用对偶单纯形法求解线性规划问题教学教材

用对偶单纯形法求解线性规划问题教学教材
用对偶单纯形法求解线性规划问题教学教材

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题.

Min z =5x1+3x

2

s.t.-2 x1 + 3x

2

≥6

3 x1 - 6 x

2

≥4

Xj≥0(j=1,2)

解:将问题转化为

Max z = -5 x1 - 3 x

2

s.t. 2 x1 - 3x

2+ x

3

= -6

-3 x1 + 6 x

2+ x

4

≥-4

Xj≥0(j=1,2,3,4)

其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17.

表4-17 例4-7单纯形表

在表4-17中,b=-16<0,而y≥0,故该问题无可行解.

注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法.

3.对偶问题的最优解

由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.

(1)设原问题(p)为

Min z=CX

s.t. ???≥=0X b

AX

则标准型(LP)为 Max z=CX

s.t. ???≥=0X b

AX

其对偶线性规划(D )为 Max z=b T Y

s.t. ???≥=0X b

AX

用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0

从而,在最优单纯形表T (B )中,对于检验数,有

(σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

使用C语言实现单纯形法求解线性规划问题

上机实验报告 一、实验目的和要求 1、目的: ●掌握单纯形算法的计算步骤,并能熟练使用该方法求解线性规划问题。 ●了解算法→程序实现的过程和方法。 2、要求: ●使用熟悉的编程语言编制单纯形算法的程序。 ●独立编程,完成实验,撰写实验报告并总结。 二、实验内容和结果 1、单纯形算法的步骤及程序流程图。 (1)、算法步骤

(2)、程序图 各段代码功能描述: (1)、定义程序中使用的变量 #include #include #define m 3 /*定义约束条件方程组的个数*/ #define n 5 /*定义未知量的个数*/ float M=1000000.0; float A[m][n]; /*用于记录方程组的数目和系数;*/ float C[n]; /*用于存储目标函数中各个变量的系数*/

float b[m]; /*用于存储常约束条件中的常数*/ float CB[m]; /*用于存储基变量的系数*/ float seta[m]; /*存放出基与入基的变化情况*/ float delta[n]; /*存储检验数矩阵*/ float x[n]; /*存储决策变量*/ int num[m]; /*用于存放出基与进基变量的情况*/ float ZB=0; /*记录目标函数值*/ (2)、定义程序中使用的函数 void input(); void print(); int danchunxing1(); int danchunxing2(int a); void danchunxing3(int a,int b); (3)、确定入基变量,对于所有校验数均小于等于0,则当前解为最优解。 int danchunxing1() { int i,k=0; int flag=0; float max=0; for(i=0;i

用对偶单纯形法求解线性规划问题教学文案

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 s.t.-2 x1 + 3x 2 ≥6 3 x1 - 6 x 2 ≥4 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 s.t. 2 x1 - 3x 2+ x 3 = -6 -3 x1 + 6 x 2+ x 4 ≥-4 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX s.t. ???≥=0X b AX 则标准型(LP)为 Max z=CX s.t. ???≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y s.t. ???≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

最新单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题 s.t. 解:1)、将该线性问题转为标准线性问题 一、第一阶段求解初始可行点 2)、引入人工变量修改约束集合 取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。 2 -2 -1 1 2 1 1 -1 -1 1 2 -1 -2 1 2 5 -2 -4 1 -1 1 5 0 0 0 0 0 3)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。 2 -2 -1 1 2 1 1 1 -1 -1 1 0 2 -1 -2 1 2 0 5 -2 -4 1 -1 1 5 1 0 0 0 0 0 0 1 0 0 0 4)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。同时将以改变的决策变量转换为状态变量。增加的值使目标函数值更小。 1 -3 1 1 1 0 1 1 -1 1

1 -3 1 1 1 0 0 0 0 0 0 0 0 5)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为, 二、第二阶段用单纯形法求解最优解 -2 2 1 0 1 1 -1 0 -2 1 2 1 5 1 3 要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题 s.t. 如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最 大值变达成c的函数。 解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。 1)将问题华为标准线性问题 s.t. 2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解 10 -1 -1 -1 10 -20 1 5 1 -20 -2 -1 -1 0 0 0 0 要使目标函数继续减小,可以增大,增大的限值是10。 10 -1 -1 -1 10 0 -20 1 5 1 -20 -10 -2 -1 -1 0 -20 0 0 0 10 0 0 3)转轴。将为零的松弛变量和决策变量交换进行转轴 10 -1 -1 -1 10 -10 4 0 -1 -10 0 -20 1 1 2 -20

16991-运筹学-习题答案选01_线性规划和单纯形法

运筹学教程(胡运权主编,清华第4版)部分习题答案(第一章)1.1 (1)无穷多解:α (6/5, 1/5) + (1- α) (3/2, 0),α∈ [0,1]。 (2)无可行解; (3)x* = (10,6),z* = 16; (4)最优解无界。 1.2 (1)max z’ = 3x1 - 4x2 + 2x3 - 5x’4 + 5x’’4 s.t. –4x1 + x2 – 2x3 + x’4– x’’4 = 2 x1 + x2 – x3 + 2x’4– 2x’’4 + x5 = 14 –2x1 + 3x2 + x3 – x’4+ x’’4– x6 = 2 x1, x2, x3, x’4, x’’4, x5, x6 ≥ 0 (2)max z’ = 2x’1 + 2x2 – 3x’3 + 3x’’3 s.t. x’1 + x2 + x’3 – x’’3 = 4 2x’1 + x2 – x’3 + x’’3 + x4 = 6 x’1, x2, x’3, x’’3, x4, ≥ 0 1.3 (1)基解:(0, 16/3, -7/6, 0, 0, 0); (0, 10, 0, -7, 0, 0); (0, 3, 0, 0, 7/2, 0),是基可行解,z = 3,是最优解; (7/4, -4, 0, 0, 0, 21/4); (0, 16/3, -7/6, 0, 0, 0); (0, 0, -5/2, 8, 0, 0); (1, 0, -1/2, 0, 0, 3); (0, 0, 0, 3, 5, 0),是基可行解,z = 0; (5/4, 0, 0, -2, 0, 15/4); (3/4, 0, 0, 0, 2, 9/4),是基可行解,z = 9/4; (0, 0, 3/2, 0, 8, 0),是基可行解,z = 3,是最优解。 (2)基解:(-4, 11/2, 0, 0); (2/5, 0, 11/5, 0),是基可行解,z = 43/5; (-1/3, 0, 0, 11/6); (0, 1/2, 2, 0),是基可行解,z = 5,是最优解;

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 ≥6 s.t. -2 x1 + 3x 2 ≥4 3 x1 - 6 x 2 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 + x3 = -6 s.t. 2 x1 - 3x 2 -3 x1 + 6 x + x4≥-4 2 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况. 若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX

s.t. ?? ?≥=0 X b AX 则标准型(LP)为 Max z=CX s.t. ? ??≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y s.t. ? ? ?≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I) 于是,Y*=(σn+1,σn+2…σn+m )T 。可见,在(LP )的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。 同时,在最优单纯形表T (B )中,由于剩余变量对应的系数 所以 B -1 =(-y n+1,-y n+2…-y n+m ) 例4-8 求下列线性规划问题的对偶问题的最优解。 Min z =6x 1+8x 2 s.t. x 1 + 2x 2≥20 3 x 1 + 2x 2≥50 Xj ≥0(j=1,2) 解: 将问题转化为 Max z =-6x 1-8x 2 s.t. -x 1 — 2x 2 + x 3=20 -3 x 1 - 2x 2+ x 4 =50 Xj ≥0(j=1,2,3,4)

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性 规划问题 The final edition was revised on December 14th, 2020.

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 .-2 x1 + 3x 2 ≥6 3 x1 - 6 x 2 ≥4 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 . 2 x1 - 3x 2+ x 3 = -6 -3 x1 + 6 x 2+ x 4 ≥-4 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX . ???≥=0X b AX 则标准型(LP)为 Max z=CX . ???≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y . ???≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f -3 1 1 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 -7 5 1 -2 2 3

x2-4120-1103 x7-20100011 -f10-101-10-3 由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形 表为: 表四:第二次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形 表为: 表五:第三次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

第1章线性规划及单纯形法

线性规划及单纯形法 一.选择 1. 运筹学应用分析、试验、(C )的方法,对经济管理系统中人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。 A 统筹 B 量化 C 优化 D 决策 2. 运筹学研究的基本手段是(A )。 A 建立数学模型 B 进行数学分析 C 进行决策分析 D 建立管理规范 3. 运筹学研究的基本特点是( C )。 A 进行系统局部独立分析 B 考虑系统局部优化 C 考虑系统的整体优化 D 进行系统的整体决策 4. 线性规划问题的数学模型包含三个组成要素:决策变量、目标函数、(B ) A 表达式 B 约束条件 C 方程变量 D 价值系数 5. 线性规划问题的基可行解X 对应线性规划问题可行域(凸集)的( C ) A 边 B 平面 C 顶点 D 内部 6. 目标函数取极小化(Z min )的线性规划问题可以转化为目标函数取极大化即(C )的线性规划问题求解 A Z min B )min(Z - C )max(Z - D Z max - 7. 标准形式的线性规划问题,最优解(C )是可行解 A 一定 B 一定不 C 不一定 D 无法确定 8. 在线性规划问题中,称满足所有约束条件方程和非负限制的解为( C )。 A 最优解 B 基可行解 C 可行解 D 基解 9. 生产和经营管理中经常提出任何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是所谓的(D ) A 管理问题 B 规划问题 C 决策问题 D 优化问题 10. 在线性规划问题中,图解法适合用于处理变量( B )个的线性规划问题 A 1 B 2 C 3 D 4 11. 求解线性规划问题时,解的情况有:唯一最优解、无穷多最优解、( C )、无可行解 A 无解B 无基解 C 无界解 D 无基可行解 12. 在用图解法求解的时,找不到满足约束条件的公共范围,这时问题有(D ),其原因是模型本身有错误,约束条件之间相互矛盾,应检查修正。 A 唯一最优解 B 无穷多最优解 C 无界解D 无可行解 13. 线性规划问题的基可行解()T n X X X ,,1 =为基可行解的充要条件是X 的正分量所对 应的系数列向量是(B ) A 线性相关 B 线性独立 C 非线性独立 D 无法判断 14. 线性规划问题进行最优性检验和解的判别时,如果当0≤j σ时,人工变量仍留在基本量中且不为零,(D ) A 唯一最优解 B 无穷多最优解 C 无界解 D 无可行解 15.如果集合C 中任意两个点21,X X 其连线上的所有点也都是集合C 中的点,称C 为(B )

线性规划及单纯形法习题

第一章 线性规划及单纯形法习题 1.用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解还是无可行解。 (1)??? ??≥≥+≥++=0,42266432min 2121212 1x x x x x x x x z (2) ??? ??≥≥+≥++=0,12432 223max 2 121212 1x x x x x x x x (3) ?? ? ??≤≤≤≤≤++=8 3105120 106max 21212 1x x x x x x z (4) ??? ??≥≤+-≥-+=0,2322 265max 1 2212121x x x x x x x x z 2.将下列线性规划问题化成标准形式。 (1)????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43214321432143214321,0,,2321422 245243min x x x x x x x x x x x x x x x x x x x x z (2) ????? ? ?≥≤≥-++-≤-+-=++-+-=无约束 32143213213213 21,0,023*******min x x x x x x x x x x x x x x x x z 3.对下列线性规划问题找出所有基本解,指出哪些是基可行解,并确定最优解。 (1) ??? ?? ? ?=≥=-=+-+=+++++=)6,,1(0231024893631223min 61432143213 21Λj x x x x x x x x x x x x x x z j (2) ??? ??=≥=+++=+++++-=)4,,1(0102227 4322325min 432143214321Λj x x x x x x x x x x x x x z j 4.分别用图解发法和单纯形法求解下述问题,并对照单纯形表中的各基本可行解对应图解法中可行域的哪一顶点。

对偶单纯形法

1.对偶单纯形法 2.F(x)=3x1+4x2+5x3 X1+2x2+3x3>=5 2x1+2x2+x3>=6 xi>=0 f=[3;4;5]; A=[-1 -2 -3 -2 -2 -1]; b=[-5;-6]; lb=zeros(3,1); [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb) x = 1.0000 2.0000 0.0000 fval = 11.0000 exitflag = 1 output = iterations: 8 algorithm: 'large-scale: interior point' cgiterations: 0 message: 'Optimization terminated.' lambda = ineqlin: [2x1 double] eqlin: [0x1 double] upper: [3x1 double] lower: [3x1 double] x, lambda.ineqlin, lambda.lower x = 1.0000 2.0000 0.0000 ans = 1.0000 1.0000 ans = 0.0000 0.0000 1.0000

2.单纯形法 f(x)=-9x1+-16x2 x1+4x2+x3=80 2x1+3x2+x4=90 xi>=0 f=[-9;-16;0;0]; Aeq=[1 4 1 0 2 3 0 1]; beq=[80;90]; lb=zeros(4,1); [x,fval,exitflag,output,lambda] = linprog(f,[],[],Aeq,beq,lb) Optimization terminated. x = 24.0000 14.0000 0.0000 0.0000 fval = -440.0000 exitflag = 1 output = iterations: 5 algorithm: 'large-scale: interior point' cgiterations: 0 message: 'Optimization terminated.' lambda = ineqlin: [0x1 double] eqlin: [2x1 double] upper: [4x1 double] lower: [4x1 double] x, lambda.ineqlin, lambda.lower x = 24.0000 14.0000 0.0000 0.0000 ans = Empty matrix: 0-by-1 ans =

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都就是非负的(否则无解),接下来的m 列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都就是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题就是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量与主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格与新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0)、把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行与列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化与处理(本程序所用的实例用的就是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组、用于很难预先估计矩阵的行与列,所以在程序中才了动态的内存分配、需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行就是否全部为非负数,最后一列不作考虑 这个函数用来判断就是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列就是否全部为负数或零 这个函数用来判断线性规划就是否就是无解的 bool Is_column_all_Positive(int col); //判断col列中就是否全部为正(不包括目标行)

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

5、对偶单纯形法

5、对偶单纯形法 在标准形式的线性规划问题中,如果σj =c j -C B P j ≤0,但b i 的值不一定为正,这时可用对偶单纯形法继续求解,直到所有b i ≥0。 对偶单纯形法的步骤: 1、 确定出基变量 存在小于零的b i 时,令b r =min{b i },其对应变量x r 为出基变量。(先定出基变量) 2、 确定入基变量 在非基变量中找出a rj <0(j=m+1,….,n ),令 θ=mjn ??????????<0rj rj j a a σ=rs s a σ 称a rs 为主元素,x s 为入基变量 3、 用入基变量替换出基变量,得到一个新的基。用新的基再检查是否所有b i ≥0,如果是,找到了问题的最优解,否则,回到第一步再重复计算。 【例】求解线性规划问题 min ω=12y 1+16y 2+15y 3 s.t. ?????≥≥+≥+0,,3522423 213121y y y y y y y 【解】 转化为目标函数最大化,并化为标准形 min (-ω)=-12y 1-16y 2-15y 3+0y 4+0y 5 s.t. ?????≥=-+=-+)5,4,3,2,1(0352242531421j y y y y y y y 但这时没有单位矩阵,需要用大M 法或两阶段法求解,较麻烦。 但这时可用对偶单纯形法求解。 在约束条件的两边乘-1,得 min (-ω)=-12y 1-16y 2-15y 3+0y 4+0y 5 s.t. ?????≥-=---=--)5,4,3,2,1(0352242531421j y y y y y y y 有单位矩阵,

线性规划单纯形法matlab解法

%单纯形法matlab程序-ssimplex % 求解标准型线性规划:max c*x; . A*x=b; x>=0 % 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b % N是初始的基变量的下标 % 输出变量sol是最优解, 其中松弛变量(或剩余变量)可能不为0 % 输出变量val是最优目标值,kk是迭代次数 % 例:max 2*x1+3*x2 % . x1+2*x2<=8 % 4*x1<=16 % 4*x2<=12 % x1,x2>=0 % 加入松驰变量,化为标准型,得到 % A=[1 2 1 0 0 8; % 4 0 0 1 0 16; % 0 4 0 0 1 12; % 2 3 0 0 0 0]; % N=[3 4 5]; % [sol,val,kk]=ssimplex(A,N) % 然后执行 [sol,val,kk]=ssimplex(A,N)就可以了。 function [sol,val,kk]=ssimplex(A,N) [mA,nA]=size(A); kk=0; % 迭代次数 flag=1;

while flag kk=kk+1; if A(mA,:)<=0 % 已找到最优解 flag=0; sol=zeros(1,nA-1); for i=1:mA-1 sol(N(i))=A(i,nA); end val=-A(mA,nA); else for i=1:nA-1 if A(mA,i)>0&A(1:mA-1,i)<=0 % 问题有无界解 disp('have infinite solution!'); flag=0; break; end end if flag % 还不是最优表,进行转轴运算 temp=0; for i=1:nA-1 if A(mA,i)>temp temp=A(mA,i); inb=i; % 进基变量的下标 end

图解法和单纯形法求解线性规划问题

图解法和单纯形法求解以下线性规划问题 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直 角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。 1.2 单纯形法解线性规划问题 它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 1.3 线性规划问题的标准化 使用单纯形法求解线性规划时,首先要化问题为标准形式

(运筹学大作业)单纯性法与对偶单纯性法比较

对偶单纯形法与单纯形法对比分析 1.教学目标: 通过对偶单纯形法的学习,加深对对偶问题的理解 2.教学内容: 1)对偶单纯形法的思想来源 2)对偶单纯形法原理 3.教学进程: 1)讲述对偶单纯形法解法的来源: 所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。 2)为什么要引入对偶单纯形法: 单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。 由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w 。据此可知,用单纯形法求解线性规划问题时,在得到原问题的一个基可行解的同时,在检验数行得到对偶问题的一个基解,并且将两个解分别代入各自的目标函数时其值相等。 我们知道,单纯形法计算的基本思路是保持原问题为可行解(这时一般其对偶问题为非可行解)的基础上,通过迭代,增大目标函数,当其对偶问题的解也为可行解时,就达到了目标函数的最优值。那么对偶单纯形法的基本思想可以理解为保持对偶问题为可行解(这时一般原问题为非可行解)的基础上,通过迭代,减小目标函数,当原问题也达到可行解时,即达到了目标函数的最优值。其实对偶单纯形法本质上就是单纯形法, 只不过在运用时需要将单纯形表旋转一下而已。 一.单纯形法和对偶单纯性法 单纯形法是求解线性规划的主要方法, 单纯形表则是单纯形法和对偶单纯形法的运算工具。设线性规划问题为 Max ∑==n j j j x c Z 1

使用单纯形法解线性规划问题

使用单纯形法解线性规划 问题 The Standardization Office was revised on the afternoon of December 13, 2020

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1)将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ .: 1234123561371234567211 42321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2)找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一 次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表

第一章线性规划及单纯形法习题

第一章 线性规划及单纯形法习题 1.用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解还是无可行解。 (1)??? ??≥≥+≥++=0,42266432min 2121212 1x x x x x x x x z (2) ??? ??≥≥+≥++=0,12432 223max 2 121212 1x x x x x x x x (3) ?? ? ??≤≤≤≤≤++=8 3105120 106max 21212 1x x x x x x z (4) ??? ??≥≤+-≥-+=0,2322 265max 1 2212121x x x x x x x x z 2.将下列线性规划问题化成标准形式。 (1)????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43214321432143214321,0,,2321422 245243min x x x x x x x x x x x x x x x x x x x x z (2) ????? ? ?≥≤≥-++-≤-+-=++-+-=无约束 32143213213213 21,0,023*******min x x x x x x x x x x x x x x x x z 3.对下列线性规划问题找出所有基本解,指出哪些是基可行解,并确定最优解。 (1) ??? ?? ? ?=≥=-=+-+=+++++=)6,,1(0231024893631223min 61432143213 21 j x x x x x x x x x x x x x x z j (2) ??? ??=≥=+++=+++++-=)4,,1(0102227 4322325min 432143214321 j x x x x x x x x x x x x x z j 4.分别用图解发法和单纯形法求解下述问题,并对照单纯形表中的各基本可行解对应图解法中可行域的哪一顶点。

单纯形法在线性规划中的应用

单纯形法在线性规划中的应用 摘要 求解线性规划问题,就是在各项资源条件的限制下,如何确定方案,使预期的目标达到最优。本文重点介绍了求解线性规划问题目前最常见的两种方法,图解法和单纯形法。图解法适合于只含两个变量的线性规划问题,文中只做了简单的描述。而单纯形法是求解线性规划问题的通用方法,适合于求解大规模的线性规划问题,本文作了重点描述,对单纯形法中的基本概念如基变量、非基变量、基向量、非基向量、可行基以及基本可行解等概念作了详细的陈述,在此基础上,介绍了线性规划问题的标准化、单纯形法的基本原理、确定初始可行解、最优性检验、解的判别、基本可行解的改进、换入变量的确定-最大增加原则、换出变量的确定-最小比值原则、表格单纯形法、大M法、两阶段法等。 关键词:线性规划图解法单纯形法基变量基向量可行基基本可行解

正文 引言 在生产管理和经济活动中,经常遇到这些问题,如生产计划问题,即如何合理利用有限的人、财、物等资源,以便得到最好的经济效果;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何获取最大利润;劳动力安排问题,即如何用最少的劳动力来满足工作的需要;运输问题,即如何制定调运方案,使总运费最小;投资问题,即从投资项目中选取方案,使投资回报最大等等。对于这些问题,都能建立相应的线性规划模型。事实上,线性规划就是利用数学为工具,来研究在一定条件下,如何实现目标最优化。 解线性规划问题目前最常见的方法有两种,图解法和单纯形法。单纯形法是求解线性规划问题的通用方法。 1 线性规划问题的求解方法 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x 1为横坐标轴,x 2 为纵坐标轴,适当选取单位坐标长度建立平面 坐标直角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,图解法虽然直观、简便,但当变量数多于三个以上时,其实用意义不大。

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表 可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

相关文档
最新文档