正弦波产生电路实验报告范文

正弦波产生电路实验报告范文
正弦波产生电路实验报告范文

正弦波产生电路实验报告范文

篇一:正弦波产生电路实验报告

一、实验设计目的和作用

1.进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。

2.学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。

3.培养理论联系实际的正确设计思想,训练综合运用已学过的理论和生产实际知识去分析和解决工程实际问题的能力。

4.通过学员的独立思考和解决实际问题的过程,培养学员的创新能力

二、设计的具体实现

实验要求用TL084设计正弦波产生电路。正弦波产生方式有多种,本次试验采用较为简单的文氏桥振荡电路。通过图书馆和上网查阅有关资料,确定如下电路。

Multisim原理图:

sch图

调节w1使电路起振,w2调节幅度

仿真结果:频率162Hz,幅度范围0.8—

10V

三、实际制作调试和结果分析

频率:133.33Hz

幅度范围:1~9V

四、总结

第一次进行电路设计,遇到了很多麻烦。Multisim、Protel等软件不熟悉,第一次焊电路焊工也不行。通过实验,基本学会了这些软件的操作,制作过程中,自己的焊工有了很大进步。虽然做了好几次才把电路调出来,但还是很满意。

五、参考文献

1.于红珍.通信电子电路【M】.北京:清华大学出版社,xx 2.康华光,陈大钦.电子技术基础模拟部分(第四版).北京:高等教育出版社,1999.6

3.黄智伟.全国大学生电子设计竞赛【M】.北京:北京航空航天大学出版社,xx

篇二:正弦波产生电路实验报告

一:实验要求

(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。256个8位波形数据的mif文件通过两种方式建立,一种用QuartusII的专用器建立,另一种是使用附录的mif文件生成器建立。首先创建原理图工程,调用LPM_ROM等模块;在原理图窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于

FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。完成实验报告。

(2)学习使用QuartusII的In-SystemMemoryContentEditor 来观察FPGA中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。

(3)学习使用QuartusII的SignalTapII观察FPGA的正弦波形。

二:实验原理

正弦信号发生器的结构框图由四个部分组成:

(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。

(2)正弦信号数据ROM,含64个8位数据。

(3)原理图顶层设计。

(4)8位D/A。DAC的输出接示波器。

三:实验内容

1、定制初始化波形数据文件:建立.mif格式文件。File—new —otherfiles,选择MemoryInitializationFile选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。然后以romd.mif 的名字保存至新建的文件夹中。

2、定制LPM_ROM元件:利用MegaWizardPlug-InManager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。并以

data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。

3、用VHDL语言完成正弦信号发生器的顶层设计。

关于计算机实验报告的参考范文

关于计算机实验报告的参考范文 篇一 一、实验题目 文件和文件夹的管理 二、实验目的 1.熟悉Windows XP的文件系统。 2.掌握资源管理器的使用方法。 3.熟练掌握在Windows XP资源管理器下,对文件(夹)的选择、新建、移动、复制、删除、重命名的操作方法。 三、实验内容 1.启动资源管理器并利用资源管理器浏览文件。 2.在D盘创建文件夹 3.在所创建文件夹中创建Word文件。 4.对所创建文件或文件夹执行复制、移动、重命名、删除、恢复、创建快捷方式及设置共享等操作。 四、实验步骤 (一)文件与文件夹管理 1.展开与折叠文件夹。右击开始,打开资源管理器,在左窗格中点击“+”展开,点击“—”折叠 2.改变文件显示方式。打开资源管理器/查看,选择缩略、列表,排列图标等

3.建立树状目录。在D盘空白处右击,选择新建/文件夹,输入经济贸易学院,依次在新建文件夹中建立经济类1103 4..创建Word并保存。打开开始/程序/word,输入内容。选择文件/另存为,查找D盘/经济贸易学院/1103班/王帅,单击保存 5.复制、移动文件夹 6.重命名、删除、恢复。右击文件夹,选择重命名,输入新名字;选择删除,删除文件 7.创建文件的快捷方式。右击王帅文件夹,选择发送到/桌面快捷方式 8.设置共享文件。右击王帅,选择属性/共享/在网络上共享这个文件/确定 9.显示扩展名。打开资源管理器/工具/文件夹选项/查看/高级设置,撤销隐藏已知文件的扩展名 (二)控制面板的设置。 1.设置显示属性。右击打开显示属性/桌面、屏幕保护程序 2.设置鼠标。打开控制面板/鼠标/按钮(调整滑块,感受速度)、指针 3.设置键盘。打开控制面板/键盘/速度(调整滑块,感受速度)、硬件 4.设置日期和时间打开控制面板/日期和时间

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

第十二章(非正弦周期电流电路)习题解答

第十二章(非正弦周期电流电路)习题解答 一、选择题 1. 在图12—1所示电路中,已知)]cos(2512[1t u s ω+=V , )240cos(2502+ω=t u s V 。设电压表指示有效值,则电压表的读数为 B V 。 A .12; B .13; C.13.93 解:设u 如图12—1所示,根据KVL 得 )240cos(25)cos(2512021+ω+ω+=+=t t u u u s s 即 )120cos(25)cos(25120-ω+ω+=t t u =)60cos(25120-ω+t 根据 2 )1(2 )0(U U U += 得1351222=+=U A 2.在图12—2所示的电路中,已知)100cos(2t u s = V , )]60100cos(243[0-+=t i s A ,则s u 发出的平均功率为 A W 。 A .2; B .4; C .5 解:由平均功率的计算公式得 )600cos(0 )1()1()0()0(++=I U I U P =2)60cos(41300 =?+?W 3.欲测一周期性非正弦量的有效值,应用 A 仪表。 A .电磁系; B .整流系; C .磁电系 4.在图12—3所示的电路中,Ω=20R ,Ω=ω5L , Ω=ω451 C , )]3cos(100)cos(276100[t t u s ω+ω+=V ,现欲使电流i 中含有尽可大的基波分量,Z 应 是 C 元件。 A .电阻; B .电感; C .电容

解:由图12—3可见,此电路对基波的阻抗为 j 45j545520j 1 j j 1 j -?++=ω+ωω?ω++=Z C L C L Z R Z i =8 45 j 20++Z 欲使电流i 中含有尽可大的基波分量就是要使i Z 的模最小,因此Z 应为电容。 二、填空题 1.图12—4所示电路处于稳态。已知Ω=50R ,Ω=ω5L , Ω=ω451 C ,)]3cos(100200[t u s ω+=V ,则电压表的读数为 70.7 V ,电流表的读数为 4 A 。 解:由题目所给的条件可知,L 、C 并联电路对三次谐波谐振,L 对直流相当于短路。 因此,电压表的读数为 7.702 100=V ,而电流表的读数为 450 200 =A 。 2. 图12—5所示电路中,当)cos(2200?+ω=t u V 时,测得10=I A ;当 )]3cos(2)cos(2[2211?+ω+?+ω=t U t U u V 时,测得200=U V ,6=I A 。则83.1051=U V ,71.1692=U V 。 解:由题意得 2010200==ωL , 22 221200=+U U 及22 22 163=?? ? ??ω+??? ??ωL U L U

电路分析实验报告

南昌理工学院实验报告(样本) 二OO 年月日 课程名称电路分析实验名称电位、电压的测定 班级姓名同组人 指导教师评定签名 【一、实验名称】电位、电压的测定 【二、实验目的】 1、学会测量电路中各点电位和电压的方法,理解电位的相对性和电压的绝对性; 2、学会电路电位图的测量、绘制方法; 3、掌握使用直流稳压电源、直流电压表的使用方法。 【三、实验内容和原理】 (一)实验内容 1、测量电路中各点电位; 2、测量电路中相邻两点之间的电压值。 (二)实验原理 在一个闭合电路中,各点电位的高低视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该坐标平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形是不同,但其各点电位变化的规律却是一样的。 【四、实验条件】

【五、实验过程】 实验电路如图1-1所示,按图接线。图中的电源U S1用恒压源中的+6V(+5V)输出端,U S2用0~+30V可调电源输出端,并将输出电压调到+12V。 1、测量电路中各点电位 以图1-1中的A点作为电位参考点,分别测量B、C、D、E、F各点的电位。用电压表的黑笔端插入A点,红笔端分别插入B、C、D、E、F各点进行测量,数据记入表1-1中。以D点作为电位参考点,重复上述步骤,测得数据记入表1-1中。 图1-1 2、测量电路中相邻两点之间的电压值 在图1-1中,测量电压U AB:将电压表的红笔端插入A点,黑笔端插入B点,读电压表读数,记入表1-1中。按同样方法测量U BC、U CD、U DE、U EF及U FA,测量数据记入表1-1中。 【六、实验结果】 表1-1电路中各点电位和电压数据(单位:V)

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

信号发生器实验报告

低频电路课程设计 OCL 功率放大器设计 学院名称: 电气信息工程学院 专 业: 测控技术与仪器 班 级: 08测控1班 姓 名: 朱彬彬 学 号: 08314105 指导老师: 王云松 2010年 6 月20 日 JIANGSU TEACHERS UNIVERSITY OF TECHNOLOGY 电气信息工程学院

1设计课题:OCL功率放大器 为了保证功率,效率和失真三个指标满足一定的要求,早期的功率放大器多采用变压耦合。这种电路变压器体积大,比较笨重,耗损多,而且高频和低频部分频响特性不好,在引入负反馈时,很容易自激。随着电子技术的发展,后来被无输出变压器的功率放大电路(OTL)代替。在OTL电路中,虽去掉了变压器,但为了能用但电源供电,输出端接了一个大电容,这个大电容影响了电路的低频特性,于是出现了OCL电路。 OCL功放是在OTL功放的基础上发展起来的,它比OTL功放的频带更宽,保真度更高。OCL功放是一种直接耦合的多级放大器,它运用了许多电子器件,包含了多种基本电路形式。 OCL功率放大器采用两组电源供电,使用了正负电源,在电压不太高的情况下,也能获得较大的输出功率,省去了输出端的耦合电容,使放大器低频特性得到扩展,OCL功放电路也是定压式输出电路,其电路由于性能比较好,所以广泛的应用于高保真扩音设备中。 2 主要技术指标 最大不失真输出功率:Pom≥8w 负载阻抗(扬声器):R L=10Ω 频率响应:f=50Hz~20kHz 非线性失真系数:γ≤功率放大器1% 输入灵敏度:Vi≤300mv 稳定性:电源升高和降低20%时,输出零点漂移≤100mv 3实验用仪器: 直流稳压电源一台 低频信号发生器一台 低频毫伏表一台 示波器一台 万用表一台 晶体管图示仪一台 失真度测量仪一台 4电路原理 OC L功率放大器时一种直接耦合的多级放大器,总体可分为三个部分

电路实验报告二

实验二、基尔霍夫定律的验证 一、实验目的 1.通过实验验证基尔霍夫电流定律和电压定律,巩固所学理论知识。 2.加深对参考方向概念的理解。 二、器材设备 双路直流稳压电源,直流电路单元板(TS-B-28),万用表 三、实验原理 基尔霍夫节点电流定律: 电路中任意时刻流进(或流出)任一节点的电流的代数和等于零。其数学表达式为: ∑=0 I (2-1) i 基尔霍夫回路电压定律: 电路中任意时刻,沿着任一节闭合回路,电压的代数和等于零。其数学表达式为: ∑=0 U (2-2) i 电路的参考方向: 在电路中假定一个方向为参考,称为参考方向。当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。 四.实验内容及步骤 本实验在直流电路单元板(TS -B-28)上进行,实验电路如图2-1所示。图中X1、X2、X3、X4、X5、X6为节点B的三条支路测量接口。 4.1、验证KCL定律 测量节点B的某支路的电流时,可假定流入节点B的电流为正,并将另外两个支路的测量接口短接,再将电流表的负极接到B点上,电流表的正极接到该支路的接口上(如图2-2)。

1. 按图2-2(a)接好实验电路,再将双路直流稳压电源的输出电压调节旋钮沿逆时针方向调到底,然后打开电源开关,调节电压输出,使U1=10.00V,U2=18.00V,测出AB支路的电流I1值,并在表2-1中记下测量值。 2.将电路转换成图2-2(b)形式,测出并记录BC支路的电流I2值。再将电路转换成图2-2(c)形式,测出并记录BE支路的电流I3值.。 3. 计算∑i I数值,验证基尔霍夫电流定律的正确性。利用电路中已知的电阻及电源电压值,应用电路定律计算出I1、I2、I3值并与测得的I1、I2、I3值比较,求出各测量值的相对误差。 表2-1(保留小数点后两位) 4.2、验证KVL定律 当要测量电压时,应将三个支路的测量接口短接,再取ABEFA回路为回路I,BCDEB 回路为回路II,可选取顺时针方向为绕行方向,依次测量两回路各支路的电压值。 1. 将电路转换成图2-3形式,仍保持U1=10.00V,U2=18.00V取顺时针方向为绕行方向,选择合适的电压表量程,依次测出回路I中各支路电压U AB、U BE、U EF、U FA和回路II中各支路电压U BC、U CD、U DE、U EB,并在表2-2中记下测量值。 2. 计算∑i U数值,验证基尔霍夫电压定律的正确性。利用已知的电阻及电源电压值,应用电路定律计算出上述各支路的电压值并与测得的值比较,求出各测量值的相对误差。 表2-2(保留小数点后三位) [数据处理,保留小数点后三位] 一、利用基尔霍夫定律计算节点B各支路的电流及回路Ⅰ、回路Ⅱ各支路的电压值。 设图2-3电路的节点B各支路的电流方向如图,取流入节点的电流方向为参考方向,则据基尔霍夫电流定律有:I1+I2=-I3 (2-3)另I4=I1、I2=I5(2-4)取顺时针方向为电压的参考方向,则据基尔霍夫电压定律有: 回路Ⅰ:R1×I1-R3×I3+R4×I1=U1(2-5)

模电函数信号发生器实验报告

电子电路模拟综合实验 2009211120 班 09210580(07)号 桂柯易

实验1 函数信号发生器的设计与调测 摘要 使用运放组成的积分电路产生一定频率和周期的三角波、方波(提高要求中通过改变积分电路两段的积分常数从而产生锯齿波电压,同时改变方波的占空比),将三角波信号接入下级差动放大电路(电流镜提供工作电流),利用三极管线性区及饱和区的放大特性产生正弦波电压并输出。 关键词 运放积分电路差动发达电路镜像电流源 实验内容 1、基本要求: a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。 1)输出频率能在1-10KHz范围内连续可调,无明显失真; 2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%; 3)三角波Uopp=8V; 4)正弦波Uopp>1V。 b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的 电路原理图(SCH) 2、提高要求: a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。 b)三种输出波形的输出阻抗小于100欧。 c)用PROTEL软件绘制完整的印制电路板图(PCB)。 设计思路、总体结构框图 分段设计,首先产生方波-三角波,再与差动放大电路相连。 分块电路和总体电路的设计(1)方波-三角波产生电路: 正弦波产生电路三角波产生电路 方波产生电路

首先,稳压管采用既定原件2DW232,保证了输出方波电压Uo1的峰峰值为12V,基本要求三角波输出电压峰峰值为8V,考虑到平衡电阻R3的取值问题,且要保证R1/Rf=2/3,计算决定令Rf=12K,R1=8K,R3=5K。又由方波的上升、下降沿要求,第一级运放采用转换速度很快的LM318,Ro为输出限流电阻,不宜太大,最后采用1K欧电阻。二级运放对转换速度要求不是很高,故采用UA741。考虑到电容C1不宜过小,不然误差可能较大,故C1=0.1uF,最后根据公式,Rw抽头位于中点时R2的值约为300欧,进而确定平衡电阻R4的阻值。考虑到电路的安全问题,在滑阻的接地端串接了一个1K的电阻。(注:实际调测时因为滑阻转动不太方便,所以通过不断换滑阻的方式确定适当频率要求下Rw的阻值,我的电路最后使用的是1K欧的滑阻) (2)正弦波产生电路:

9.5非正弦波发生电路

9.信号发生电路 9.5 非正弦波发生电路 ——基本概念

基本概念 (1)非正弦波发生电路的组成 ①具有开关特性的器件 滞回比较器滞回比较器。。 ②反馈网络将输出电压恰当地反馈到具有开关特性器件的输入端 将输出电压恰当地反馈到具有开关特性器件的输入端。。③延迟环节延迟环节((积分环节积分环节))利用RC 电路的充电路的充、、放电特性来实现延迟放电特性来实现延迟。。 (2)非正弦波发生电路的振荡条件 只要经过一定延迟时间后的反馈信号能使电压比较器的输出状态发生改变改变,,就能产生周期性的振荡就能产生周期性的振荡。。合二为一 “反馈延迟反馈延迟,,比较跳变”

基本概念 (3)非正弦波发生电路的分析方法 ①检查电路组成 检查电路是否具有电压比较器检查电路是否具有电压比较器,,反馈网络反馈网络、、延迟或积分环节延迟或积分环节。。 ②分析振荡条件 首先计算阈值电压首先计算阈值电压。它是判断电压比较器输出状态发生跳变的依据它是判断电压比较器输出状态发生跳变的依据它是判断电压比较器输出状态发生跳变的依据。。其次分析电路的工作原理其次分析电路的工作原理。。通过具有延迟作用的反馈网络,输出电压是否可以在高低电平之间跳变是否可以在高低电平之间跳变。。 ③估算波形参数 包括信号的峰峰值和振荡周期包括信号的峰峰值和振荡周期。。

9.信号发生电路 9.5 非正弦波发生电路 ——方波和矩形波发生电路

方波发生电路 (1) 电路组成 (2) 振荡条件当时,当 时,①阈值电压 的估算由反相输入的滞回比较器和 电路组成电路组成,,回路既作为反馈网络回路既作为反馈网络,,又作为延迟环节又作为延迟环节。。

电位电压的测定实验报告范文

2020 电位电压的测定实验报告范文 Contract Template

电位电压的测定实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:电极电位的测量实验报告 一.实验目的 1.理解电极电位的意义及主要影响因素 2.熟悉甘汞参比电极的性能以及工作原理 3.知道电化学工作站与计算机的搭配使用方法 二.实验原理 电极和溶液界面双电层的电位称为绝对电极电位,它直接反应了电极过程的热力学和动力学特征,但绝对电极电位是无法测量的。在实际研究中,测量电极电位组成的原电池的电动势,而测量电极电位所用的参考对象的电极称为参考电极,如标准氢电极、甘汞电极、银-氯化银电极等,该电池的电动势为: E=φ待测-φ参比 上述电池电动势可以使用高阻抗的电压表或电位差计来计量在该实验中,采用甘汞电极为研究电极,铁氰、化钾/亚铁

氰、化钾为测量电极。在1mol的KCl支持电解质下,分别用10mM 摩尔比1:1和1:2的铁氰、化钾/亚铁氰、化钾溶液在常温(27℃)以及45℃下测量,收集数据,可得到相同温度不同浓度的两条开路电位随时间变化曲线、相同浓度不同温度的两条开路电位随时间变化曲线。可以用电极电势的能斯特方程讨论温度对于电极电势的影响 三.实验器材 电化学工作站;电解池;甘汞电极;玻碳电极;水浴锅 铁氰、化钾/亚铁氰、化钾溶液(摩尔比1:1和1:2)(支持电解质为1MKCl); 砂纸;去离子水 四.实验步骤 1.在玻碳电极上蘸一些去离子水,然后轻轻在细砂纸上打磨至光亮,最后再用去离子水冲洗。电化学工作站的电极也用砂纸轻轻打磨 2.在电解池中加入铁氰、化钾/亚铁氰、化钾溶液至其1/2体积,将玻碳电极和甘汞电极插入电解池中并固定好,将两电极与电化学工作站连接好,绿色头的电极连接工作电极,白色头的电极连接参比电极。 3.点开电化学工作站控制软件,点击setup―技术(technique)―开路电压―时间,设置记录时间为5min,记录数据时间间隔为0.1s,开始进行数据记录,完成后以txt形式保存实验结果。

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

简易函数发生器的设计与制作电子实验报告

目录 1设计任务 (1)实验名称 (2)实验目的 (3)实验要求 (4)主要技术指标 2 设计分析 (1)实验原理 (2)方案论证比较 (3)系统功能及设计框图 3电路设计过程 (1)电路各部分设计 a分压电路的设计 b跟随器的设 c反相器的设计 d积分电路的分析与设计 e 差分放大电路的设计 f反馈电路的设计

(2)电路规格计算 4设计总图及元件列表调试(1)总图 (2)元件列表 (3)电路修正 5实验结论及经验总结 (1)注意事项 (2)实验感想

1 设计任务 (1) 实验名称:简易函数发生器的设计与制作 (2)实验目的: a.了解电路系统的设计过程,增加动手能力,理论联系实践 b.进一步学习模电放大器,积分器电路的特性和设计方法 c.巩固基本的电学仪器的使用方法 d.掌握波形的转换电路及通过反馈进行电路控制的方法 (3)实验要求: a 用基本集成放大器,三极管,电阻电容等制作一个简易函数发生器。 b 用EWB软件进行仿真设计求得各电压电阻参数。 (4)主要技术指标 a 函数发生器输入电压为0-2V,输入频率为0-10KHz. b. 函数发生器可以输出方波,三角波,正弦波等波形 c. 输出三角波的幅度为-4V--+4V,输出正弦波幅度为-2V——+2V,方波幅度为0-10V 。

2 设计分析 (1)实验原理: 本设计实验通过模电教学中常用的集成运放,三极管,电容等器件让学生自主设计简易函数发生器。 函数发生器由电压控制,可实现方波,三角波,正,需要在电路中加入反馈,使得电压反向器产生交替的电压形成方波。整个电路基本框图弦波按照一定频率输出。三角波的形成可以通过方波积分形成,而三角波经过单入单出差分放大器后产生饱和失真,三角波顶端变平滑,可近似看做正弦波。要控制方波的输出,必须在积分电路后加入负反馈,使得反向器控制电路交替正负从而形成方波信号。 (2)方案论证比较: 方案1:

电位电压的测定实验报告范文三篇.doc

电位电压的测定实验报告范文三篇 篇一:电极电位的测量实验报告 一.实验目的 1. 理解电极电位的意义及主要影响因素 2. 熟悉甘汞参比电极的性能以及工作原理 3. 知道电化学工作站与计算机的搭配使用方法 二.实验原理 电极和溶液界面双电层的电位称为绝对电极电位,它直接反应了电极过程的热力学和动力学特征,但绝对电极电位是无法测量的。在实际研究中,测量电极电位组成的原电池的电动势,而测量电极电位所用的参考对象的电极称为参考电极,如标准氢电极、甘汞电极、银-氯化银电极等,该电池的电动势为:E=φ待测-φ参比 上述电池电动势可以使用高阻抗的电压表或电位差计来计量 在该实验中,采用甘汞电极为研究电极,铁氰、化钾/亚铁氰、化钾为测量电极。在1mol的KCl支持电解质下,分别用10mM摩尔比1:1和1:2的铁氰、化钾/亚铁氰、化钾溶液在常温(27℃)以及45℃下测量,收集数据,可得到相同温度不同浓度的两条开路电位随时间变化曲线、相同浓度不同温度的两条开路电位随时间变化曲线。可以用电极电势的能斯特方程讨论温度

对于电极电势的影响 三.实验器材 电化学工作站;电解池;甘汞电极;玻碳电极;水浴锅 铁氰、化钾/亚铁氰、化钾溶液(摩尔比1:1和1:2)(支持电解质为1M KCl); 砂纸;去离子水 四.实验步骤 1. 在玻碳电极上蘸一些去离子水,然后轻轻在细砂纸上打磨至光亮,最后再用去离子水冲洗。电化学工作站的电极也用砂纸轻轻打磨 2. 在电解池中加入铁氰、化钾/亚铁氰、化钾溶液至其1/2体积,将玻碳电极和甘汞电极插入电解池中并固定好,将两电极与电化学工作站连接好,绿色头的电极连接工作电极,白色头的电极连接参比电极。 3. 点开电化学工作站控制软件,点击 setup—技术(technique)—开路电压—时间,设置记录时间为5min,记录数据时间间隔为0.1s,开始进行数据记录,完成后以txt形式保存实验结果。 4. 将电解池放入45度水浴锅中,再重复一次步骤2和步骤3。 5. 将电解液换成铁氰、化钾/亚铁氰、化钾溶液(1:2)后重复一次步骤2至4 6. 实验结束后清洗电极和电解池,关好

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

基尔霍夫定律实验报告范本(完整版)

报告编号:YT-FS-3662-30 基尔霍夫定律实验报告范 本(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

基尔霍夫定律实验报告范本(完整 版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 (1)加深对基尔霍夫定律的理解。 (2)学习验证定律的方法和仪器仪表的正确使用。 二、实验原理及说明 基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。 基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。 (1)基尔霍夫电流定律(KCL)。在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于

零,即∑i=0。通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。 (2)基尔霍夫电压定律(KVL)。在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任—回路有∑u=0。在写此式时,首先需要任意指定一个回路绕行的方向。凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。 (3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。 三、实验仪器仪表 四、实验内容及方法步骤 (1)验证(KCL)定律,即∑i=0。分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。参考电路见图1-1、图1-2、图

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

(完整版)直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。 3、了解掌握Proteus软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图2-3所示。 t

信号发生器实验报告(DOC)

信号发生器 F组 组长:*** 组员:***、*** 2013年8月12日星期一

1系统方案 (4) 1.1系统方案论证与选择 (4) 1.2方案描述 (4) 2理论分析与计算 (5) 3电路与程序设计 (6) 3.1电路的设计 (6) 3.1.1 ICL8038模块电路 (6) 3.1.2 放大电路 (6) 3.2程序的设计 (7) 4测试方案与测试结果 (9) 4.1测试仪器与结果 (9) 4.2调试出现的问题及解决方案 (9) 5 小结 (10)

本系统设计的是信号发生器,是以 ICL8038和 STC89C51为核心设计的数控及扫频函数信号发生器。ICL8038作为函数信号源结合外围电路产生占空比和频率可调的正弦波、方波、三角波;该函数信号发生器的频率可调范围1~100kHz,波形稳定,无明显失真。单片机控制LCD12864液晶显示频率、频段和波形名称。 关键字:信号发生器ICL8038、 STC89C51、波形、LCD12864

信号发生器实验报告 1系统方案 1.1系统方案论证与选择 方案一:由单片机内部产生波形,经DAC0832输出,然后再经过uA741放大信号后,最后经过CD4046和CD4518组成的锁相环放大频率输出波形,可是输出的波形频率太低,达不到设计要求。 方案二:采用单片机对信号发生器MAX038芯片进行程序控制的函数发生器,该发生器有正弦波、三角波和方波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。MAX038为核心构成硬件电路能自动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯片价格太高,过于昂贵。 方案三:利用芯片ICL8038产生正弦波、方波和三角波三种波形,根据电阻和电容的不同可以调节波形的频率和占空比,产生的波形频率足够大,能达到设计要求,而且ICL8038价格比较便宜,设计起来成本较低。 综上所述,所以选择第三个方案来设计信号发生器。 1.2方案描述 本次设计方案是由ICL8038 芯片和外围电路产生三种波形,由公式: ,改变电阻和电容的大小可以改变波形的频率,有开关控制频段和波形并给单片机一个信号,由单片机识别并在LCD液晶屏上显示,电路的系统法案框图为下图1所示: 图1 总系统框图

信号发生器实验报告(终)

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶 m 体管的截止电压值。 图4 三角波→正弦波变换电路

电路实验报告参考范本

实验报告可以安装这个格式写,然后用16K纸打印实验名称:电路元件的伏安特性 姓名:学号: 同组人:学号:评分: 专业、班级:日期:指导老师: 一、实验目的 1、研究电阻元件和直流电源的伏安特性及其测定方法。 2、学习直流仪表设备的使用方法。 二、仪器设备 序号名称型号与规格数量备注 1 可调直流稳压电源0~30V 1 2 直流数字毫安表0~200mA 1 3 直流数字电压表0~200V 1 4 线性电阻器200Ω,1KΩ/8W 1 DGJ-05 5 灯泡12V、0.1A 1 6 可调电阻器0~99999.9Ω/2W 1 三、实验内容 1、理想电压源的伏安特性 按图1-6接线,电流表接线时使用电流插孔。接线前调稳压电源Us(V)=10(V)。按表1-1改变R数值(将可调电阻与电路断开后调整R值),记录相应的电压值与电流值于表1-1中。 2、实际电压源的伏安特性 按图1-7接线。接线前调稳压电源Us(V)=10(V)。按表1-2改变R数值(将可调电阻与电路断开后调整),记录相应的电压值与电流值于表1-2中。 3、线性电阻的伏安特性 按图1-8接线。按表1-3改变直流稳压电源的电压Us,测定相应的电流值和电压值记录于表1-3中。 4、测定非线性白炽灯泡的伏安特性 将图1-8中的1K电阻R换成一只12V,0.1A的灯泡,测量表1-4中的数据。 五、实验注意事项 1. 进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,勿使仪表超量程,仪表的极性亦不可接错。 2.更换直流电流表的量程时,要先按停止按钮后才能更换量程(因为要改线路)。 3.调节电压源旋钮时,速度不宜过快。 4.每做完一个实验,需先将电压源调零后,再做下一个实验。 1

相关文档
最新文档