有限体积法介绍

有限体积法介绍
有限体积法介绍

有限体积法

1 有限体积法基本原理

上一章讲到得有限差分法将数值网格得节点上定义为计算节点,并在网格节点上对微分形式得流体基本方程进行离散,用网格节点上得物理量得代数方程作为原PDE得近似。

在本章所要学习得有限体积法则采用了不同得离散形式。首先,有限体积法离散得就是积分形式得流体力学基本方程:

(1)

计算域用数值网格划分成若干小控制体。与有限差分法不同得就是,有限体积法得网格定义了控制体得边界,而不就是计算节点。有限体积法得计算节点定义在小控制体内部。一般有限体积法得计算节点有两种定义方法,一种就是将网格节点定义在控制体得中心,另一种方法中,相邻两个控制体得计算节点到公共边界得距离相等。第一种方法得优点在于用计算节点得值作为控制体上物理量得平均值具有二阶得精度;第二种方法得好处就是在控制体边界上得中心差分格式具有较高得精度。

积分形式得守恒方程在小控制体与计算域上都就是成立得。为了获得每一个控制体上得代数方程,面积分与体积分需要用求面积公式来近似。

2 面积分得近似

采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界与节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都就是相邻两个控制体得唯一公共边界。

控制体边界上得积分等于控制体个表面得积分得与:

(2)

上式中,f可以表示或。

显然,为了获得边界上得积分,必须知道f 在边界上得详细分布情况,这就是不可能实现得,由于只就是计算节点上得函数值,因此必须采用近似得方法来计算积分。 整个近似过程分成两步

第一步:用边界上几个点得近似积分公式

第二步:边界点上得函数值用计算节点函数值得插值函数近似 面积分可采用以下不同精度得积分公式: 二阶精度积分:

(3) 上式中为边界中点出得函数值。近似为方格中心点得值乘以方格得面积。 三阶精度积分:

(4) 四阶精度积分:

(5)

应该注意得就是,采用不同精度得积分公式,在相应得边界点得插值时也应采用相应精度得插值函数。积分公式得精度越高,近似公式就越复杂。

3 体积分得近似

与面积分相似,体积分也有不同精度得近似公式 二阶精度积分公式

(6)

采用双二次样条函数

228272652423210),(y x a xy a y x a xy a y a x a y a x a a y x q ++++++++=

(7)

可以得到四阶精度得积分公式:

()nw ne sw se s n w s P S q q q q q q q q q qds Q e

444444441636

++++++++?Ω

=? (8)

4 函数得插值

在上节讲到得积分得近似公式中用到了非计算节点上得函数值,被积函数f中包含了多个物理量及其偏微分,如对流项,扩散项,在源项中也有类似情况,这里假定流场与流体得物性参数就是已知得,物理量及其偏导数在控制面上得值需要通过计算节点上物理量得插值得到。下面已e面为例进行讨论。

4、1 迎风插值(UDS)

用上游计算节点得函数值近似相当于对一阶偏导数采用迎风格式,因此用UDS来表示这种近似方法,在UDS中:

(9)

UDS就是唯一无条件满足有界性要求得近似格式,在数值过程中不会产生数值振荡。UDS存在数值粘性。根据Taylor公式,该格式具有一阶精度,并具有数值粘性:

(10)

在多维问题中,如果流动方向与网格就是斜交得,截断误差会在垂直于流动方向以及流线方向产生扩散,这就是一种非常严重得误差,函数得峰值或函数值得快速变化会被抹平,为了得到高精度结果需要采用非常精细得网格。

4、2 线性插值(CDS)

(11)

(12)

线性插值具有二阶精度,线性插值相当于FDM中得CDS格式,因此用CDS表示。CDS格式会产生数值振荡。

对于扩散项

(13)

4、3 三阶迎风格式(QUICK)

与UDS类似,QUICK格式也与流动方向有关

(14)

其中:

; (15a)

; (15b)

4、4 高阶格式(4阶精度CDS)

采用三次曲线可拟合出四阶精度得中心插值公式,在均匀网格中,四阶公式为:

(16)

(17)

5 边界得处理

对于对流项,在入口处一般给出了流量或函数值,在边界与对称面上流量为零,在出口处假设与出口得法向坐标无关,因此可采用迎风格式。对于扩散项则可能需要采用偏心格式。

6 有限体积法应用举例

例:考虑一标量在已知流场中得输运过程(如图4、4所示),输运方程为:

(18)

边界条件:

;北部入口边界 ;西部壁面边界 对称条件;南部边界 梯度为0;东部出口条件 ,,流线方程

对流项:

(19) 为质量通量。

(20)

若采用UDS 格式,代数方程组中各项系数为:

; ; (21)

若采用CDS 格式,代数方程组中各项系数为

; ; (22)

根据连续性方程:

(23)

相邻CV 之间得关系:

φ 线

; (24) 其余相邻CV 有类似关系 扩散项采用CDS 格式 (25) 代数方程组中扩散项系数为:

; ; (26)

对于任意控制体

(27) ,l 为任意指标P,E,W,S,N 。 (28) 边界条件得处理:

对于西部与北部边界,由于给定了函数值,对流项可直接代入函数值而无需插值,扩散项则采用一侧差分

(29) 这里,W 点与P 得w 边中点重合。

南边与西边得梯度为零,以南边为例,由于梯度为零,,代数方程变为:

(30)

6 SIMPLE 方法

考虑定常不可压流动问题,控制方程为: 连续性方程:

(31) 动量方程:

(32)

不可压缩问题求解得困难在于压力场得求解。主要原因在于压力p 没有独立得方程组。 先考虑一维问题: 对于动量方程:

(33) 若采用CDS 格式

()()()()2

22

2

W P E P W P P

E W

P E P p p p p x u u x u u uu uu uu uu +++-?--?-=+-

+μμ

ρρρρ 简化后得:

(34)

根据连续性方程,,则有,由于相邻节点之间得压力没有联系方程,容易造成压力交错现象。

为了解决这一问题,可采用交错网格技术,即速度场与压力场采用不同得网格。 以二维问题为例,交错网格得布置如下图所示:

主控制体为压力控制体(黑色实线网格),u 得控制体(红色虚线网格)得计算节点在主控制体得e 边,控制体得e,w 边界通过主控制体得计算节点,v 控制体(蓝色双点划线网格)得计算节点在主控制体得n 边,该控制体得n,s 面经过主控制体得计算节点。 在u 得控制体中,采用有限体积法离散可得u 得代数方程:

(35) 压力场得求解采用压力校正方法。即采用预估得压力场求速度,再用连续性方程校正压力场。当连续性方程得到满足时,压力场就就是真实得压力场。 具体步骤如下 1. 预测压力场

2. 将预测压力场代入动量方程,分别求解速度场

(36) 3. 用连续性方程校正压力 设方程得精确解为u,v,p

;; (37) 其中为校正量。则校正量满足方程:

(38) 略去相邻节点速度校正量得影响,可得:

(39a) (39b) 代入连续性方程: (40) 整理得:

()()()()()

P s s p n n P w w P e e P S S n S n N P P e P n P W W e W e E P P e P e A v A v A u A u p p A d p p A d p p A d p p A d ,,,,,,,,,,,,-+--='-'-'-'+'-'-'-'

(41)

求解压力校正方程(41)可得压力校正量, 4. 用(39)校正速度场。

5. 以p 为猜测值,重复1~5直至收敛 6. 计算其她物理量如温度场等。

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限单元法读书报告

有限单元法读书报告 摘要:有限单元法以变分原理和加权余量法为基础,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限单元法;插值函数;网格划分;实例分析 1 有限单元法概述 1.1 有限单元法的简介 有限单元法[1]是应用局部的近似解来建立整个定义域的解的一种方法。先把注意力集中在单个单元上,进行上述所谓的单元分析。基本前提是每一单元要尽可能小,以致其边界值在整个边界上的变化也是小的。这样,边界条件就能取某一在结点间插值的光滑函数来近似,在单元内也容易建立简单的近似解。因此,比起经典的近似法,有限元法具有明显的优越性。比如经典的Ritz法,要求选取一个函数来近似描述整个求解区域中的位移,并同时满足边界条件,这是相当困难的。而有限元法采用分块近似,只需对一个单元选择一个近似位移函数,且不必考虑位移边界条件,只须考虑单元之间位移的连续性即可。对于具有复杂几何形状或材料、荷载有突变的实际结构,不仅处理简单,而且合理适宜。 1.2 有限单元法的基本方法简介 有限单元法,是一种有效解决数学问题的解题方法。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中[2],常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函

大涡模拟简单介绍

《粘性流体力学》小论文 题目:浅谈大涡模拟 学生姓名:丁普贤 学生学号:103911018 完成时间:2010/12/16

浅谈大涡模拟 丁普贤 (中南大学,能源科学与工程学院,湖南省长沙市,410083) 摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟、大涡模拟和雷诺平均模型。本文主要是介绍大涡模拟,大涡模拟的思路是:直接数值模拟大尺度紊流运动,而利用亚格子模型模拟小尺度紊流运动对大尺度紊流运动的影响。大涡模拟在计算时间和计算费用方面是优于直接数值模拟的,在信息完整性方面优于雷诺平均模型。本文还介绍了对N-S方程过滤的过滤函数和一些广泛使用的亚格子模型,最后简单对一些大涡模拟的应用进行了阐述。 关键词:计算流体力学;湍流;大涡模拟;亚格子模型

A simple study of Large Eddy Simulation DING Puxian (Central South University, School of Energy Science and Power Engineering, Changsha, Hunan, 410083) Abstract:Turbulent flow is a very complex flow, and numerical simulation is the main means to study it. There are three numerical simulation methods: direct numerical simulation, large eddy simulation,Reynolds averaged Navier-Stokes method. Large eddy simulation (LES) is mainly introduced in this paper. The main idea of LES is that large eddies are resolved directly and the effect of the small eddies on the large eddies is modeled by subgrid scale model. Large eddy simulation calculation in computing time and cost is superior to direct numerical simulation, and obtain more information than Reynolds averaged Navier-Stokes method. The Navier-Stokes equations filtering filter function and some extensive use of the subgrid scale model are simply discussed in this paper. Finally, some simple applications of large eddy simulation are told. Key words:computational fluid dynamics; turbulence; large eddy simulation; subgrid scale model

有限元概述

有限元 百科名片 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后 再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 目录 简介 1)物体离散化 2)单元特性分析 3)单元组集 4)求解未知节点位移 5)有限元的未来是多物理场耦合 编辑本段简介 英文:Finite Element 有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下: 编辑本段1)物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 编辑本段2)单元特性分析 A、选择位移模式

流体计算理论基础讲解

流体计算理论基础 1 三大基本方程 连续性方程 连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 可以写成: ()0div u t ρ ρ?+=? 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。 若流体不可压缩,密度为常数,于是: 0u v w x y z ???++=??? 若流体处于稳态,则密度不随时间变化,可得出: ()()() 0u v w x y z ρρρ???++=??? 动量守恒定律 该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程: ()()() ()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F t z x y z τττρρτττρρτττρρ??????+=-++++? ?????????????+=-++++??????? ??????+=-++++???????? 式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表

面上的粘性应力τ的分量。x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。 对于牛顿流体,粘性应力τ与流体的变形率成比率,有: x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ???? =++????? ???? =++????? ???? =++????? 其中,μ为动力粘度,λ为第二粘度,一般可取2 3 λ=- ,将上式代入前式中为: ()()()() ()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S t y w p div uw div gradw S t z ρρμρρμρρμ???+=-+???? ???+=-+? ??????+=-+? ??? 其中: ()()/()/()/grad x y z =??+??+?? μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取: 2 3 λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。u S ,v S 和w S 为动量守恒方程中的广义源项,u x x S F S =+,v y y S F S =+,w z z S F S =+,而其中 x S ,y S 和z S 表达式为: ()()()(())()()()(())()()()(()) x y z u v w S div u x x y x x x x u v w S div u x x y y x y y u v w S div u x z y z x z z μμμλμμμλμμμλ????????=+++????????????????? =+++????????????????? =+++????????? 一般来讲,x F ,y F 和z F 是体积力在x ,y ,z 方向上的分量。x S ,y S 和z S 是小量,对于粘性为常数的不可压缩流体,0x y z S S S ===,动量守恒,简称动量方程,也称N-S 方程。 关于牛顿体与非牛顿体的定义如下:

fluent-有限体积法

第4章 有限体积法 1.1 积分方程 守恒方程的形式为积分方程。 ???+?=?Ω S S Ωq S ΓS d d grad d φφρφn n v ( 4-1 ) 4.1 控制体积 求解区域用网格分割有限个控制体积(Control V olumes, CVs )。同有限差分不同的是,网格为控制体积的边界,而不是计算节点。为了保证守恒,CVs 必须是不重叠的,且表面同相邻CVs 是同一个。 i. 节点为中心 CVs 的节点在控制体积的中心。先定义网格,任何找出中心点。优点:节点值代表CVs 的平均值,可达二阶精度。 ii. 界面为中心 CVs 的边界线在节点间中心线上。先定义节点,再划分网格。优点:CV 表面上的CDS 差分精度比上面方法高。 两个方法基本一样,但在积分时要考虑到位置。但第一个方法用得比较多。 节点为中心 界面为中心

∑?? =k S S k fdS fdS ( 4-2 ) - 对流:n v ?=ρφf 在垂直于界面的方向 - 扩散:n ?=φgrad Γf 在垂直于界面的方向 如果速度也是未知的,则要结合其它方程一起求解。 考虑界面e ,通过表面的总通量为: 1. 基于界面中心值 中间点定理:(midpoint rule) 表面积分为格子表面上的中心点的值和表面积的乘积。 e e e S e e S f S f fdS F e ≈==? ( 4-3 ) 此近似为2阶精度。 由于f 在格子界面没有定义值,它必须通过插值来得到。为了保证原有的2阶精度,插值方法也须采用2阶精度的方法。 2. 基于界面顶角值 当已定义角上的值时,2阶精度的方法还有: ()?+= =e S se ne e e f f S fdS F 2 ( 4-4 ) 3. 高阶精度近似 ()?++= =e S se e ne e e f f f S fdS F 46 ( 4-5 ) 4阶精度Simpson 法。 4.3 体积积分近似 ??≈?==Ω P P Ωq Ωq qd ΩQ ( 4-6 ) q p 为CV 中心节点值。高阶精度要求为节点的插值或形状函数来表示。如 ),(),(y x f y x q =。然后对体积积分。

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

solidworkssimulation有限元法概述

SolidWorks Simulation概述 SolidWorks Simulation是一款基于有限元(即FEA数值)技术的设计分析软件,是SRAC 开发的工程分析软件产品之一。SRAC是DS SolidWorks@公司的子公司,成立于1982年,是将有限元分析带入微型电脑的先驱。1995年,SRAC开始与DS SolidWorks@公司合作开发了COSMOSWorks软件,从而进入了工程界主流有限元分析软件的市场,成为了DS SolidWorks@公司的金牌产品之一。同时,它作为嵌入式分析软件与SolidWorks无缝集成,迅速成为顶级销售产品。整合了SolidWorks CAD软件的COSMOS-Works软件在商业上取得了成功,并于2001年获得了Dassault Systemes(DS SolidWorks@母公司)的认可。2003年,SRAC公司与DS SolidWorks⑤公司合并。COSMOSWorks推出的2009版被重命名为Solid-Works Simulation。 SolidWorks是一款基于特征的参数化CAD系统软件。和许多最初在UNIX环境中开发,后来才向Windows系统开放的CAD系统不同,SolidWorks与SolidWorks Simulation茌一开始就是专为Windows操作系统开发的,所以相互整合是完全可行的。 SolidWorks Simulation有不同的程序包或应用软件以适应不同用户的需要。除了SolidWorks Simula-tionXpress程序包是SolidWorks的集成部分之外,所有的SolidWorks Simulation软件程序包都是插件式的。不同程序包的主要功能如下: ·SolidWorks SimulationXpress:能对带有简单载荷和支撑的零件进行静态分析。 ·SolidWorks Simulation:能对零件和装配体进行静力分析。 ·SolidWorks Simulation Professional:能进行零件和装配体的静态、热传导、扭曲、频率、跌落测试、优化和疲劳分析。 ·SolidWorks Simulation Premium:具有SolidWorks Simulation Professional的所有功能,外加非线性功能和动力学分析。 有限元分析概述 在数学术语中,FEA也称之为有限单元法,是一种求解关于场问题的一系列偏微分方程的数值方法。这种类型的问题涉及许多工程学科,如机械设计、声学、电磁学、岩土力学、流体动力学等。在机械工程中,有限元分析被广泛地应用在结构、振动和传热问题上。 FEA不是唯一的数值分析工具,在工程领域还有其他的数值方法,如有限差分法、边界元法和有限体积法。然而由于FEA的多功能性和高数值性能,它占据了绝大多数工程分析的软件市场,而其他方法则被归入小规模应用。使用FEA,通过不同方法理想化几何体,能够分析任何形状的模型,并得到预期的精度。当使用现代的商业软件,例如SolidWorks Simulation时,FEA理论、数值问题公式和求解方法对用户是完全透明的。 作为一个强有力的工程分析工具,FEA可以解决从简单到复杂的各种问题。一方面,设计工程师使用FEA在产品研发过程中分析设计改进,由于时间和可用的产品数据的限制,需要对所分析的模型作许多简化。另一方面,专家们使用FEA来解决一些非常深奥的问题,如车辆碰撞动力学、金属成形和生物结构分析。 不管项目多复杂或是应用领域多广,无论是结构、热传导或是声学分析,所有FEA的第一步总是相同的,都是从几何模型开始。在本课程中,即为SolidWorks的零件和装配件。我们给这些模型分配材料属性,定义载荷和约束,再使用数值近似方法,将模型离散化以便分析。 离散化过程也就是网格划分过程,即将几何体剖分成相对小且形状简单的实体,这些实体称为有限单元。单元称为“有限”的,是为了强调这样一个事实:它们不是无隈的小,而是与整个模型的尺寸相比之下适度的小。 当使用有限单元工作时,FEA求解器将把单个单元的简单解综合成对整个模型的近似解

有限体积方法

第三讲 空间离散方法—有限体积法 由于控制方程的复杂性,很难求出其解析解,一般采用数值方法对其进行求解。采用数值求解方法,首先要对流场空间进行离散,即用一些基本体积单元对物理空间进行填充,要求这些体积单元既不能重叠,也不应有间隙,我们称这些体积单元为网格,或控制体积,填充的过程则称为网格生成。对于二维流动,基本的网格单元有三角形和四边形网格,而对于三维流动,则基本的网格单元可由四面体、三棱柱、金字塔和六面体单元组成,图3.1即为机翼附近网格。网格划分完成后,就可以应用相应的数值求解方法把每个网格单元中心点处的流动变量求解出来,也就完成了全部流场的计算。有限体积法就是针对每个控制体积直接对积分形式的控制方程进行离散,从而把积分型方程近似为代数方程进行求解的方法。 图3.1 机翼附近网格 3.1 N-S 方程的半离散形式 积分形式的N-S 方程为: ∫∫Ω?Ω =??+Ω??0)(dS n F F Qd t V c r (3-1) 针对空间某一控制体I Ω,首先对时间导数项进行处理,假设守恒变量Q 在控制体积内为常数分布,即等于控制体中心点处的值I Q (也即为控制体积内守恒变量的平均值),有 ∫Ω??Ω=Ω??t Q Qd t I (3-2) 式(3-1)变为 ∫Ω???Ω ?=??dS n F F t Q v c I r )(1 (3-3)

假设对流通量和粘性通量在控制体界面上为常值分布,且等于界面中心点(面心)处的值,则有 ?? ????Δ??Ω?=??∑=F N m m m v c I S F F t Q 1)(1 (3-4) 对式(3-3)右端项的近似称为空间离散,而式(3-4)时间方向暂时保留连续的形式,所以称该式为半离散控制方程。式(3-4)中的m S Δ为第m 个界面的有向面积,即该面的外法线矢量与界面面积的乘积,为一矢量,又称面积矢量。 仔细观察半离散方程可以发现:时间导数项是由单元中心点处的守恒变量值表示的,我们称其为单元中心法;式(3-4)右端项中的通量是关于界面处流动变量的函数,需由界面处的流动变量来确定,由此可看出,流动变量I Q 与流动通量m S F Δ?的空间存储位置不同,要想求出流动通量,需先假设流动变量在控制体积内的分布规律,这一过程称为重构,然后确定界面处的流动变量值,再求出界面处的流动通量。这是有限体积法的主要特点之一。根据界面处流动变量的确定方法,可将CFD 的空间离散中(主要指无粘通量的离散)的计算方法分为两大类:中心格式和迎风格式。 3.2 中心差分格式 在第m 个界面上的无粘通量为:m m c S Q F Δ?)(,即为界面上的守恒变量的函数。而在中心差分格式中,界面上的守恒变量的确定方法很简单,只需取界面两边单元中心点上的守恒变量的平均值即可。即该界面上的无粘通量为:m J I c S Q Q F Δ?+))(5.0(,其中I Q 和J Q 为与第m 个界面相邻的两边单元中心点上的守恒变量值。 对于粘性通量的计算,需要知道流动参数在界面面心处的空间导数,下面介绍一 种基于节点重构思想的空间导数计算方法。 图3.2 两个相邻网格单元节点图 在图3.2中,是两个相邻的四面体网格单元,网格节点为nl,n2,n3,n4,n5,网格的格心点是cl,c2,要求的是由节点n1,n2,n3所组成的公用面上的空间导数。

有限体积法介绍

有限体积法 1 有限体积法基本原理 上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。 在本章所要学习的有限体积法则采用了不同的离散形式。首先,有限体积法离散的是积分形式的流体力学基本方程: ?d q ds ds S S ? ??Ω Ω+??Γ=?φφρφn n v (1) 计算域用数值网格划分成若干小控制体。和有限差分法不同的是,有限体积法的网格定 义了控制体的边界,而不是计算节点。有限体积法的计算节点定义在小控制体内部。一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。 积分形式的守恒方程在小控制体和计算域上都是成立的。为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。 2 面积分的近似 采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界和节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。 控制体边界上的积分等于控制体个表面的积分的和: ∑?? =k S S k fds fdS (2) 上式中,f 可以表示n u ρφ或n ??Γ φ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。 整个近似过程分成两步 第一步:用边界上几个点的近似积分公式 第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分: e e e e S e S f S f fds F e ≈==? (3) 上式中e f 为边界中点出的函数值。近似为方格中心点的值乘以方格的面积。 三阶精度积分: e se ne S e S f f fds F e 2 +≈ =? (4) 四阶精度积分: e se e ne S e S f f f fds F e 6 4++≈ =? (5) 应该注意的是,采用不同精度的积分公式,在相应的边界点的插值时也应采用相应精度的插值函数。积分公式的精度越高,近似公式就越复杂。 3 体积分的近似 和面积分相似,体积分也有不同精度的近似公式 二阶精度积分公式 ?Ω≈==?P e S q S q qds Q e (6) 采用双二次样条函数 228272652423210),(y x a xy a y x a xy a y a x a y a x a a y x q ++++++++= (7)

有限单元法

《有限元法》复习题 一. 单选题 1.平面刚架单元坐标转换矩阵的阶数为( ) A .2?2 B .2?4 C .4?4 D .6?6 2.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8?8阶矩阵 B.10?10阶矩阵 C.12?12阶矩阵 D.16?16阶矩阵 3.坐标转换矩阵可归类为( ) A.正交矩阵 B.奇异矩阵 C.正定矩阵 D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( ) A 111123 2224443400 0000k k k k k k k k k k k k k k -????-++-???? -+??-+?? B. 111122224443400 0000k k k k k k k k k k k k k -????-+-???? -+-??-+?? C. 111123 2322443 4 3400 00 k k k k k k k k k k k k k k k k -????-++--???? -+-??--+?? D. 111122322443 4 340 00 k k k k k k k k k k k k k k k -????-+--???? -+??--+?? 5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。 A.1行2列 B.3行12列 C.6行12列 D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反 7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( ) A.第3行和第3列上的所有元素换为大数A B.第6行第6列上的对角线元素乘以大数A C.第3行和第3列上的所有元素换为零 D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( ) A.只有节点符合位移模式 B.只有边界点符合位移模式 C.只有边界点和节点符合位移模式 D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( ) A.单元刚度矩阵阶数不同 B.局部坐标系的维数不同 C.无任何不同 D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( ) A.400和200 B.400和160 C.484和200 D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( ) A.单元数量应多一些,单元尺寸小一些 B.单元数量应少一些,单元尺寸大一些 C.单元数量应多一些,单元尺寸大一些 D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( ) A.应变为零,但应力不为零 B.应力为零,但应变不为零 C.应变、应力都为零 D.应变、应力都不为零 16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0

数值传热学习题集

简答题集锦 1.流动与传热数值模拟的基本任务是什么? (把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。) 2.数值模拟过程如何实现,主要步骤是那些? (建模、网格划分、坐标系、数学方程、求解、后处理) a.建立反映工程问题或物理过程本质的数学模型; b.选择与计算区域的边界相适应的坐标系; c.建立网格; d.建立离散方程; e.求解代数方程组; f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合? 5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程: Mx S x w z u z x v y u y divu x u x x p Dt Du +??+ ????+ ??+ ????+ +????+??- =)][()]( [)2(μ μλμ ρ )()())()())())()()()()()][()]( [)2(gradu div divu x z w y v x u x gradu div S divu x z w y v x u x S S divu x z w y v x u x gradu div S x w z x v y x u x z u z y u y x u x S x w z u z x v y u y divu x u x Mx u Mx Mx Mx μλμ μλμλμμμμμμμμμ μλμ +??+??+??+????=++?? +??+??+????=+?? +??+??+????+=+????+????+????+????+????+????= +??+ ????+ ??+ ????++????((()()( 因为0 =??+ ??+ ??z w y v x u ρρρ 推 得: =??+??+??z w y v x u 所以:Su= 0)()=?? +??+??+????divu x z w y v x u x λμ ( 7区域离散为分几种,说明各自的特点。 (内节点法、外节点法) 先节点后界面

有限单元法考试重点

1有限单元法的分析过程,结构离散化,确定单元位移模式单元特性分析,建立整体刚度方程,解方程组和输出计算结果。 补充:①结构离散化:将需要分析的结构对象用一些假象的线、面进行切割。使其成为具有选定切割形状的有限个单元体;②确定单元位移模式:在单元内只具有有限自由度的简单位移代替真实位移;③单元特性分析:;④按离散情况集成所有单元的特性,建立表示整个结构结点平衡的方程组)(k△=P+PE=P);⑤解方程组合输出计算结果。 2平面应力和平面应变问题,表示荷载作用平行于平板中面且沿厚度均匀分布,板厚远小于平面内两方向的尺寸,这类问题称为平面应力问题,长度远远大于平面内两方向的尺寸且沿长度荷载作用相同,这时可以取单位长度垻体进行分析,这类问题称为平面应变问题。 3虚功原理,任何一个处于平衡状态的变形体,当发生任意一个虚位移时,变形体所受外力所做的总虚功恒等于变形体所接受的总虚变形功。虚位移原理,受给定外力的变形体处于平衡状态的充分,必要条件,对一切虚位移,外力所作的总虚功恒等于变形体所接受的总虚变形功。 4最小势能原理,位移状态d为真实位移状态的充分、必要条件是对应位移d的势能一阶变分为零,即对应的位移d的势能取驻值,进一步可以证明,对线性弹性问题势能为最小值。 5结构离散化问题,对用结点将结构进行划分所得到的单元体集合体,按一定顺序对结点,单元分别进行加以编号,为用数据来描述结构做准备。 6单元刚度矩阵的性质,对称性,自由式单元的奇异性。 7坐标转换,两套坐标系下对应物理量之间必然存在相互转换的关系,在进行具体整体分析之前应该将局部的量转换成整体的量,或反之将整体的量转换成局部的量。 8结构整体刚度矩阵的性质,对称性,奇异性,带状稀疏性。 9结构离散化(平面问题),人为地用假想的线或面将连续体分割成有限个部分,这每一部分即为单元,然后进行结点,单元的编码和选取坐标系等离散和数据化工作。 10面积坐标,三角形的任一点的位置都可以用量纲为一的参数Li,Lj,L?k中的两个来确定,其中Li,L,L?k为Ll=Al/A(具体参照书125页) 11单元位移场,就是单元内的任一点的位移用结点位移来表示(d?=N*结点位移)N为形函数矩阵。 12.位移模式(位移函数)定义:对结构离散化所得的任一典型单元进行所谓的单元特性分析时,对该单元中任意一点的位移分布做出假设,对位移单元来说,就是将单元中任意一点的位移近似地表示成该单元结点位移的函数。。 13.常应变三角形单元:假设采用三角形单元,把弹性体划分为有限个互不重叠的三角形。这些三角形在其顶点(即节点)处互相连接,组成一个单元集合体,以替代原来的弹性体。同时,将所有作用在单元上的载荷,都按虚功等效的原则移置到节点上,成为等效节点载荷 14.矩形双线性单元:假设采用线性单元,把弹性体划分为有限个互不重叠的线段。这些三角形线段在其顶点(即节点)处互相连接,组成一个单元集合体,以替代原来的弹性体。同时,将所有作用在单元上的载荷,都按虚功等效的原则移置到节点上,成为等效节点载荷 11.形函数的性质、特点:①本端为1,它端为0;N1(0)=1,N2(0)=0;N1(1)=0,N2(1)=1。②任意一点之和为N1(ψ)+ N2(ψ)=1 9.结构的离散化工作:①离散化:按一定顺序对结点,单元分别进行编号;②数据化:用数组描

有限元法的概述

有限元法的概述 有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。有限元法在设计过程中有极为关键的作用。 人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。 有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而

相关文档
最新文档