第四章 习题解

第四章 习题解
第四章 习题解

第四章 习题解

设一维两类模式满足正态分布,它们的均值和方差分别为,1=0,1=2,2=2,2=2,p(x) N(,),窗函数P(ω1)= P(ω2),取0-1损失函数,试算出判决边界点,并绘出它们的概率密度函数曲线;试确定样本-3,-2,1,3,5各属哪一类。 解: 已知211(|)exp()822x p x ωπ=-2

21(2)(|)exp[]822x p x ωπ-=-

?

1(|)p x ω 2(|)p x ω

由Bayes 最小损失判决准则: 如果1221221212211211(|)()()()(|)()()p x P l x p x P ωωλλθωωλλ-=

>=-,则判1x ω∈,否则判2x ω∈。

221212(2)1()exp[]exp()1882x x x l x θ--=-+=->=

1211ln[exp()]ln ln1022x x θ---=>==

如果1x <,则判

1x ω∈,否则判2x ω∈。 -3,-2属于ω1;1,3,5属于ω2。

在图像识别中,假定有灌木丛和坦克两种类型,分别用ω1和ω2表示,它们的先验概率分别为和,损失函数如表所示。现在做了四次试验,获得四个样本的类概率密度如下:

[

)/(1ωx p :,,,

)/(2ωx p :,,, (1) 试用贝叶斯最小误判概率准则判决四个样本各属于哪个类型;

(2) 假定只考虑前两种判决,试用贝叶斯最小风险准则判决四个样本各属于哪个类型;

(3) 将拒绝判决考虑在内,重新考核四次试验的结果。

类型 损失

判决

ω1

> ω2 1 (判为ω1)

2 (判为ω2)

3 (拒绝判决)

: 解:

(1)两类问题的Bayes 最小误判概率准则为

如果

12121221(|)()()(|)()p x P l x p x P ωωθωω=

>=,则判1x ω∈,否则判2x ω∈。 由已知数据,12==3

/7, 样本x 1:∵ l 12(x 1)=<12=3

/7 x 1ω2 样本x 2:∵ l 12(x 2)=<12=3

/7 x 2ω2 样本x 3:∵ l 12(x 3)=>12=3

/7 x 3ω1 样本x 4:∵ l 12(x 4)=>

12=3/7 x 4ω1 (2)不含拒绝判决的两类问题的Bayes 最小风险判决准则为

《 如果

1221221212211211(|)()()()(|)()()p x P l x p x P ωωλλθωωλλ-=

>=-,则判1x ω∈,否则判2x ω∈。

由已知数据,12=(2 - 1)/[(4 - )]=3/,

样本x 1:∵ l 12(x 1)=1/8>12=6/49 x 1ω1

样本x 2:∵ l 12(x 2)=3/14>12=6/

49 x 2ω1 1

x

x 1 x 2 x 3 x 4 x

样本x 3:∵ l 12(x 3)=6/11>

12=6/49 x 3ω1 样本x 4:∵ l 12(x 4)=6/3>12=6/49 x 4ω1

(3)含拒绝判决的两类问题的Bayes 最小风险判决准则为

1,2,3if (|)min[(|)] then , 3i j i j R x R x x i ααω==∈=时为拒绝判决

^ 其中条件风险:

2

1(|)(|)(|),1,2,3j j i i i R x P x j αλαωω===∑ 后验概率: 21(|)(|)()/()(|)()/[(|)()]

i i i i i i i i P x p x P p x p x P p x P ωωωωωωω===∑

2

11(|)(|)(|)(),1,2,3()j j i i i i R x p x P j p x αλαωωω===∑

记21(|)(|)(|)(),1,2,3j j i i i i r x p x P j αλαωωω===∑

则,含拒绝判决的两类问题的Bayes 最小风险判决准则为 1,2,3if r(|)min[(|)] then , 3i j i j x r x x i ααω==∈=时为拒绝判决

对四个样本逐一列写下表,用式计算r (j |x )。

样本x 1:

(j |ωi ) 类型 > 损失

判决

ω1 p (x |ω1)P (ω1)= = ω2 p (x |ω2)P (ω2)= =

r (

j |x ) ) 1 (判为ω1)

*+2*= 2 (判为ω2)

4*+1*= 3 (拒绝判决) ?

*+*=

因为r (3|x 1)=最小,所以拒绝判决;

样本x 2:

(j |ωi ) 类型 损失 判决

ω1 p (x |ω1)P (ω1)= ) = ω2 p (x |ω2)P (ω2)= =

r (j |x )

1 (判为ω1)

¥ *+2*=

2 (判为ω2)

4*+1*= 3 (拒绝判决)

*+*= 因为r (1|x 2)=最小,所以判x 2

ω1,即灌木丛,或拒绝判决; ~ 样本x 3:

(j |ωi ) 类

损失

判决

ω1 p (x |ω1)P (ω1)= = ω2 p (x |ω2)P (ω2)= = [ r (j |x ) 1 (判为ω1)

*+2*= 2 (判为ω2)

| 4*+1*=

3 (拒绝判决)

*+*= 因为r (1|x 3)=最小,所以判x 3

ω1,即灌木丛; 4:

(j |ωi ) 类型 损失 判决

}

ω1

p (x |ω1)P (ω1)=

= ω2 p (x |ω2)P (ω2)= = r (j |x ) 1 (判为ω1) ,

*+2*= 2 (判为ω2)

4*+1*= 3 (拒绝判决)

.

*+*= 1441

假设两类二维正态分布参数为1=(-1,0)’,2=(1,0)’,先验概率相等。

(1)令1=2=I ,试给出负对数似然比判决规则;

(2)令

111/21/21??∑= ??? 211/21/2

1-??∑= ?-?? 试给出负对数似然比判决规则。 解: Bayes 最小误判概率似然比判决规则为 … 如果12121221(|)()()1(|)()p x P l x p x P ωωθωω=

>==,则判1x ω∈,否则判2x ω∈。 相应的负对数似然比判决规则为

如果122112ln ()ln (|)ln (|)ln ln10l x p x p x

ωωθ-=-<-=-=,则判1x ω∈,否则判2x ω∈。

对于正态分布

1/21/21

1(|)exp[()'()](2)||2i i i i n i p x x x ωμμπ-=--∑-∑ 1112121112221ln ()[ln ||ln ||()'()()'()]2l x x x x x μμμμ---=∑-∑+-∑---∑-

(1)由已知,

22111212211(1)111(|)exp[()'()]exp[]002222x x x x p x I x x ωππ--????????++=---=- ? ? ? ?????

????22111222211(1)111(|)exp[()'()]exp[]002222x x x x p x I x x ωππ????????-+=---=- ? ? ? ?????????

221221111ln ()ln (|)ln (|)(1)(1)4l x p x p x x x x ωω-=-=+--=

故,如果

10x <则判1x ω∈,否则判2x ω∈。

(2) ∵

111/2||3/41/21∑=

=, 21

1/2||3/4

1/21-∑==-

@ 11

111/211/241/211/213---????∑== ? ?-??

??,21111/211/241/211/213---????∑== ? ?-???? ''

1111122222111111/211/21414ln ()1/211/212323x x x x l x x x x x ++---????????????-=- ? ? ? ? ? ?-???????????? '

'1212111122221/21/21122113322x x x x x x x x x x x x +--+????+-???? ? ?=-+- ? ? ? ?-++ ? ?????????

111122*********[(1)(1/2)()(1)(1/2)()]322x x x x x x x x x x x x +-=++-+-+---+-+

1124(2)3x x x =-

1212if (2)0 then else x x x x ωω-<∈∈ 即,121212if [(<0)and( 2)][(0)and( 2)] then else x x or x x x x ωω<>>∈∈

{

补充题1:

假设两类一维模式的概率密度函数为

10.51, 02(|)0, x x p x ω-+≤≤?=??其它 20.50.5, 13(|)0, x x p x ω-≤≤?=??其它

先验概率相等。 (1)求Bayes 判决函数(用0-1损失函数); " (2)求总的误判概率。

解:(1)

当用0-1损失函数且先验概率相等时,Bayes 最小损失判决规则为: 如果122122211211(|)()1(|)()p x P p x P ωωλλωωλλ->=-()(),则判

1x ω∈,否则判2x ω∈。 即,

12(|)(|)p x p x ωω>,则判1x ω∈,否则判2x ω∈。 代入本题类概率密度函数得:

如果x <,则判x ω1,否则判x ω2。

故,Bayes 判决函数为d(x)= 。

^

(2)误判概率 211112()()(|)()(|)P e P p x dx P p x dx

ωωωωΩΩ=+??

2 1.51.51111()(0.51)(0.50.5)228P e x dx x dx =

-++-=??

补充题2:

在目标识别中,假定类型1为敌方目标,类型2为诱饵(假目标),已知先验概率P(1)=和P(2)=,类概率密度函数如下:

1, 01(|)2, 12

0, x x p x x x ω≤

其它 11, 12(|)3, 230, x x p x x x ω-≤

(2)求总错误概率P(e); (3)假设正确判断的损失11=22=0,误判损失分别为12和21,若采用最小损失判决准则,

12和21满足怎样的关系时,会使上述对x=的判断相反 解:(1)应用贝叶斯最小误判概率准则如果 )()()(2112ωω=x p x p x l <>)()(12ωωP P 则判 ???ωω∈21x 得 l 12=1 < )()(12ωωP P =4,故 x=属于 2 。 (2)P(e)= 212121)()()(εω+εω=P P e P ??ΩΩωω+ωω=12)()()()(2211x

d x p P x d x p P

=dx x x x ??-+- 1.2

121.210.8d )2(0.2)(=

(3) 两类问题的最小损失准则的似然比形式的判决规则为: 如果 ))(())(()()(111212221221λ-λωλ-λω<>ωωP P x p x p

则判

???ωω∈21x 带入x=得到

12≥421 0 1 2 3 x 1 p(x|ω1) ,

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

五年级解方程练习题180题(有答案)(2)

五年级解方程180题有答案(1) (0.5+x)+x=9.8 - 2 (12) X+8.3=10.7 (2) 2(X+X+0.5)=9.8 (13) 15x = 3 (3) 25000+x=6x (14) 3x -8= 16 (4) 3200=440+5X+X (15) 3x+9=27 (5) X-0.8X=6 (16) 18(x-2)=270 (6)12x-8x=4.8 (17) 12x=300-4x (7) 7.5+2X=15 (18) 7x+5.3=7.4 (8)1.2x=81.6 (19) 3x - 5=4.8 (7) x+5.6=9.4 (25) 0.5x+8=43 (10)x-0.7x=3.6 (26) 6x-3x=18 (11)91 - x = 1.3 (27) 7(6.5+x)=87.5

(28) 0.273 - x=0.35 (40) 20-9x=2 (29) 1.8x=0.972 (41) x+19.8=25.8 (30) x - 0.756=90 (42) 5.6x=33.6 (31) 0.1(x+6)=3.3 X 0.4 (43) 9.8-x=3.8 (32) (27.5-3.5) - x=4 (44) 75.6 - x=12.6 (33) 9x-40=5 (45) 5x+12.5=32.3 (34) x - 5+9=21 (46) 5(x+8)=102 (35) 48-27+5x=31 (47) x+3x+10=70 (36) 10.5+x+21=56 (48) 3(x+3)=50-x+3 (37) x+2x+18=78 (49) 5x+15=60 (38) (200-x) - 5=30 (50) 3.5-5x=2 (39) (x-140) - 70=4 (51) 0.3 X 7+4x=12.5

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解方程练习题【经典】

解方程测试题 请使用任意方法解下列方程,带*的必须检验。 9.3x=32.2 32x=73.1 131×x=25 99.3x=85 75.9÷x=20.6 x+68.2=54.6 x×95.6=6.7 119×x=98.3 77x=92.3 x×44.2=130 x÷75.3=94.7 42.2-x=71.7 125+x=102 89x=10 x×90.1=9.5 42.2+x=96 56-x=99.0 115÷x=34.2 54.5+x=50.1 133x=50.2 x+27.7=39.7 28.5-x=52.3 x×31.3=6.8 50.4x=108 49.1x=50.5 x×94.9=79 x+44.2=84.8 x×31.3=148 21.5x=77 35x=26.5 24.5×x=3.9 26.2x=65.4 105x=14.7 x÷17=77.8 x×83.1=19.4 29.0-x=17.6 12.6x=81.1 145x=98.6 7.0x=18.3 x+8=21.5 69.7x=106 20.8+x=20 84.7x=28.5 x-78.5=23 41x=60.3 59.6x=96.6 24.3x=30 54x=96 108x=25.2 68-x=40.5 x÷65.5=148 60x=82.1

x÷60.6=83 2.0+x=76.3 x×2=138 12x=36.0 77.2x=73.1 x-100.2=81.0 67×x=48.1 145+x=20.9 64.9x=96.7 65.2÷x=44.5 35.4+x=67.0 x-98=3.5 34.7+x=60.1 78.6x=49.3 x+14=98.0 x-129=88 x+48=31.9 34x=42.7 75+x=53 72.0x=107 43x=17.9 74.2+x=71 68x=9.8 121x=39.7 x+69.3=25.6 10.5x=45.0 96.7×x=66.6 50.9÷x=79.9 x÷74=68 65+x=148 x÷88.5=27 35.6÷x=39.4 60.0x=92.5 87.1x=24.8 x×72.8=34.2 63.9x=23 x÷23.4=99.6 143x=36.4 98x=61.0 x-31.4=21 x-91.3=18.9 x×66=3.0 39.8×x=16.7 27.0÷x=9.3 7.3×x=32.6 8.8x=17.7 94.5x=28.3 x-10.5=84.8 x×44.8=83 101-x=9.8 74.1x=29.2 7×x=91 79.6÷x=124 51.4-x=43 52.4x=72.6 60.0-x=33

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

(完整版)解方程练习题

五年级解方程练习题 方程:含有未知数的等式叫做方程。 方程的解:使方程成立的未知数的值叫做方程的解。解方程:求方程的解的过程叫做解方程。 解方程的依据:1. 等式性质(等式两边同时加上或减去同一个数,等式仍然成立; 等式两边同时乘以或除以同一个数,等式仍然成立。) 2. 加减乘除法的变形。 加法:加数1+加数2=和 加数1=和–加数2 加数2=和–加数1 减法:被减数–减数=差 被减数=差+减数 减数=被减数–差 乘法:乘数1×乘数2 =积 乘数1=积÷乘数2 乘数2=积÷乘数1 除法:被除数÷除数= 商 被除数=商×除数

除数=被除数÷商 一、解方程: 20x-50=50 28+6 x =88 32-22 x =10 24-3 x =3 10 x ×(5+1)=60 99 x =100- x 36÷x=18 x÷6=12 56-2 x =20 4y+2=6 x+32=76 3x+6=18 16+8x=40 2x-8=8 4x-3×9=29 二、解方程: 8x-3x=105 x-6×5=42+2x 2x+5=7 ÷ 3 2(x+3)=10 12x-9x=9 6x+18=48

56x-50x=30 5x=15(x-5)78-5x=28 32y-29y=3 5(x+5)=15 89 – 9x =80 100-20x=20+30x 55x-25x=60 76y÷ 75=1 23y÷23=23 4x-20=0 80y+20=100-20y 53x-90=16 2x+9x=11 12(y-1)=24 80÷5x=100 7x÷8=6 65x+35=100 19y+y=40 25-5x=15

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

解方程练习题(难)

一、基本练习: x+4=10 x-12=34 8x=96 4x-30=08.3x-2x=63x÷10 = 5.2 二、提高练习: 3x+ 7x +10 = 90 3(x - 12)+ 23 = 35 7x-8=2x+27 5x -18 = 3–2x (7x - 4)+3(x - 2)= 2x +6 三、列方程解应用题: 1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 2、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米? 综合练习 1、80÷x=20 2、12x+8x-12=28 3、3(2x-1)+10=37 4、1.6x+3.4x-x-5=27

5、2(3x-4)+(4-x)=4x 6、3(x+2)÷5=(x+2) 7、(3x+5)÷2=(5x-9)÷3 0.7(x+0.9)=42 1.3x+2.4×3=12.4x+(3-0.5)=127.4-(x-2.1)=6 1、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 2、一块三角形地的面积是840平方米,底是140米,高是多少米? 能力升级题 1、7(4-x)=9(x-4) 2、128-5(2x+3)=73 3、1.7x+4.8+0.3x=7.8 4、x÷0.24=100 5、 3(x +1 )÷(2x – 4)= 6

1、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?(列方程解答) 2、学校举行书画竞赛,四、五年级共有75人获奖,其中五年级获奖人山数是四年级的1.5倍,四、五年级各有多少同学获奖? (列方程解答)

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

四年级解方程典型练习题

四年级解方程典型练习题 练习一 【知识要点】学会解含有三步运算的简易方程。 2、口算下面各题。 3.4a-a= a-0.3a= 3.1x- 1.7x= 0.3x+3.5x+x= 15b-4.7b= 6.7t-t= 32x-4x x-0.5x-0.04x= 3、解方程。 2x+0.4x=48(并检验) 8x- x=14.7 35x+13x=9.6 4、列出方程,并求出方程的解。 ①x的7倍比52多25。②x的9倍减去x的5倍,等于24.4。 ①0.3乘以14的积比x的3倍少0.6。②x的5倍比3个7.2小3.4。 ③一个数的3倍加上它本身 2、苹果:x千克 梨子:比苹果多270千克 求苹果、梨子各多少千克?

3、两个数的和是144,较小数除较大数,商是3,求这两个数各是多少? 练习二 1、解方程 0.52×5-4x=0.6 0.7(x+0.9)=42 1.3x+2.4×3=12.4 x+(3-0.5)=12 7.4-(x-2.1)=6 5(x+3)=35 x+3.7x+2=16.1 14x+3x-1.2x=158 5x+34=3x +54 【拓展训练】 1、在下面□里填上适当的数,使每个方程的解都是x=2。 □+5x=25 5x-□=7.3 2.3x×□ =92 2.9x÷□=0.58 2、列方程应用题。 ①果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?

②王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元? ③一个长方形的周长是35米,长是12.5米,它的宽是多少米? 练习三 1、①学校有老师x人,学生人数是老师的20倍,20x表 示,20x+x表示。 ②一本故事书的价钱是x元,一本字典的价钱是一本故事书的2.5倍。一本字典元,3本故事书和2本字典一共 是元。 ③甲数是x,乙数是甲数的3倍,甲乙两数的和是。 ④如果x=2是方程3x+4a=22的解,则a= 。 2、解方程。 5x+2x=1.4+0.07 6x-3x=6÷5 x-13.4+ 5.2=1.57 0.4×25-3.5x=6.5 7x+3×1.4x=0.2×56 5×(3-2x)=2.4×5

计算解方程练习题

七年级解方程练习题 1、依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形 依据. 解:原方程可变形为() 去分母,得3(3x+5)=2(2x﹣1).() 去括号,得9x+15=4x﹣2.() (),得9x﹣4x=﹣15﹣2.() 合并,得5x=﹣17.() (),得x=.() 5(x﹣5)+2x=﹣4 6(x﹣5)=﹣24 5(x+8)﹣5=6(2x﹣7) 7、=﹣1 ﹣=1 1﹣3(8﹣x)=﹣2(15﹣2x) 5(x+8)=6(2x﹣7)+5 4(2x+3)=8(1﹣x)﹣5(x﹣2)

= ﹣2 ﹣2= 12(2﹣3x )=4x +4 ﹣1= 2﹣ =x ﹣ ﹣1= x - 27 x =43 2x + 25 = 35 70%x + 20%x = 3.6 x ×5 3=20×4 1 25% + 10x = 5 4 x - 15%x = 68 x +83x =121 5x -3× 21 5 =75 32 x ÷41=12 6x +5 =13.4 3x =8 3

x ÷7 2=16 7 x +8 7x =4 3 4x -6×3 2=2 125 ÷x =3 10 53 x = 72 25 98 x = 6 1×51 16 x ÷ 356=4526 ×25 13 4x -3 ×9 = 29 21x + 61 x = 4 103 x -21×32=4 204 1=+x x 8)6.2(2=-x 6x +5 =13.4 25 x -13 x =3 10 4x -6=38 5x =19 15 x +25%x =90 218 x =15 4 x ÷54 =28 15 32x ÷41 =12 x -37 x = 89 53x =7225 98x =61×51 16

解三角形知识点汇总和典型例题(新)

中小学1对1课外辅导专家 文成教育学科辅导教案讲义 授课对象 授课教师 徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课 使用教具 人教版教材 教学目标 熟练掌握三角形六元素之间的关系,会解三角形 教学重点和难 点 灵活解斜三角形 参考教材 人教版必修5第一章 教学流程及授课详案 解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);

相关文档
最新文档