对学生熟 悉的平行线判定的 证明,使学生掌握平 行线判定公理推导 出的另两个判定定 理,并逐步掌握规范 的推理格式. 因为学生有了以前 学习过的相关知识, 对几何证明题的格

定义) ∴∠2+∠3=180°(等量代换)∴∠2与∠3 互补(互补的定义) ∴a∥b(同旁内角互补,两直线平行). 这样我们就又得到了直线平行的另一个判定定理:内 错角相等,两直线平行. ③借助“同位角相等,两直线平行”这个公理,你还能证 明哪些熟悉的结论呢? 生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b. 证明:∵a⊥c,b⊥c(已知) ∴∠1=90°∠2=90°(垂直的定义) ∴∠1=∠2(等量代换) ∴b∥a(同位角相等,两直线平行) 生2:由此能够得到:“如果两条直线都和第三条直线垂直, 那么这两条直线平行”的结论. 师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直 线平行的判定定理. 第三环节:反馈练习 活动内容: 课本第231页的随堂练习第一题 活动目的: 教学效果: 因为此题仅仅简单地使用到平行线的判定的三个定理 (公理),所以,学生都能很快完成此题. 第四环节:学生反思与课堂小结 活动内容: 式有所了解,今天的 学习只不过是将原 来的零散的知识点 以及学生片面的理 解实行归纳,学生的 理解更提升一步. 巩固本节课所 学知识,让教师能对 学生的状况实行分 析,以便调整前进.

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

平行四边形典型例题精编版

平行四边形典型例题 1 如图,□ABCD的对角线AC、BD 相交于点O,则图中全等三角形有() A .2 对 B .3对 C .4 对 D .5对 17如图,□ABCD中,∠ B、∠ C的平分线交于点O ,BO 和CD 的延长线交于求证:BO=OE. 例3】如图,在ABCD中,AE⊥ BC于E ,AF⊥DC 于F ,∠ ADC=60°,BE=2,CF=1, 求△ DEC 的面积. 解】在中,,、 在Rt △ABE 中,, 在△ 中,

例 4】已知:如图, D 是等腰△ ABC 的底边 BC 上一点, DE//AC , DF//AB 求证: DE+DF=A .B , ,从而可以利用平行四边形的定义和性质,等腰 三角 形的判定和性质来证. 解】∵ , ∴四边形 是平行四边形. ∴. ∵ ,∴ . ∵ ,∴ 说明:证明一条线段等于另外两条线段的和常采用的方法是: 分为两段,证明这两段分别等于另两条线段. 于 ,求证: 分析】 分析】由于 把三条线段中较长的线段 例 5】如图, 已知: 中, 相交于 点, 于 ,

解】因为四边形是平行四边形,所以,又因为、交于点, 所以. 又因为, 所以 从而例6】已知:如图,AB//DC ,AC、BD交于O,且 AC=BD。 求证:OD=OC. 证明:过B 作交DC延长线于E,则 于是△≌△ ∵ ,, E

∵, ∴∴ 说明:本题条件中有“夹在两条平行线之间的相等且相交的线 段 时用不上,为此通过作平行线,由“夹在两条平行线间的平行线B BE ,得到等腰△ BDE ,使问题得解. 例 7】如图, □ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E 、F , 例 8】如图所示, □ABCD 中,各内角的平分线分别相交于点 E 、 F 、 G 、 H , 证明:四边形 EFGH 是矩形。 例 9】如图所示,已知矩形 ABCD 的对角线 AC 、BD 交于点 O ,过顶点 C ,作 BD 的垂线与∠ BAD 的平分线相交于点 E ,交 BD 于 G ,证明: AC=CE 。 求证:四边形 AFCE 是菱形. 解:略。 置交错而 A 由 AC 平移到 E

平行线的判定练习题

创作编号:BG7531400019813488897SX 创作者:别如克* 平行线的判定习题精选 一、填空题: 1.如图③∵∠1=∠2,∴_______∥________()∵∠2=∠3,∴_______∥________()2.如图④∵∠1=∠2,∴_______∥________()∵∠3=∠4,∴_______∥________() 二、选择题: 1.如图⑦,∠D=∠EFC,那么() A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF 2.如图⑧,判定AB∥CE的理由是() A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.如图⑨,下列推理正确的是() A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥b C.∵∠1=∠2,∴c∥d D.∵∠1=∠3,∴c∥d 4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6, ③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是() A.①③B.②④C.①③④D.①②③④ 三、完成推理,填写推理依据: 1.如图⑩∵∠B=∠_______,∴AB∥CD() ∵∠BGC=∠_______,∴CD∥EF() ∵AB∥CD ,CD∥EF,∴AB∥____() 2.如图⑾填空: (1)∵∠2=∠B(已知) ∴AB__________() (2)∵∠1=∠A(已知) ∴__________() (3)∵∠1=∠D(已知) ∴__________()(4)∵_______=∠F(已知) 第1页

第2页 1 3 2 A E C B F 图10 ∴ AC ∥DF ( ) 3.已知,如图∠1+∠2=180°,填空。 ∵∠1+∠2=180°( )又∠2=∠3( ) ∴∠1+∠3=180°∴_________( ) 四、证明题 1.如图:∠1=?53,∠2=?127,∠3=?53, 试说明直线AB 与CD ,BC 与DE 的位置关系。 2.如图:已知∠A=∠D ,∠B=∠FCB ,能否确定ED 与CF 的位置关系, 请说明理由。 3.已知:如图, , ,且 . 求证:EC ∥DF. 4.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°, 写出图中平行的直线,并说明理由. 5.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ. 6.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。 求证:GH ∥MN 。 F 2 A B C D Q E 1 P M N 图11

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

七年级数学平行线的判定练习题

七年级数学平行线的判定练习题 一、填空 1.如图1若∠A=∠3,则 ∥ ;若∠2=∠E ,则 ∥ ;若∠ A +∠ = 180°,则 ∥ . 2.同一平面内若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 内错角有 ; 同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知),∴AC∥ED( ); (2)∵∠2 =∠ (已知),∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知),∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知),∴AC∥ED( ) 11.如图③ ∵∠1=∠2,∴______∥_____( )。 ∵∠2=∠3∴_______∥________( )。 13.如图⑤ ∠B=∠D=∠E ,那么图形中的平行线有________________________________。 14.如图⑥ ∵ AB ⊥BD ,CD ⊥BD (已知) ∴ ∠B = 180° ∠D = 180° ∴∠B= ∠D A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B

平行线的判定教学设计

教学设计 课题:人教版七年级下 5.2.2平行线的判定(1) 授课教师:北京市前门外国语学校 郝宏文

5.2.2平行线的判定(1) 一、教学目标: 1.知识与技能: (1)从“用三角尺和直尺画平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。 (2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。 2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。 3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。 二、教学重点:同位角相等两直线平行 三、教学难点:运用平行线的判定方法进行简单的推理 四、教学教具:多媒体、三角板、直尺 五、教学方法:启发式 六、教学过程: (一)复习并导入新课: 上一节课我们学习了平行线,平行公理及其推论,如何用平行线的定义及平行公理的推论来说明两直线平行(学生回答),根据学生的回答,教师总结,如果用平行线定义难以说明两条直线没有交点,平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。你能否运用这两种方法来说明下面这两个问题的道理? 如果只有a、b两条直线如何判断他们是否平行呢?说明这两个途径都有一定的局限性,那么有没有其他的途径判定两条直线是否平行的方法呢?今天我们一起来探讨平行线的判定方法。 (二)新授

321 G H F E D C A B A B C D E 12 1、平行线的判定方法 (1)让学生回忆并叙述上节用三角板和直尺过一点P 画已知直线AB 的平行线的过程,你能发现这种画法实际上是画一对什么角相等吗?(让学生观察图形后回答,这两个角是直线AB 、CD 被EF 截得的同位角)。 判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单记为“同位角相等,两直线平行”。 结合图形,引导学生用符号语言表述平行线判定公理: ∵∠1=∠2 (已知) ∴a ∥b (同位角相等,两直线平行) 练习: 1.已知∠1=54°, 当 时, AB ∥CD ? (2)平行线的判定方法2的推导 先采用探讨问题的方式,启发学生去思考,能不能从内错角之间的关系或同旁内角之间的关系来判定两条直线平行呢? 让学生观察图形分析∠1与∠2在什么条件下满足判定方法1,引导学生分析角之间的关系,发现新结论: 判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两直线平行。 简称为“内错角相等,两直线平行”。 结合图形引导学生用符号语言表述上面的推理过程 已知:直线AB 、CD 被EF 所截,∠1=∠2, 求证:AB ∥CD 证明:∵∠1=∠2(已知) ∠1=∠3(对顶角相等) ∴∠2=∠3(等量代换) ∴AB ∥CD (同位角相等,两直线平行) 练习:已知:∠1=∠A=∠C,

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

平行线的判定练习题(有答案)

平行线的判定练习题(有答案) 平行线的判定专项练习60题(有答案) 1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE. 2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE. 3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE. 4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF. 5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由. 6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC. 平行线的判定--- 第 1 页共 1 页 7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,

求证:DE∥BC. 8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD. 9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD. 10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD. 11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF. 12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定--- 第 2 页共 2 页 13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?

14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由. 15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF. 16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF. 17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC. 18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么? 平行线的判定--- 第 3 页共 3 页 19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由. 20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

(完整版)平行四边形经典练习题

挑战自我: 1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ ABC 的度数为( ) A .90° B .60° C .45° D .30° 2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( ) A .9 B .8 C .6 D .4 4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。 5、(2010年宁德市)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____. 6题 6、 (2010年滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. 已知:在四边形中, , ;求证:四边形是平行四边形. 8、(2010年宁波市)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD 。 (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, F E D C B A ABCD AD BC CD AB =C A ∠=∠?=∠+∠180C B ABCD ABCD D A B C A B C D 第5题图 F A E B C D

专题练习平行线的判定

专题二平行线及其判断【要点归纳】 1.在同一平面内,不相交的两条直线叫做,用符号“∥”表示2.平行线的判定方法: (1) ,两直线平行; (2),两直线平行;(3),两直线平行 3 .平行公理: (1)过已知直线外一点, 一条直线与已知直线平行; (2)两条直线都与第三条直线平行,那么这两条直线 , 即平行于同一条直线的两条直线_____________. 如果a∥c,b∥c,那么a____c。 b a c a c b (3)在同一平面内,两条直线都与第三条直线垂直,那么这两条直线,即垂直于同一条直线的两条直线_____________ 如果b⊥a,c⊥a,那么b____c. 【例题讲解】 【例1】如图5.2-4所示,根据下列条件,可推得哪两条直线平行,并说明根据.(1)∠ABD=∠CDB; (2)∠CBA+∠BAD=180°; (3)∠ABC=∠DCE。 【例2】如图5.2-5,∠A+∠B=180°,∠EFC=∠DCG,试说明:AD∥EF。 【例3】如图5.2-7,若∠B=102°,∠1=78°,则AB与CD平行吗?请说明理由.

【例4】如图5。2-8,EC,FD与直线AB交于C,D两点,∠1=∠2,则EC∥DF吗?为什么? 【例5】如图5.2-9已知FE⊥CD于E,∠1=64°,∠2=26°,试说明AB∥CD。 【随堂练习】 1。已知:如图5.2-10,BE平分∠ABC,且∠1=∠3,则DE与BC平行吗?为什么? 2。(1)如图5.2-13,AF,CE,BD交于点B,BE平分∠DBF,添加条件∠EBF=,可使DB∥AC,说明理由. (2)(贵州铜仁中考题)如图5.2-14,请填写一个你认为恰当的条件,使AB//CD. 3.如图5。2-18所示,由(1)∠1=∠3,(2)∠BAD=∠DCB可以判定哪两条直线平行?

平行四边形典型例题

平行四边形典型例题 【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对 【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE, △ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD . 【答案】C 【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE . 【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证. 【证明】在□ABCD中,∵AB//CD, ∴, 又∵(角平分线定义). ∴, 又∵, ∴△≌△ ∴. 说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.

【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积. 【解】在中,,、. 在Rt △ABE 中,,. ∴,. ∴. 在△中,. ∴. 故. 【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB. 【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证. 【解】∵, ∴四边形是平行四边形. ∴. ∵,∴.

∵,∴. ∴. ∴. 说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段. 【例5】如图,已知:中,、相交于点,于, 于,求证:. 【分析】 【解】因为四边形是平行四边形, 所以,. 又因为、交于点, 所以. 又因为,, 所以.

最新平行线的判定证明练习题精选

精品文档 平行线的判定证明练习题精选 一.判断题: 1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。( ) 2.如图①,如果直线1l ⊥OB ,直线2l ⊥OA ,那么1l 与 2l 一定相交。( ) 3.如图②,∵∠GMB=∠HND (已知)∴AB ∥CD (同位角相等,两直线平行)( ) 二.填空题: 1.如图③ ∵∠1=∠2,∴_______∥________( )。 ∵∠2=∠3,∴_______∥________( )。 2.如图④ ∵∠1=∠2,∴_______∥________( )。 ∵∠3=∠4,∴_______∥________( )。 3.如图⑤ ∠B=∠D=∠E ,那么图形中的平行线有________________________________。 4.如图⑥ ∵ AB ⊥BD ,CD ⊥BD (已知) ∴ AB ∥CD ( ) 又∵ ∠1+∠2 = 180(已知) ∴ AB ∥EF ( ) ∴ CD ∥EF ( ) 三.选择题: 1.如图⑦,∠D=∠EFC ,那么( ) A .AD ∥BC B .AB ∥CD C .EF ∥BC D .AD ∥EF 2.如图⑧,判定AB ∥CE 的理由是( ) A .∠B=∠ACE B .∠A=∠ECD C .∠B=∠ACB D .∠A=∠AC E 3.如图⑨,下列推理错误的是( ) A .∵∠1=∠3,∴a ∥b B .∵∠1=∠2,∴a ∥b C .∵∠1=∠2,∴c ∥d D .∵∠1=∠2,∴c ∥d 4.如图,直线a 、b 被直线c 所截,给出下列条件,①∠1=∠2,②∠3=∠6, ③∠4+∠7=180°,④∠5+∠8=180°其中能判断a ∥b 的是( ) A .①③ B .②④ C .①③④ D .①②③④ 四.完成推理,填写推理依据: 1.如图⑩ ∵∠B=∠_______,∴ AB ∥CD ( ) ∵∠BGC=∠_______,∴ CD ∥EF ( ) ∵AB ∥CD ,CD ∥EF , ∴ AB ∥_______( ) 2.如图⑾ 填空: (1)∵∠2=∠B (已知) ∴ AB__________( ) (2)∵∠1=∠A (已知) ∴ __________( ) (3)∵∠1=∠D (已知)

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

平行四边形知识点与经典例题

第十八章平行四边形 18.1.1 平行四边形的性质 第一课时平行四边形的边、角特征 知识点梳理 1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。知识点训练 1.(3分)如图,两对边平行的纸条,随意交叉叠放在一起,转动其中一,重合的部分构成一个四边形,这个四边形是________. 2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( ) A.6个B.7个C.8个D.9个 3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为cm. 4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为cm. 5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=. 6.(4分)(2014·)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是. 7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( ) A.53°B.37°C.47°D.123°

8.(8分)(2013·)如图所示,已知在平行四边形ABCD中,BE=DF. 求证:AE=CF. 9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为。 10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( ) A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较 11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1 12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说确的是( ) A.①②都对B.①②都错C.①对②错D.①错② 13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,则□ABCD的周长为__.

(完整版)平行线的判定和性质经典题

平行线的判定和性质经典题 一.选择题(共18小题) 1.如图所示,同位角共有() 第1题第2题 A.6对B.8对C.10对D.12对 2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定 3.下列说法中正确的个数为() ①不相交的两条直线叫做平行线 ②平面内,过一点有且只有一条直线与已知直线垂直 ③平行于同一条直线的两条直线互相平行 ④在同一平面内,两条直线不是平行就是相交 A.1个B.2个C.3个D.4个 4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是() A.平行B.垂直C.平行或垂直D.无法确定 5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()A.150°和110°B.140°和100°C.110°和70°D.70°和30° 6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于() 第6题第7题 A.40°B.50°C.60°D.不能确定 7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()A.10°B.15°C.20°D.30°

8.下列所示的四个图形中,∠1和∠2是同位角的是() A.②③B.①②③C.①②④D.①④ 9.已知∠AOB=40°,∠CDE的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()A.50°B.130°C.50°或130°D.100° 10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() 第10题第11题 A.5个B.4个C.3个D.2个 11.如图所示,BE∥DF,DE∥BC,图中相等的角共有() A.5对B.6对C.7对D.8对 12.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=() A.50°B.130°C.100°D.50°或130° 13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有() 第13题第14题 A.6对B.5对C.4对D.3对 14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有() A.2个B.3个C.4个D.5个 15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是() A.42°、138°B.都是10°

平行线的判定定理 一

平行线的判定定理 一、教学目标 1.了解推理、证明的格式,理解判定定理的证法. 2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证. 3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力. 4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育. 二、学法引导 1.教师教法:启发式引导发现法. 2.学生学法:积极参与、主动发现、发展思维. 三、重点·难点及解决办法 (一)重点 判定定理的推导和例题的解答. (二)难点 使用符号语言进行推理. (三)解决办法 1.通过教师正确引导,学生积极思维,发现定理,解决重点. 2.通过教师指导,学生自行完成推理过程,解决难点及疑点. 四、课时安排 1课时 五、教具学具准备 三角板、投影仪、自制胶片. 六、师生互动活动设计 1.通过设计练习,复习基础,创造情境,引入新课.

2.通过教师指导,学生探索新知,练习巩固,完成新授. 3.通过学生自己总结完成小结. 七、教学步骤 (一)明确目标 掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力. (二)整体感知 以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知. (三)教学过程 创设情境,复习引入 师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影). 1.如图1所示,直线、被直线所截,如果,那么,为什么? 2.如图2,如果,那么,为什么? 图1图2 3.如图3,直线、被直线所截.(1)如果,那么,为什么? (2)如果,那么,为什么? 4.如图4,一个弯形管道的拐角,,这时管道、平行吗? 图3图4 学生活动:学生口答第1、2题. 师:你能说出有什么条件,就可以判定两条直线平行呢? 学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

相关文档
最新文档