移位乘法器

移位乘法器
移位乘法器

移位乘法器设计报告

一、乘法电路工作流程图

STEP0:复位。电路初始化,C=0,G[7:4]=0000;

STEP1:装载数据。A=1011,B=1101;

STEP2:求部分积。加法器运算结果为:

G[7:4]+A=0000+1011=1011,故 G[7:4]=0101,

B=1110;

STEP3:求部分积。加法器运算结果为:

G[7:4]+0=0101+0000=0101,故G[7:4]=0010,

B=1111;

STEP4:求部分积。加法器运算结果为:

G[7:4]+A=0010+1011=1101,故G[7:4]=1101,

B =1111;

STEP5:求部分积。加法器运算结果为:

G[7:4]+A=0110+1011=10001,故G[7:4]=1000,B =1111; STEP6:输出乘积值M=10001111。

二、框图及接口定义 1.框图如图所示

2.接口定义 三、实现框图

四、实现算法

module

Four_bit_Mutiplicate(A,B,RESET,LOAD,CLK,G,READY); input[3:0]A;

input[3:0]B;

input CLK;

output[7:0]G;

reg[7:0]G=0;

reg[3:0]F;

wire E;

wire[3:0]P;

input RESET;

input LOAD;

output READY;

reg READY=0;

Four_bite_Adder C1(.S(G[7:4]),.D(F),.SUM(P),.CI(E));

always@(CLK)

begin

if(RESET)

begin

G<=0;

F<=0;

READY=0;

end

if(LOAD)

begin

F[3:0]<=A;

G[3:0]<=B;

end

if(F)

begin

F[0]<=F[0]&G[0];

F[1]<=F[1]&G[0];

F[2]<=F[2]&G[0];

F[3]<=F[3]&G[0]; G[7:4]<=P[3:0]; G<=G>>1;

G[7]<=E;

end

else G[7]<=0;

READY<=1;

end

endmodule

module Four_bite_Adder(S,D,SUM,CI); input[3:0] S,D;

output[3:0] SUM;

output CI;

wire a,b,c;

Full_Adder B1(S[0],D[0],0,SUM[0],a); Full_Adder B2(S[1],D[1],a,SUM[1],b); Full_Adder B3(S[2],D[2],b,SUM[2],c); Full_Adder B4(S[3],D[3],c,SUM[3],CO); endmodule

module Full_Adder(X,Y,CIN,S,COUT); input X,Y;

input CIN;

output S;

output COUT;

assign S=X^Y^CIN;

assign COUT=(X&Y)+(X&CIN)+(Y&CIN); endmodule

4FPGA实验报告8位乘法器—徐艺萍

实验四8位乘法器实验 一、实验原理 8位乘法器,输入为两个8位信号,输出结果为16位。 module mult8(out, a, b); //8位乘法器源代码 parameter size=8; input[size-1:0] a,b; //两个操作数 output[2*size-1:0] out; //结果 assign out=a*b; //乘法运算符 endmodule 本实验采用Chipscope-Pro生成VIO/ICON核,并插入到8位乘法器设计中,在线进行观测和调试。 二、实验目的 1. 熟悉ISE9.1 开发环境,掌握工程的生成方法; 2. 熟悉SEED-XDTK XUPV2Pro 实验环境; 3. 了解Verilog HDL语言在FPGA 中的使用; 4. 通过掌握8位乘法器的Verilog HDL设计,了解数字电路的设计。 三、实验内容 1. 用Verilog HDL语言设计8位乘法器,进行功能仿真验证。 2. 使用chipscope-Pro 生成VIO/ICON 核,在线观测调试。 四、实验准备 1. 将USB 下载电缆与计算机及XUPV2Pro 板的J8 连接好; 2. 将RS232 串口线一端与计算机连接好,另一端与板卡的J11 相连接; 3. 启动计算机,当计算机启动后,将XUPV2Pro 板的电源开关SW11 打开到ON 上。观察XUPV2Pro 板上的+2.5V,+3.3V,+1.5V 的电源指示灯是否均亮。若有不亮的,请断开电源,检查电源。

五、实验步骤 ⑴创建工程及设计输入 ①在E:\project\目录下,新建名为mult8的新工程; 器件族类型(Device Family)选择“Virtex2P”, 器件型号(Device)选“XC2VP30 ff896 -7”, 综合工具(Synthesis Tool)选“XST (VHDL/Verilog)”, 仿真器(Simulator)选“ISE Simulator” ②设计输入并保存。 ⑵功能仿真 ①在sources窗口sources for中选择Behavioral Simulation。 ②由Test Bench WaveForm 添加激励源,如图1所示。仿真结果如图2所示。 图1 波形激励编辑窗口 图2 仿真结果 从图中可以验证由Verilog HDL语言设计的8位乘法器的工作是正确的,不论是输入a的值变化还是输入b的值变化,输出值随之变化,为a与b的乘积。 ⑶生成核并添加核 本次试验内容为8位乘法器,不需要使用ILA核。因此下面使用核生成法生成一个ICON核,一个VIO核就可以了。 ①首先对生成的工程进行综合。 ②生成核 ③添加核

计算机组成原理_阵列乘法器设计

沈阳航空航天大学 课程设计报告 课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计与实现 院(系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 完成日期:2014年1月10日

沈阳航空航天大学课程设计报告 _______________________________________________________________________________ 目录 第1章总体设计方案 (1) 1.1设计原理 (1) 1.2设计思路 (2) 1.3设计环境 (3) 第2章详细设计方案 (3) 2.1总体方案的设计与实现 (4) 2.1.1总体方案的逻辑图 (4) 2.1.2器件的选择与引脚锁定 (4) 2.1.3编译、综合、适配 (5) 2.2功能模块的设计与实现 (5) 2.2.1一位全加器的设计与实现 (6) 2.2.2 4位输入端加法器的设计与实现 (7) 2.2.3 阵列乘法器的设计与实现 (10) 第3章硬件测试 (13) 3.1编程下载 (13) 3.2 硬件测试及结果分析 (13) 参考文献 (15) 附录(电路原理图) (16)

第1章总体设计方案 1.1 设计原理 阵列乘法器采用类似人工计算的方法进行乘法运算。人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。 为了进一步提高乘法的运算速度,可采用大规模的阵列乘法器来实现,阵列乘法器的乘数与被乘数都是二进制数。可以通过乘数从最后一位起一个一个和被乘数相与,自第二位起要依次向左移一位,形成一个阵列的形式。这就可将其看成一个全加的过程,将乘数某位与被乘数某位与完的结果加上乘数某位的下一位与被乘数某位的下一位与完的结果再加上前一列的进位进而得出每一位的结果,假设被乘数与乘数的位数均为4位二进制数,即m=n=4,A×B可用如下竖式算出,如图1.1所示。 X 4 X 3 X 2 X 1 =A × Y 4 Y 3 Y 2 Y 1 =B X 4Y 1 X 3 Y 1 X 2 Y 1 X 1 Y 1 X 4Y 2 X 3 Y 2 X 2 Y 2 X 1 Y 2 X 4Y 3 X 3 Y 3 X 2 Y 3 X 1 Y 3 (进位) X4Y4 X3Y4 X2Y4 X1Y4 Z 8 Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 图1.1 A×B计算竖式 X 4 ,X 3 ,X 2 ,X 1 ,Y 4 ,Y 3 ,Y 2 ,Y 1 为阵列乘法器的输入端,Z 1 -Z 8 为阵列乘法器 的输出端,该逻辑框图所要完成的功能是实现两个四位二进制既A(X)*B(Y)的 乘法运算,其计算结果为C(Z) (其中A(X)=X 4X 3 X 2 X 1 ,B(Y)=Y 4 Y 3 Y 2 Y 1 , C(Z)=Z 8Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 而且输入和输出结果均用二进制表示 )。阵列乘法器的总原 理如图1.2所示。

乘法器

课程设计任务书 题目基于FPGA的6*6串行乘法器设计起讫日期 学生姓名专业班级通信工程 所在院系电气信息学院 指导教师职称 所在单位通信工程教研室

任务及要求: 1.设计内容和要求(包括设计内容、主要指标与技术参数) 设计内容:设计一个6*6串行乘法器 设计要求: (1)设计语言为Verilog,仿真软件为ISE自带仿真软件iSIM; (2)该设计不要求下载到硬件开发板上,只需给出仿真波形图,但要求能够从波形图 中看出实现了乘法运算 2.原始依据 本设计要求学生应用Xilinx FPGA设计一个6*6串行乘法器,通过设计能够让学生进一步掌握FPGA的基本开发流程,同时提高时序设计能力,学生已学习过EDA课程,掌握硬件描述语言基本知识,通过本次设计可进一步提高学生的动手能力,加强理论联系实际的能力。 3.进度计划 3.4-3.8 查阅相关资料,掌握FPGA基本知识。 3.11-3.15 应用Verilog语言进行程序开发,设计调试。 3.18-3.22 调试验收,撰写专业课程实践训练报告。 4.参考文献 [1] 夏宇闻. Verilog数字系统设计教程[M]. 北京:北京航空航天大学出版社,2008. [2] Snair Palnitkar(美). VerilogHDL数字设计与综合. 夏宇闻等译.(第二版)[M]. 北京:电子工业出版社,2009. [3] Xilinx. UG230 [Z/OL]. https://www.360docs.net/doc/a51258685.html, 指导教师签字: 教研室主任签字:

目录 摘要: (4) 关键词 (4) 一:FPGA (4) 1.1名称 (4) 1.2背景 (4) 1.3工作原理 (4) 1.4芯片结构 (5) 二:Verilog HDL (5) 2.1verilog hdl名称 (5) 2.2verilog hdl用途 (5) 2.3 Ve r i l o g硬件描述语言的主要能力 (6) 三:Spartan3E (7) 四:乘法器 (8) 4.1什么是乘法器 (8) 4.2实现乘法器的方法 (8) 4.3 6*6串行乘法器的设计思路 (9) 4.4 6*6乘法器程序代码 (9) 4.5 6*6乘法器设计仿真图 (11) 4.6结果分析 (12) 四:总结 (12) 参考文献 (12)

四位原码乘法器

1.课程设计的内容和要求 内容:设计四位原码乘法器电路。 要求:1.有关资料,设计乘法器电路; 2.画出乘法器逻辑图; 3.在实验箱上完成乘法器电路的组装,调试,核对记录,测试有关数据, 通过老师当场验收; 4.完成课程设计报告。 1.课程设计原理 运用存储器的存储功能实现数字的存储。令电路的初始状态为000,000,000000。以二进制的形式输入数字,计算方式是以十进制数字乘法。输入的数字为三位数字,输出的是六位数字。先存储输入的乘数和乘积,然后再将乘积的导线端连到输出段,此时之前输入的乘积就可以在输出端显示。 此时序电路的真值表为:

1.课程设计思路 本次课程设计的题目为四位原码乘法器,利用真值表输入乘数时,需要存放数字,于是我查阅了一些资料,用存储器可以实现这一电路,所以本实验中用到的是INTEL 2114芯片。 具体实现过程如下图: a a b b F 32F 1 1.课程设计所需的器材 1.2114是一个容量为1K4位的静态RAM芯片,常用于寄存器。 其具体的引脚图为: 此芯片的电路图为: 2.数字电路实验箱 3.导线若干 1.课程设计实现 本次课程设计的题目是四位原码乘法器电路。 此部分只用到了2块INTEL2114芯片,具体连接如下: 1、先将这些芯片按在电路板上(注意不要插反,否者容易烧毁芯片)。 2、将两片芯片的A6和GND端,A7,A8,A9接地。 3、Vcc端接电压5V,cs接存储端,WE端接控制端。 4、两块芯片的A5,A4,A3组成一个乘数,A0,A1,A2组成另一个乘数。其中一块芯

片的I/O1,I/O2,I/O3,I/O4和另一块芯片的I/O1,I/O2组成要求的乘积。乘数与乘积的显示方式均为二进制,但是计算方法是以十进制数的乘法法则计算。 1.调试步骤及方法 在连接实验器件之前,要先检查如下实验器件: 1、检查芯片引脚是否有损坏。 2、检查电路板是否好用。 连接实验器件时要注意: 2严格按照电路图一步一步连接,以避免连接错误。 3导线要先连接电源测试是否导电。 连接好电路进行数据测试,输入001,010,000010,存储;001,101,000101,存储;001,111,000111,存储。将连在输入端的四个输出连接到输出端,并输入001,010,但是结果并不是000010,而是000100;再输入001,101,也没有得到000101的结果,而是000110的结果。检查线路,发现输出的线路错位,纠正后重新输入乘数,结果均得到计算结果。调试成功。 1.实验结果 连接好整个电路。A5A4A3和A2A1A0为输入端,即乘数,F5F4F3F2F1F0为输出端,即乘积。如下表: 8. 课程设计结果 输入000,000,000000,存储;

实验三 8位乘法器的设计

实验三8位乘法器的设计 一、实验目的 1)了解8位乘法器的工作原理 2)熟悉MAX+plusII软件的基本使用方法 3)熟悉EDA实验开发的基本使用方法 4)学习VHDL程序中数据对象,数据类型,顺序语句,并行语句的综合使用 二、实验内容 设计一个由8位加法器构成的以时序逻辑方式设计的8位乘法器。其乘法原理是:乘法通过逐项位移相加原理来实现,以被乘数的最低位开始,若为1,则乘数左移后与上一次和相加,若为0,左移后以全零相加,直至被乘数的最高位。 三、实验条件 开发软件:MAX+plus II 9.23 Baseline 硬件设备:装有windows7的pc机 四、实验设计 1)系统的原理框架图

2)VHDL源程序 andarith.vhd源代码 library ieee; use ieee.std_logic_1164.all; entity andarith is port(abin:in std_logic; din:in std_logic_vector(7 downto 0); dout: out std_logic_vector(7 downto 0)); end entity andarith; architecture art of andarith is begin process(abin, din)is begin for i in 0 to 7 loop dout(i)<=din(i)and abin; end loop; end process; end architecture art; arictl.vhd源代码 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity arictl is port(clk:in std_logic; start: in std_logic; clkout:out std_logic; rstall: out std_logic; ariend: out std_logic); end entity arictl; architecture art of arictl is signal cnt4b:std_logic_vector(3 downto 0); begin rstall<=start; process(clk, start)is begin if start='1' then cnt4b<="0000"; elsif clk'event and clk='1'then if cnt4b<8 then cnt4b<=cnt4b+1; end if; end if;

八位乘法器VHDL及功能模块说明

EDA课程设计报告 实验名称:八位乘法器

目录 一.引言 1.1 EDA技术的概念?? 1.2 EDA技术的特点?? 1.3 EDA设计流程?? 1.4 VHDL介绍?? 二.八位乘法器的设计要求与设计思路??2.1 设计目的?? 2.2 设计要求?? 三.八位乘法器的综合设计?? 3.1 八位乘法器功能?? 3.2 八位乘法器设计方案?? 3.3 八位乘法器实体设计?? 3.4 八位乘法器VHDL设计?? 3. 5八位乘法器仿真图形?? 心得体会?? 参考文献??

一、引言 1.1 EDA技术的概念 EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。 1.2 EDA技术的特点 利用EDA技术进行电子系统的设计,具有以下几个特点:①用软件的方式设计硬件;②用软件方式设计的系统到硬件系统的转换是由有关的开发软件自动完成的;③设计过程中可用有关软件进行各种仿真;④系统可现场编程,在线升级;⑤整个系统可集成在一个芯片上,体积小、功耗低、可靠性高。因此,EDA技术是现代电子设计的发展趋势。 1.3 EDA设计流程 典型的EDA设计流程如下: 1、文本/原理图编辑与修改。首先利用EDA工具的文本或图形编辑器将设计者的设计意图用文本或图形方式表达出来。 2、编译。完成设计描述后即可通过编译器进行排错编译,变成特定的文本格式,为下一步的综合做准备。 3、综合。将软件设计与硬件的可实现性挂钩,是将软件转化为硬件电路的关键步骤。 4、行为仿真和功能仿真。利用产生的网表文件进行功能仿真,以便了解设计描述与设计意图的一致性。 5、适配。利用FPGA/CPLD布局布线适配器将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作,其中包括底层器件配臵、逻辑分割、逻辑优化、布局布线。适配报告指明了芯片内资源的分配与利用、引脚锁定、设计的布尔方程描述情况。

各种乘法器比较

各种乘法器比较 韦其敏08321050 引言:乘法器频繁地使用在数字信号处理和数字通信的各种算法中,并往往影响着整个系统的运行速度。如何实现快速高效的乘法器关系着整个系统的运算速度和资源效率。本位用如下算法实现乘法运算:并行运算、移位相加、查找表、加法树。并行运算是纯组合逻辑实现乘法器,完全由逻辑门实现;移位相加乘法器将乘法变为加法,通过逐步移位相加实现;查找表乘法器将乘积结果存储于存储器中,将操作数作为地址访问存储器,得到的输出数据就是乘法运算结果;加法树乘法器结合移位相加乘法器和查找表乘法器的优点,增加了芯片耗用,提高运算速度。 注:笔者使用综合软件为Quartus II 9.1,选用器件为EP2C70,选用ModelSim SE 6.1b进行仿真,对于其他的软硬件环境,需视具体情况做对应修改。 汇总的比较: 详细实现过程: 1.并行乘法器 源代码: module Mult1(outcome,a,b); parameter MSB=8; input [MSB:1] a,b; output [2*MSB:1] outcome; assign outcome=a*b; endmodule

资源耗用情况: ModelSim测试激励文件源代码:`timescale 10ns/1ns module Mult1_test(); reg [8:1] a,b; wire [16:1] outcome; Mult1 u1(outcome,a,b); parameter delay=2; initial begin a=1; b=0; end initial forever begin #delay a=a+1; b=b+1; if(outcome>=16'h0FFF) $stop;

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

8位二进制乘法器

8位二进制乘EDA实验 法器 学号:02115024 [2013.12.15] 班级:021151 姓名:王浩楠 指导老师:徐少莹

一.设计要求 8位二进制乘法采用移位相加的方法。即用乘数的各位数码,从低位开始依次与被乘数相乘,每相乘一次得到的积称为部分积,将第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结果右移一位与第四次得到的部分积相加,直到所有的部分积都被加过一次。 例如:11010101和10010011相乘,计算过程如下: 二.设计方法 按照这种算法,可以得到下图所示之框图和简单流程图。按照这种算法,可以得到下图所示之框图和简单流程图。图中Y寄存器存放被乘数M,B寄存器存放乘数N,A累加器存放部分积。A和Y中的数据在加法器中相加后送入A 中,而A和B相级联又构成了一个16bit的移位寄存器,当它工作于移位模式时,可以实现数据的右移。由于乘数的每一位不是0就是1 ,对应的部分积不是0就是被乘数本身,所以实际作部分积相加这一步时,只要根据乘数的对应位判断:如该位为1 ,则将累加器中的数据加上被乘数再移位;如该位为0时,就不加被乘数而直接移位。运算时首先将累加器A清零,并将被乘数M和乘数N分别存入寄存器Y和B,然后依据寄存器B中最右一位B0(数据N0)确定第一个部分积。将此部分积送入A累加器以后,将A连同寄存器B右移一位,部分积的最低位被移进寄存器B的最左位,乘数的最低位N0被移出寄存器B,而乘数的次低位N1被移至寄存器B的B0位。第二次仍然依据B0位的数据(N1)来确定第二个部分积,将部分积与累加器中的数据相加后右移一位,N1又被移出寄存器,数据N2被移到B0位置。。。。。这样,经过8次部分积相加位的操作,完成1次乘法运算,乘数N恰好被移出寄存器B,寄存器B中保存的就是运算积的低8位数据。移位相加的次数应用一个计数器来控制,每移位一次,计数器计一个数。当计数器计得8个数时,发出一个信号,使电路停止操作,并输出运算结果。

基于标准单元库扩展的快速乘法器设计

收稿日期:2011-09-20;修回日期:2011-11-04 基金项目:国家科技重大专项基金资助项目(2009ZX01030-001-002). 作者简介:曾宪恺(1987-),男,湖北孝感人,硕士,主要研究方向为超大规模集成电路设计自动化(zengxk@vlsi.zju.edu.cn );郑丹丹(1981-),女,博士,主要研究方向为超深亚微米集成电路SOC 设计;严晓浪(1947-),男,教授,主要研究方向为超大规模集成电路设计、VLSI 设计自动化;吕冬明(1981-),男,博士,主要研究方向为集成电路CAD 研究;葛海通(1972-),男,博士,主要研究方向为嵌入式系统设计. 基于标准单元库扩展的快速乘法器设计 * 曾宪恺,郑丹丹,严晓浪,吕冬明,葛海通 (浙江大学超大规模集成电路设计研究所,杭州310027) 摘 要:设计并实现17?17bit 带符号数字乘法器。为了提高乘法器的性能,采用改进的Booth 编码算法、 Wal-lace 树型结构以及基于标准单元库扩展的设计方法。该方法使用逻辑功效模型分析乘法器的关键路径,通过构造驱动能力更为完备的单元以实现关键路径中每一级门功效相等,从而得到最短路径延时。将TSMC 90nm 标准单元库扩展得到扩展单元库, 使用两个单元库版图分别实现数字乘法器,基于扩展单元库实现的乘法器速度提升10.87%。实验结果表明,基于标准单元库扩展的半定制设计方法可以有效提升电路的性能,这种方法尤其适用于电路负载过大的情况。 关键词:乘法器;标准单元库扩展;改进的Booth 编码算法;Wallace 树;逻辑功效中图分类号:TN47 文献标志码:A 文章编号:1001-3695(2012)05-1778-03 doi :10.3969/j.issn.1001-3695.2012.05.047 Design of high-speed multiplier based on standard cell library extension ZENG Xian-kai ,ZHENG Dan-dan ,YAN Xiao-lang ,LV Dong-ming ,GE Hai-tong (Institute of VLSI Design ,Zhejiang University ,Hangzhou 310027,China ) Abstract :This paper proposed a 17?17bit signed digital multiplier.To improve the performance ,the multiplier used modi-fied Booth ’s recoding algorithm ,a Wallace tree structure and design method based on standard cell library extension.It ana-lyzed critical path using logical effort model ,and by constructing cells with different driving capabilities , it implemented equal logical effort in each stage to achieve minimum path delay.Based on TSMC 90nm standard cell library , generated an extended cell library ,and implemented the layouts of multiplier respectively.Compared to standard cell library ,the multiplier imple-mented with extended cell library achieved a performance improvement of 10.87%.Experimental results show that the semi-custom design methodology based on standard cell library extension can improve circuit performance effectively ,which is espe-cially appropriate for designs with large loads. Key words :multiplier ;standard cell library extension ;modified Booth ’s recoding algorithm ;Wallace tree ;logical effort 0引言 乘法器是嵌入式CPU 的重要部件,其运算速度决定了逻 辑运算单元的工作频率,因此高性能乘法器的设计仍然被关注 [1,2] 。同时,市场的需求加速了产品的上市进程,从而要求 设计者尽量缩短设计时间。为了兼顾乘法器的性能和设计时间, 通常使用基于标准单元库的半定制设计方法。但该方法受限于库中标准单元有限的驱动能力,无法实现最短路径延时。为此,本文提出基于标准单元库扩展的乘法器设计方法,消除了传统方法因关键路径优化不足对乘法器性能的影响。基于TSMC 90nm 工艺标准单元库扩展,设计并实现了17?17bit 乘法器模块。该乘法器支持带符号二进制乘法运算, 最差情况下(工作电压0.9V ,温度125℃)工作频率为346MHz 。设计过程中,使用EDA 工具进行了速度优先的逻辑综合以及布局布线;在关键路径的处理中,采用了基于逻辑功效的优化方法。 1乘法器 二进制乘法器实现了二进制数的乘法运算,它将两个二进 制数X 和Y 作为输入,将乘法运算的积Z 作为输出。设被乘数为m 位,记为X m -1X m -2…X 0,乘数为n 位,记为Y n -1Y n -2…Y 0,则积为m +n 位,记为Z m +n -1Z m +n -2…Z 0。将m 位被乘数X 与n 位乘数Y 的每一位进行与运算,可以得到n 项位数为m 的部分积, 用加法器阵列将n 项部分积相加,得到积Z 。乘法器的具体实现分为部分积生成、部分积压缩、最终加法三个步骤。通常,使用与门来产生部分积,用加法器阵列对部分积压缩来构成阵列乘法器。这种架构算法简单,易于实现,并且能够实现规则的版图结构,但是由于部分积个数较多,压缩时间较长,无法得到快速的乘法器。使用改进的Booth 编码算法[3,4] 有效地减少了部分积的个数,使用Wallace 树型结 构 [5] 缩短部分积压缩的时间,其算法较复杂,并且版图结构不 规则, 但可以有效地提升乘法器的性能。第29卷第5期2012年5月计算机应用研究 Application Research of Computers Vol.29No.5May 2012

模拟乘法器及其应用

模拟乘法器及其应用

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated multiplier can be achieved between two unrelated analog multiplication is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

EDA实习之8位乘法器设计

学号:10446234 常州大学 EDA 技术 课程设计报告 题目:移位相加8位硬件乘法器设计 学生:朱京 学院(系):信息科学与工程学院专业班级:电子102 指导教师:李文杰

一、设计题目移位相加8位硬件乘法器设计 二、设计背景 纯组合逻辑构成的乘法器虽然工作速度比较快,但过于占用硬件资源,难以实现宽位乘法器。基于PLD器件外接ROM九九表的乘法器则无法构成单片系统,也不实用。由8位加法器构成的以时序逻辑方式设计的8位乘法器,具有一定的实用价值。其乘法通过逐项移位相加来实现,从被乘数最低位开始,若为1,则乘数左移后与上次的和相加,若为0,左移后与全0相加,直至被乘数的最高位。 三、设计内容及要求 设计内容: 设计移位相加8位硬件乘法器,完成8位被乘数A[7..0]和8位乘数B[7..0]的乘法运算,得到16位的乘法运算输出DOUT[15..0]。 (1)设计8位移位寄存器SREG8B,当被乘数加载于SREG8B后,随时钟节拍,最低位在前,由低位至高位逐位移出。 (2)设计与门,根据移位寄存器输出是否为1,决定输入加法器的是8位乘数还是全零。 (3)设计8位加法器,将8位乘数或全零与16位锁存器的高8位进行相加。 (4)设计16位锁存器REG16B,在时钟到来时,锁存来自加法器的输出至高8位,并右移低8位。 要求: 1)根据系统设计要求,采用自顶向下的方法,划分系统主要模块,画出整体设计原理框图。 2)根据工作原理、用硬件描述语言对设计内容实现,列出设计程序清单,给出仿真波形图和调试中存在问题及解决方法。 3)设计内容下载至目标芯片,在EDA的GW48型实验箱进行功能验证。 4)谈谈该课题的课程设计中遇到的问题,获得哪些技能和体会,以及建设性意见。 四、设计步骤和安排: (1)题目安排;图书馆查相关资料; (2)设计原理研究,总体设计; (3)各主要模块的VHDL设计。各模块的设计仿真分析。 (4) 完成系统顶层文件设计,系统总体功能的仿真分析。 (5) 将设计内容进行硬件配置,在GW48实验箱上进行调试。 (6) 撰写课程设计报告、答辩并提交报告。

quartus II 软件做4的位乘法器设计(vhdl 语言)

用quartus II 软件设计4位乘法器 1. 并行乘法的算法: 下面根据乘法例题来分析这种算法,题中M4,M3,M2,M1是被乘数,用M表示。N4,N3,N2,N1是乘数,用N表示 2.乘法模块 Library ieee; Use ieee.std_logic_1164.all; Use ieee.std_logic_unsigned.all; Entity and4a is Port(a:in std_logic_vector(3 downto 0); en:in std_logic; r:out std_logic_vector(3 downto 0)); End and4a; Architecture behave of and4a is Begin Process(en,a(3 downto 0)) Begin If (en='1') then r<=a; Else r<="0000"; End if; End process; End behave;

3.加法模块 Library ieee; Use ieee.std_logic_1164.all; Entity ls283 is Port (o1,o2:in std_logic_vector(3 downto 0); res:out std_logic_vector(4 downto 0)); End ls283; Architecture behave of ls283 is Begin Process(o1,o2) Begin res<=('0'&o1)+('0'&o2); End process; End behave;

44数字乘法器设计

4*4数字乘法器设计 1.设计任务 试设计一4位二进制乘法器。4位二进制乘法器的顶层符号图如图1所示。 END P A B 1 0 1 11 1 0 1×1 0 1 10 0 0 01 0 1 11 0 1 1 1 1011001 图1 4位乘法器顶层符号图 图2 4位乘法运算过程 输入信号:4位被乘数A (A 3 A 2 A 1 A 0),4位乘数B (B 3 B 2 B 1 B 0),启动信号START 。 输出信号:8位乘积P (P 7 P 6 P 5 P 4 P 3 P 2 P 1 P 0),结束信号END 。· 当发出一个高电平的START 信号以后,乘法器开始乘法运算,运算完成以后发出高电平的END 信号。 2.顶层原理图设计 从乘法器的顶层符号图可知,这是一个9输入9输出的逻辑电路。一种设计思想是把设计对象看作一个不可分割的整体,采用数字电路常规的设计方法进行设计,先列出真值表,然后写出逻辑表达式,最后画出逻辑图。这种设计方法有很多局限性,比如,当设计对象的输入变量非常多时,将不适合用真值表来描述,同时,电路功能任何一点微小的改变或改进,都必须重新开始设计。另一种设计思想是把待设计对象在逻辑上看成由许多子操作和子运算组成,在结构上看成有许多模块或功能块构成。这种设计思想在数字系统的设计中得到了广泛的应用。 对于4位乘法器而言,设A =1011,B =1101,则运算过程可由图2所示。从乘法运算过程可知,乘法运算可分解为移位和相加两种子运算,而且是多次相加运算,所以是一个累加的过程。实现这一累加过程的方法是,把每次相加的结果用部分积P 表示,若B 中某一位 B i =1,把部分积P 与A 相加后右移1位;若B 中某一位B i = 0,则部分积P 与0相加后右移1位(相当于只移位不累加)。通过4次累加和移位,最后得到的部分积P 就是A 与B 的乘积。 为了便于理解乘法器的算法,将乘法运算过程中部分积P 的变化情况用图3表示出来。存放部分积的是一个9位的寄存器,其最高位用于存放在做加法运算时的进位输出。先把寄存器内容清零,再经过4次的加法和移位操作就可得到积。注意,每次做加法运算时,被乘

移位相加型8位硬件乘法器设计

合肥学院 课程设计报告 题目:移位相加型8位硬件乘法器 系别:电子信息与电气工程系 专业:通信工程 班级: 13通信工程(1)班 学号: 姓名: 导师:石朝毅 成绩: 2016年 6 月 11 日

移位相加型8位硬件乘法器设计 摘要 本次设计是基于时序结构的8位移位相加型乘法器,使用软件QuartusII进行仿真设计。完成此乘法器,我们需要首先设计该乘法器的组件,包括REGSHT模块、SREG8BT模块、AND8B模块和ADDER8BT模块,并对所有元件进行仿真,无误后可进行乘法器的设计。设计方法使用的是元件例化,具体原理是通过逐项相加来实现乘法功能,最终完成整体的VHDL程序设计并仿真。 关键词:时序;乘法器;元件例化

目录 第一章前言............................................ 错误!未定义书签。设计概述............................................. 错误!未定义书签。 问题提出与原理..................................... 错误!未定义书签。 设计需要........................................... 错误!未定义书签。第二章设计过程及结果.................................. 错误!未定义书签。设计思路............................................. 错误!未定义书签。 设计须知........................................... 错误!未定义书签。 基本步骤........................................... 错误!未定义书签。设计代码及仿真....................................... 错误!未定义书签。 元件REGSHT设计代码及仿真结果...................... 错误!未定义书签。 元件SREG8BT设计代码及仿真结果..................... 错误!未定义书签。 元件AND8B设计代码及仿真结果....................... 错误!未定义书签。 元件ADDER8BT设计代码及仿真结果.................... 错误!未定义书签。 总模块设计代码及仿真结果........................... 错误!未定义书签。第三章总结............................................ 错误!未定义书签。致谢................................................... 错误!未定义书签。

流水线乘法器

流水线乘法器 一般的快速乘法器通常采用逐位并行的迭代阵列结构,将每个操作数的N位都并行地提交给乘法器。但是一般对于FPGA来讲,进位的速度快于加法的速度,这种阵列结构并不是最优的。所以可以采用多级流水线的形式,将相邻的两个部分乘积结果再加到最终的输出乘积上,即排成一个二叉树形式的结构,这样对于N位乘法器需要log2(N)级来实现。一个8位乘法器,如图所示。 module mux_4(mul_a,mul_b,mul_out,clk,rst_n); parameter MUL_WIDTH = 4; parameter MUL_RESULT = 8; input [MUL_WIDTH-1:0] mul_a; input [MUL_WIDTH-1:0] mul_b; input clk; input rst_n; output [MUL_RESULT-1:0] mul_out; reg [MUL_RESULT-1:0] mul_out; reg [MUL_RESULT-1:0] stored0; reg [MUL_RESULT-1:0] stored1; reg [MUL_RESULT-1:0] stored2; reg [MUL_RESULT-1:0] stored3; reg [MUL_RESULT-1:0] add01; reg [MUL_RESULT-1:0] add23; always @(posedge clk or negedge rst_n) begin if(!rst_n) begin mul_out <= 8'b0000_0000;

stored0 <= 8'b0000_0000; stored1 <= 8'b0000_0000; stored2 <= 8'b0000_0000; stored3 <= 8'b0000_0000; add01 <= 8'b0000_0000; add23 <= 8'b0000_0000;; end else begin stored3 <= mul_b[3] ? {1'b0,mul_a,3'b0} : 8'b0; stored2 <= mul_b[2] ? {2'b0,mul_a,2'b0} : 8'b0; stored1 <= mul_b[1] ? {3'b0,mul_a,1'b0} : 8'b0; stored0 <= mul_b[0] ? {4'b0,mul_a} : 8'b0; add01 <= stored1 + stored0; add23 <= stored3 + stored2; mul_out <= add01 + add23; end end endmodule

相关文档
最新文档