加速度传感器原理与使用选择

加速度传感器原理与使用选择
加速度传感器原理与使用选择

加速度传感器原理与使用选择

2011-10-08 9:29

加速度:(Acceleration)是速度变化量与发生这一变化所用时间的比值

(△V/△t),是描述物体速度改变快慢的物理量,通常用a表示,

a=F/m,加速度只和施加在物体上合力F,和物体的质量有关,与速度和时间无关。

重力加速度:地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。重力加速度g的方向总是竖直

向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。

惯性传感器:应用惯性原理和测量技术,感受载体运动的加速度、位置和姿态的各种敏感装置。如加速度传感器,陀螺仪

MEMS是(Micro-Electro-Mechanical Systems)的英文缩写,它是指可批量制作的,集微型机械结构构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。现在的加速度传感器,陀螺仪都是基于MEMS的。

加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。

加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。

加速度传感器工作原理:

线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性

力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。

多数加速度传感器是根据压电效应的原理来工作的。

所谓的压电效应就是"对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应"。

一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关

系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作加速度传感器,比如压阻技术,电容效应,热气泡效应,谐振式,隧穿式,等,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。

二轴加速度传感器:能够同时检测两个方向(x轴,y轴)上的加速度

三轴加速度传感器:能够同时检测三个方向上的加速度,x,y,z

MMA7260Q及其特性

新型MMA7260Q是XYZ低g加速传感器,其特性包括:

加速传感器的6种感应功能

1)倾斜度侦测

倾斜度侦测电子罗盘,倾斜仪,文本滚动浏览/用户界面,图像旋转,LCD投影,物理治疗法。加速传感器在静止时,可用来检测倾斜角,倾斜角在90 ~+90之间变化时,加速传感器输出会在1.0g~+之间变化。

2)运动检测

运动检测可用于运动控制,计步器,基本运动检测。

3)定位侦测

定位侦测可用于汽车导航,防盗设备,地图跟踪。

定位侦测需要考虑的因素包括:加速度的范围是多少及加速传感器如何安装。对加速度数据进行二重积分即可得到位置数据。

4)震动侦测

震动侦测可用于下降记录,黑盒子/故障记录仪,HDD保护,运输和处理监视器。

震动侦测只需考虑的因素是选择g值的范围。一般按照被测量对象的减速度决定了震动检测所需的加速传感器的规则选取。当然,算法将随每种设计的不同而不同,一般设为高于某个临界值。通常情况下,重力的变化范围为:自由落体检测为而汽车撞击为。

5)振动侦测

振动侦测可用于地震活动监视器,智能电机维护,家电平衡和监测。

振动侦测需要考虑的因素包括:分析振动频率的多少,确定g值的范围及最适当的加速传感器安装位置。借助于快速傅立叶变换对加速度资料的分析可得到振动频率的情况,快速傅立叶变换允许振动信号被分解成它的谐波分量,而每个电机

振动都有它自己的谐波分量信号。通常,根据振动的电机或对象的不同,重力的变化范围为2~。当加速传感器安装的离振源越近时,G的范围就会越大。

6)自由落下侦测

自由落下侦测可用于自由落体保护,下降记录,下降检测,运动控制和认知等。

自由落下侦测可分为三种,分别为:线性落下、旋转型落下和抛射落下。它需靠量的因素包括:g的范围一般落在间;由于抛射型落下,因此需考量横轴加速度的多寡及自由落下时要求检测的高度。

在完整的自由落体中,线性自由落体需要一个3轴加速计来完成检测。而旋转和抛射自由落体需要一个复杂的算法来监控自由落体信号。

加速度传感器的选择:

·模拟输出vs数字输出:

这个是最先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。

·测量轴数量:

对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。

·最大测量值:

如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。但是如果你需要测量机器人的动态性能,±2g也应该足够了。要是你的机器人会有比如突然启动或者停止的情况出现,那你需要一个±5g的传感器。

·灵敏度

一般来说,越灵敏越好。越灵敏的传感器对一定范围内的加速度变化更敏感,输出电压的变化也越大,这样就比较容易测量,从而获得更精确的测量值。

·带宽

这里的带宽实际上指的是刷新率。也就是说每秒钟,传感器会产生多少次读数。对于一般只要测量倾角的应用,50HZ的带宽应该足够了,但是对于需要进行动态性能,比如振动,你会需要一个具有上百HZ带宽的传感器。

·电阻/缓存机制

对于有些微控制器来说,要进行A/D转化,其连接的传感器阻值必须小于10kΩ。比如加速度传感器的阻值为32kΩ,在PIC和AVR控制板上无法正常工

作,所以建议在购买传感器前,仔细阅读控制器手册,确保传感器能够正常工作。

ADXL345是ADI公司最近推出的基于iMEMS技术的3轴、数字输出加速度传感器。ADXL345具有+/-2g,+/-4g,+/-8g,+/-16g可变的测量范围;最高13bit分辨率;固定的4mg/LSB灵敏度;3mm*5mm*1mm超小封装;40-145uA超低功耗;标准的I2C或SPI数字接口;

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理及应用课后习题

习题集 1.1 什么是传感器? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3 简述传感器主要发展趋势,并说明现代检测系统的特征。 1.4 传感器如何分类? 1.5传感器的静态特性是什么?由哪些性能指标描述?它们一般可用哪些公式表示? 1.6传感器的线性度是如何确定的? 电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 什么是应变片的灵敏系数?它与金属电阻丝的灵敏系数有何不同?为什么? 3.3 金属应变片与半导体应变片在工作原理上有何不同?半导体应变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?为什么有这种差别,说明其优缺点。 3.4 一应变片的电阻R=120Ω,灵敏系数k =2.05,用作应变为800/m m μ的传感元件。 求:①R ?和/R R ?;② 若电源电压U =3V ,初始平衡时电桥的输出电压U 0。 3.5 在以钢为材料的实心圆柱形试件上,沿轴线和圆周方向各贴一片电阻为120Ω的金属应变片R 1和R 2(如图3-28a 所示),把这两应变片接入电桥(见图3-28b )。若钢的泊松系数0.285μ=,应变片的灵敏系数k =2,电桥电源电压U =2V ,当试件受轴向拉伸时,测得应变片R 1的电阻变化值10.48R ?=Ω。试求:①轴向应变; ②电桥的输出电压。 3.6 图3-31为一直流电桥,负载电阻R L 趋于无穷。图中E=4V ,R 1=R 2=R 3=R 4=120Ω,试求:① R 1为金属应变片,其余为外接电阻,当R 1的增量为ΔR 1=1.2Ω时,电桥输出电压U 0=? ② R 1、R 2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U 0=? ③ R 1、R 2为金属应变片,如果感应应变大小相反,且ΔR 1=ΔR 2 =1.2Ω,电桥输出电压U 0=? 电容式传感器 4.1 如何改善单极式变极距型电容传感器的非线性? 4.2 差动式变极距型电容传感器,若初始容量1280C C pF ==,初始距离04m m δ=,当动极板相对于定极板 位移了0.75m m δ?=时,试计算其非线性误差。若改为单极平板电容,初始值不变,其非线性误差有多大? 4.3一平板式电容位移传感器如图4-5所示,已知:极板尺寸4a b m m ==,极板间隙00.5m m δ=,极板间介质为空气。求该传感器静态灵敏度;若极板沿x 方向移动2m m ,求此时电容量。 4.4 已知:圆盘形电容极板直径50D m m =,间距00.2m m δ=,在电极间置一块厚0.1m m 的云母片(7r ε=),空气(01ε=)。求:①无云母片及有云母片两种情况下电容值1C 及2C 是多少?②当间距变化0.025m m δ? =图 3-28

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

传感器原理与应用重点

第一章测量技术基础 检测系统的基本概念 检测系统(测试系统 /测量系统 1、定义:确定被测对象的属性和量值为目的的全部操作 2、被测对象:宇宙万物(固液气体、动物、植物、天体…… 3、被测信息:物理量(光、电、力、热、磁、声、… 化学量(PH 、成份… 生物量(酶、葡萄糖、… 4检测技术是实验科学的一部分, 主要研究各种物理量的测量原理和信号分析处理方法。 检测技术是信息技术的重要组成部分, 它所研究的内容是信息的提取与处理的理论、方法和技术。 5信息与信号 信息是指客观世界物质运动的内容。 如:天气较冷、某处地震、刀具发生了磨损、李四病了。 信号是指信息的表现形式。 如:刀具磨损,切削力会加大;李四病了,可能会发烧;等等。 6检测技术是进行各种科学实验研究和生产过程参数测量必不可少的手段, 起着人的感官的作用。

简单的检测系统可以只有一个模块, 如玻璃管温度计。它直接将被测温度变化转化为液面示值。没有电量转换和分析电路,很简单,但精度低,无法实现测量自动化。 为提高测量精度和自动化程度, 以便于和其它环节一起构成自动化装置, 通常先将被测物理量转换为电量,再对电信号进行处理和输出。 B ……在电工、电子等课程中讲授,大多数不属于本课程的范围。 检测系统的组成 一般说来,检测系统由传感器、中间变换装置和显示记录装置三部分组成。 传感器将被测物理量 (如噪声 , 温度检出并转换为电量,中间变换装置对接收到的电信号用硬件电路进行分析处理或经 A/D变换后用软件进行信号分析,显示记录装置则将测量结果显示出来,提供给观察者或其它自动控制装置。 第二章传感器概述 传感器的组成和分类 一、传感器定义 传感器是一种以一定的精确度把被测量转成与之有确定关系的, 便于应用的某种物理量的测量装置。 传感器名称:变送器、变换器、探测器、敏感元件、换能器、一次仪表、探头等 二、传感器的组成 三、传感器的分类 按被测参数分类:温度、压力、位移、速度等

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

传感器原理与应用实验指导书解析

传感器原理与应用 实 验 指 导 书 自动化工程学院

目录 1实验一应变片单臂电桥性能实验 1实验二应变片半桥性能实验 1实验三应变片全桥性能实验 实验四压阻式压力传感器测量压力特性实验 实验五差动变压器的性能实验 实验六差动变压器测位移特性实验 1实验七电容式传感器测位移特性实验 1实验八线性霍尔传感器测位移特性实验 1实验九开关式霍尔传感器测转速实验 1实验十磁电式转速传感器测转速实验 1实验十一光电传感器测量转速实验 实验十二电涡流传感器测量位移特性实验 实验十三被测体材质对电涡流传感器特性影响实验实验十四被测体面积对电涡流传感器特性影响实验* 实验十五气敏传感器实验 实验十六湿度传感器实验

CSY-2000型传感器与检测技术实验台 说明书 一、实验台的组成 CSY-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。 1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关数显表。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载保护功能,在排除接线错误后重新开机恢复正常工作。主机箱右侧面装有供电电源插板及漏电保护开关。 2、振动源(动态应变振动梁与振动台):振动频率3Hz~30Hz可调(谐振频率9Hz~12 Hz左右); 3、转动源:手动控制0转/分~2400转/分、自动控制300~2200转/分。 4、温度源:常温~200℃。 5、气压源:0~20Kpa(连续可调)。 6、传感器:基本型有箔式应变片(350Ω)传感器(秤重200g)、扩散硅压力传感器(20Kpa)、差动变压器(±4mm)、电容式位移传感器(±2.5mm)、霍尔式位移传感器(±1mm)、霍尔式转速传感器(2400转/分)、磁电转速传感器(250转/分~2400转/分)、压电式传感器、电涡流传感器(1mm)、光纤位移传感器(1mm)、光电转速传感器(2400转/分)、集成温度(AD590)传感器(室温~120℃)、K热电偶(室温~150℃)、E热电偶(室温~150℃)、Pt100铂电阻(室温~150℃)、Cu50铜电阻(室温~100℃)、湿敏传感器(10~95%RH)、气敏传感器(50~2000ppm)等。 7、调理电路(实验模板):基本型有电桥及调平衡网络、差动放大器、电压放大器、电荷放大器、电容变换器、电涡流变换器、光电变换器、温度变换器、移相器、相敏检波器、低通滤波器。增强型增加相应的配套实验模板。 8、实验台:尺寸为1600×800×750mm。实验台桌上预留了计算机及示波器安放位置。 二、电路原理

传感器原理与应用心得

传感器原理与应用心得 张宝龙电信工二班201400121099 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电感式传感器的结构、工作原理及应用。 传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律

将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件和变换元件两部分组成,。 通过最近的学习,是我了解到在实际中使用传感器的选择一定要慎重。我们可以根据测量对象与测量环境确定传感器的类型。其次,当我们在选择传感器时要注意传感器的灵敏度,频率响应范围,线性范围,稳定性,精度等。 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 通过对这门课的学习开阔了我的视野,让我了解了以前没有了解的东西。在老师的指导下让我明白了学习要有自觉性,要自己积极主动地去学习。

《传感器原理及应用》实验大纲

《传感器原理及应用》实验教学大纲 课程编号:课程名称:《传感器原理及应用》 课程总学时:54学时总学分:学分 实验学时:8学时实验学分:学分 适应专业:01电子信息工程 编写人:陈欣波编写日期:2000年7月 一、实验课程的目的与任务 传感器原理及应用是实现生产过程自动化的重要手段,通过本课程实验的学习,使学生更好地掌握在生产生活中广泛使用的各类传感器结构、工作原理和特性等,进一步加强学生独立分析、解决问题的能力,同时注意培养学生实事求是、严肃认真的科学作风和良好的实验习惯,为今后工作打下良好的基础。 二、实验教学基本要求 本课程是《传感器原理及应用》课程的一个实践环节,通过实验教学,使学生进一步巩固所学理论知识,提高其分析和解决问题的能力。具体要求如下: 1.进一步巩固和加深对基本理论知识的理解,提高综合应用所学知识、独立设计的 能力。 2.学会自己独立分析问题、解决问题,具有一定的创新能力。 3.能正确使用实验仪器设备,掌握工作原理。 4.能独立撰写实验报告、准确分析实验结果、得出实验结论。 5.课前做好预习,上课严格安装实验步骤认真完成实验内容。 三、实验项目与内容提要

注:开设的实验项目可根据实验室具体设备和条件等进行适当地调整。 四、实验报告格式及要求 (一)、实验报告格式: 攀枝花学院实验报告 实验课程:实验项目:实验日期: 院系:电信班级:姓名: 学号:合作人:指导教师: 成绩: [实验目的和要求] [实验仪器、设备与材料] [实验原理] [实验步骤] [实验原始记录] [实验数据计算结果] 1.相关公式: 2.数据计算: 3.数据分析: 4.实验结论: [实验结果分析,讨论实验指导书中提出的思考题,写出心得与体会] (二)、实验报告要求: 1.实验名称、学生姓名、班号和实验日期; 2.实验目的和要求; 3.实验仪器、设备与材料; 4.实验原理; 5.实验步骤; 6.实验原始记录; 7.实验数据计算结果;

传感器原理与工程应用第四版郁有文课后答案

第一章传感与检测技术的理论基础 1.什么是测量值的绝对误差、相对误差、引用误 差?答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。 2.什么是测量误差?测量误差有几种表示方法? 它们通常应用在什么场合?

答:测量误差是测得值与被测量的真值之差 测量误差可用绝对误差和相对误差表示, 引用误差也是相对误差的一种表示方法。 在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。在计算相对误差时也必须知道绝对误差的大小才能计算。 采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。 引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。 3.用测量范围为-50?+150kPa 的压力传感器测 量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解:绝对误差142 140 2kPa

142 140 4. 什么是随机误差?随机误差产生的原因是什 么?如何减小随机误差对测量结果的影响? 答:在同一测量条件下,多次测量同一被测量时,其 绝对值和符号以不可预定方式变化着的误差称为随机 误差。 随机误差是由很多不便掌握或暂时未能掌握的微 小因素 (测量装置方面的因素、环境方面的因素、人 员方面的因 素),如电磁场的微变,零件的摩擦、间隙, 热起伏,空气扰动,气压及湿度的变化,测量人员感 觉器官的生理变化等,对测量值的综合影响所造成的。 对于测量列中的某一个测得值来说,随机误差的出 现具有 随机性,即误差的大小和符号是不能预知的, 但当测量次数增大,随机误差又具有统计的规律性, 实际相对误差 140 100% 1.43% 标称相对误差 引用误差 142 140 142 100% 1.41% 142 140 150 ( 50) 100% 1%

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

MEMS加速度传感器的原理与构造

微系统设计与应用 加速度传感器的原理与构造 班级:2012机自实验班 指导教师:xxx 小组成员:xxx xx大学机械工程学院 二OO五年十一月

摘要 随着硅微机械加工技术(MEMS)的迅猛发展,各种基于MEMS技术的器件也应运而生,目前已经得到广泛应用的就有压力传感器、加速度传感器、光开关等等,它们有着体积小、质量轻、成本低、功耗低、可靠性高等特点,而且因为其加工工艺一定程度上与传统的集成电路工艺兼容,易于实现数字化、智能化以及批量生产,因而从问世起就引起了广泛关注,并且在汽车、医药、导航和控制、生化分析、工业检测等方面得到了较为迅速的应用。其中加速度传感器就是广泛应用的例子之一。加速度传感器的原理随其应用而不同,有压阻式,电容式,压电式,谐振式等。本文着手于不同加速度传感器的原理、制作工艺及应用展开,能够使之更加全面了解加速度传感器。 关键词:加速度传感器,压阻式,电容式,原理,构造

目录 1 压阻式加速度传感器 (2) 1.1 压阻式加速度传感器的组成 (2) 1.2 压阻式加速度传感器的原理 (2) 1.2.1 敏感原理 (3) 1.2.2 压阻系数 (4) 1.2.3 悬臂梁分析 (5) 1.3 MEMS压阻式加速度传感器制造工艺 (6) 1.3.1结构部分 (6) 1.3.2 硅帽部分 (8) 1.3.3键合、划片 (9) 2电容式加速度传感器 (9) 2.1电容式加速度传感器原理 (9) 2.1.1 电容器加速度传感器力学模型 (9) 2.1.2电容式加速度传感器数学模型 (11) 2.2电容式加速度传感器的构造 (12) 2.2.1机械结构布局的选择与设计 (12) 2.3.2材料的选择 (14) 2.3.3工艺的选择 (15) 2.3.4具体构造及加工工艺 (16) 3 其他加速度传感器 (18) 3.1 光波导加速度计 (18) 3.2微谐振式加速度计 (18) 3.3热对流加速度计 (19) 3.4压电式加速度计 (19) 4 加速度传感器的应用 (20) 4.1原理 (20) 4.2 功能 (20) 参考文献 (22)

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

传感器原理与应用实验指导书

《传感器原理与应用》实验指导书 朱蕴璞王芳编写 孔德仁审定 南京理工大学 二〇〇九年九月

实验须知 1.传感器实验仪是贵重实验设备,请在每个实验前认真阅读实验指导书,尤

其是每个实验最后的实验注意事项。 2.实验仪器电源的开关原则: 连接测量线路,确认准确无误后,开启仪器电源; 实验完毕,关闭仪器电源,拆除测量线路。 3.稳压电源不可对地短路。 4.实验过程中,心要细、动作要轻,不可有强制性机械动作出现。5.实验严格按操作规程进行,否则,出现损坏责任自负。 6.实验完毕,请一切恢复到实验前的状态,然后离开实验室。

目录 实验一传感器静态标定实验 (3) 实验二应变式传感器特性实验 (10) 实验三电感式、涡流式、电容式、霍尔式位移传感器特性实验 (14) 实验四重量测量实验(选做) (25) 实验五转速测量实验 (29) 实验六温度实验 (34)

实验一 传感器静态标定实验 (注:“压力传感器的静态标定及特性指标的求取”与“光纤位移传感器静态标定及特性指标求取“两实验取其一。) 压力传感器的静态标定及特性指标的求取 1、实验目的 掌握压力传感器静态标定的基本方法以及压力传感器的静态特性指标的求取。 2、实验内容 (1)组建压力测试系统; (2)学习压力测试系统的标定过程; (3)计算压力测试系统静态特性指标。 3、实验原理及方法 4活塞压力计一台,数字万用表一只,动态电阻应变仪一台,压力表一只。 5、实验步骤 (1)反复排除活塞压力计油腔内的空气,最后将压力泵手轮摇出。 (2)把压力传感器装在活塞压力计的联接螺帽上,关闭油杯。 (3)传感器输出接入可调零的桥盒,电桥输出接入数字万用表。当输出量很小,无法直接用万用表测得时,可先将传感器接入动态电阻应变仪桥盒(注意电桥的连接),桥盒的另一端连线接应变仪输入(选择一个通道);将应变仪专用电源接好;电阻应变仪电压输出接数字万用表。(说明:后者标定是整个系统标定,所求得的指标也为系统指标) (4)压力表指示为零时,开启仪器电源(注意:开启仪器电源前应变仪各通道应处于关闭状态),将应变 图 1 压力传感器标定系统原理框图

传感器技术及应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际中信息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与内容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体内容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学内容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学内容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

传感器原理与使用方法

传感器原理与使用方法 传感器的原理与使用方法 1 概述 在监控系统中,测量范围广泛,包括高低压配电设备、柴油发电机组、空调设备的交流电量:交流电压、交流电流、有功功率、功率因数、频率等;整流器、直流配电设备、蓄电池组的直流量:直流电压、直流电流;机房环境的各种物理量:温度、湿度、红外、烟感、水浸、门禁等;同时还有表示各种物理状态的开关量。由于监控系统数据采集设备的输入电量范围只能是一些小电压、小电流,而上述各种测量量却是一些非电量、强电量,因此必须用一种信号变换装置将它们转换成4一20mA或0一5V的标准直流或交流信号。传感器、变送器就是这样一种信号变换装置,它们把一种形式的信号变换成另外一种形式的信号(传感器),或把同一种信号变换成不同大小或不同形式的信号(变送器)。因此,传感器和变送器在监控系统中得到了广泛应用,是监控系统中必不可少的组成单元。 一般地,传感器是把各种物理量变换成另外一种大小、形式的物理量输出,以便于观察、测量或处理的装置,在监控系统中,传感器是把各种物理量变换成一定形式电量输出,以便于进行测量和数据采集的装置。电量变送器则是把各种形

式的电量变换成标准电量输出的装置。输出的标准电量一般为:4--20mA或0--20mA的标准直流电流信号和0一5V 的标准直流或交流电压信号。在监控系统中,电量变送器一般用于各种交流电量的变换,这些交流电量包括:交流电压、交流电流、有功功率、功率因数和频率等。交流电量的表示方法有多种,常用的有:瞬时值,有效值,平均值。 由于监控系统中各种要测量的电量和非电量种类繁多,相应的传感器和变送器也各种各样,但根据它们转换后的输出信号性质,可分为分为模拟和数字两种。在我公司的监控系统中,各类传感器、变送器有如下几种: 数字信号传感器(变送器): 1. 离子感烟探测器,用于探测烟雾浓度。当烟雾达到一定的浓度时,给出对应的数字量报警信号。 2. 微波双鉴被动式红外探测器XC-1、单红外探测器XP-5,当其探测范围内,有人体侵入时,提供对应的继电器触点信号输出,给出对应的数字量报警信号。 3. 玻璃破碎传感器,当玻璃被击碎时,提供对应的继电器触点信号输出,给出对应的数字量报警信号。 4.

加速度传感器测量信号失真的原因及处理方法

如果加速度传感器大测量信号失真我们从两个大的方面分析:信号输出变小和偏置电压不稳定。其实想偏置电压不稳定这种情况,我们可以直接能判断的是输出信号与高频谐次波叠加,遇到这种情况一般是由加速度传感器的谐振频率造成,我们可以选择谐振频率较高的传感器。 而信号输出变小这种情况我们需要从四个方面去考虑:首先是由于供电电压降低而造成测量量程范围减小,这种表示需要更换电池或更正供电电压。其次是因环境温度与室温不同而导致的偏置电压超出规定的范围,当然这种我们需要采用偏置电压稳定的传感器。再者还有由加速度传感器的非线性造成,我们就需要采用量程大的传感器。最后一种情况就是在长距离信号输送时,恒流电压源的恒电流不够大,这种情况我们需要根据信号频率幅值选择正确的电压源恒电流。以上就是加速度传感器大测量信号失真的几种大的故障分析以及解决办法。 而加速度传感器小测量信号失真,我们需要从三个方面去考虑:信号忽大忽小不稳定,外界环境噪声对测量信号的影响以及测量系统噪声对测量信号的影响。关于信号忽大忽小不稳定一般是由瞬态温度变化以至偏置电压忽大忽小而造成输出信号不稳定,当然这种情况我们还是采用偏置电压稳定的传感器来解决。 接下来我们分析的是测量系统噪声对测量信号的影响:这种我们按照四种情况分析,一是加速度传感器自身的电噪声,我们需要检定传感器噪声,选择信噪比合适的传感器。二是电缆引起的电噪声,往往发生在与电荷输出型传感器配用的低噪声电缆,我们是换用好的低噪声屏蔽电缆。三是传感器供电电源噪声,这种我们肯定是要选用低噪声供电电源或采用电池供电。四是数采系统的量程设置,当然我们需要选择合适的量程才行。 最后我们分析的是外界环境噪声对测量信号的影响:这个又分为接地回路造成的噪声,避免多点接地,传感器采用对地绝缘。电磁波的影响,采用双层屏蔽壳的传感器。强声场的影响,采用双层屏蔽壳的传感器将有助于降低强声场对加速度传感器的影响。瞬态环境温度变化,对用于超低频测量的高灵敏度传感器必须采用隔热护套。和被测点的基座应变影响,我们需要选用基座应变小的剪切型加速度传感器,尽量减小传感器与被测物体间的接触面积。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/a56223252.html,/

相关文档
最新文档