现代混凝土配合比设计注意事项

现代混凝土配合比设计注意事项
现代混凝土配合比设计注意事项

现代混凝土配合比设计注意事项

我国混凝土的现状

■强度水平提高

■严酷环境中工程增多,耐久性要求突出

■水泥和混凝土的关系变化

■流变性能要求提高

■现场劳动力素质、管理水平与质量要求的矛盾

传统观念形成的理由

例如,许多规范、标准限定混凝土中粉煤灰的掺量应在25%以下,尤其是预应力混凝土构

件中的掺量。这是因为过去我们的混凝土中没有掺用减水剂,混凝土的水灰比较大(一般都高于

0.5)。在这种情况下掺入粉煤灰,减少水泥的用量,就会使混凝土的凝结时间明显延缓、硬化速率减慢,表现为早期强度低、混凝土渗透性增大。

高水灰比的水泥浆体里,水泥颗粒悬浮于水分中,水化环境良好,可以迅速地生成表面积增大1000倍的硅酸盐水化物等,有良好地填充浆体内空隙的能力。虽然从颗粒形状来说,粉煤灰易于堆积密实,但是它水化缓慢,生成的凝胶量少,难以填充颗粒周围的空隙,所以掺粉煤灰水泥浆体的强度和其他性能总是随其掺量增大(水泥用量减少)呈下降趋势

(在早龄期尤为显著)。

为什么粉煤灰掺量如此之大的混凝土各项性能会很优异呢?

但是现今高效减水剂的应用已经很普遍,混凝土所用水灰比,尤其是掺有矿物掺合料混凝土的水胶比很容易降至0.5以下,同时现今的水泥活性则远高于二十世纪八十年代以前的水泥(因为早强矿物C3S(硅酸三钙)含量显著提高、粉磨细度加大),因此掺加矿物掺合料的混凝土,即使是掺量很大的混凝土,与过去混凝土相比,其早期强度的发展速率~

也大大加快了。

在低水胶比(如0.3左右)的水泥浆体里情况就大不一样了。不掺粉煤灰时,高活性的水泥因水化环境较差,即缺水而不能充分水化,所以随水灰比下降,未水化水泥的内芯增大,生成产物量下降;但由于颗粒间的距离减小,要填充的空隙同时减小,因此混凝土强度发展迅速。

这种情况下用粉煤灰代替部分水泥,在低水胶比条件下,水泥的水化条件相对改善,因为粉煤灰水化缓慢,使混凝土的“水灰比”增大,水泥的水化程度因而提高,这种作用机理随着粉煤灰的掺量增大愈加明显(掺量为58%:左右,初期水灰比则约0.65)。水泥水化程度的改善,则有利于粉煤灰作用的发挥,然而与此同时,需要粉_________ 空隙已经大大减小,所以其水化能力差的弱点在低水胶比条件下被掩盖,而降低温升等其他优点则依然起着有利于混凝土性能提高的作用。

以上所述低水胶比下粉煤灰作用的变化,可以用一个“动态堆积”的概念来认识,这是相对沿用的静态堆积而言的。通常在选择混凝土原材料和配合比时,是以各种原材料在加水之前的堆积尽量密实为依据的;但是当加水搅拌后,特别是在低水胶比条件下,如何通过粉状颗粒水化的交叉进行,使初始水胶比尽量降低,混凝土单位用水量尽量减少,配制出的混凝土在密实成型的前提下,经过水化硬化过程,形成的微结构应更为密实。

传统混凝土配合比设计方法的问题整体体强度水平高了,拌合物从低塑性发展到当前的泵送,流动性大大提高;原材料也有很大变化:水泥强度等级高细度细,骨料粒形和级配

差了,且品种多样化,品质相差很大;外加剂和矿物掺合料普遍使用,水胶比普遍降低,关键是混凝土耐久性逐渐成为混凝土的重要性能。传统混凝土配合比设计方法以保罗米公式为重要基础已经不适合现代混凝土。

超量替代法存在的问题

超量取代法:有关配合比的规范中提出粉煤灰的超量取代法,即在能被接受的掺量范

围取代水泥,另多掺一部分取代砂子这只是一种计算而已,在数量上代砂,实际上因为细度量级的差别在功能上粉煤灰并不是砂,不可能代砂,仍然是胶凝材料,却因为超量而变

相增加浆体含量。有人认为掺粉煤灰后的混凝土抗裂性改善不明显,浆骨比增大是其原因之一建议今后不再采用这种实际上增加浆骨比的计算方法现代混凝土技术的简单与复杂混凝土是什么?

混凝土是用最简单的工艺制作的最复杂的体系。

..简单得“……通常认为任何站在那里没事干的人都能直接就去浇筑或捣实混凝土”

--- N eville;

g复杂得至今无法建立实验室指标试验结果和同样复杂的现场条件下的混凝土行为的

相关关系;人们仍不确知混凝土的体内在服役的环境中随时间究竟发生了什么。

复杂的体系

混凝土是十分复杂的一个材料体系,恐怕是人类所用各种材料中最为复杂的。

砂、石、水泥、外加剂、矿物掺合料与水的简单混合,即刻出现一个有明显“生命历程”的材料体系,其中水泥自发进行着长期延续的水化硬化过程,带动整个体系经历复杂的物理一化学一力学的变化过程,而就在这变化过程中得到长期使用。

混凝土是极其复杂的多相、多尺度的非匀质体,这就造成了混凝土材料本身的高度复杂性和随机变化性,加之我国幅员辽阔,对于使用地方性材料的混凝土而言,其变化就更加复杂

了。

仅就原材料而言,各地、各厂的水泥是变化的,哪怕就是同一个水泥厂生产的水泥也是变化的,骨料是变化的,外加剂是变化的,粉煤灰更是变化的。

对混凝土,人们的描述用语是:多组分、多相、多种尺度颗粒物料混杂堆积互相填充的组成结构,具有不稳定性、非均质性、不连续性、多种尺度的孔隙结构、接触界面情况复杂,而这一切都在变动等特点,……。

混凝土里面包含着综合许多门学科内容的大学问。可惜,探究这些学问是十分复杂而艰难

的。

现代混凝土技术趋于复杂混凝土配合比对于新拌混凝土和硬化混凝土的重要意义不言而喻。现代混凝土使用复合超塑化剂和超细矿物质掺合料,近年来机制砂逐渐成为建筑用砂的主要品种后矿物组成与品质差异比较大,再加之各地水泥在组分、与外加剂相容性、开裂敏感性方面有较大不同,这些都使配合比设计趋于复杂。

原因是使用环境、原材料和施工方法的多样性。例如今年暑期在大连理工大学举行的首届全国大学生混凝土材料设计大赛中呈现的现象。

正所谓:

人工造石本无奇,砂子石头和水泥。

一朝采用多组分,百变技法令人迷。

什么是当代混凝土?

当代混凝土是建立在_____________________________________________________________ 上的六组分混凝土。

预拌混凝土是当代混凝土的主体品种。以预拌混凝土、泵送为主流。拌和料的流变性能成为重要问题。

我国混凝土规范与设计方法的问题

国内外学者提出多种配合比设计方法,大多是以经验为基础的半定量设计方法。正如陈肇元院士所说:能满足质量控制标准的混凝土,可以有不同的配合比设计方法”。传统混凝土配合比设计方法的问题

我国自佃70年代引进高效减水剂,直到佃80年代末至今得以大量使用后,混凝土强度不再依赖

于水泥强度,用GB175—77水泥标准的425#水泥(相当于现行水泥标准的

32.5

等)已能配制出C60的泵送混凝土在本质上,混凝土主要还是由水泥骨料和水组成的

硬化,但是其内涵已发生很大变化。

整体体强度水平高了,拌合物从低塑性发展到当前的泵送,流动性大大提高;原材料也有很大变化:水泥强度等级高细度细,骨料粒形和级配差了,且品种多样化,品质相差很大;外加剂和矿物掺合料普遍使用,水胶比普遍降低,关键是混凝土耐久性逐渐成为混凝土的重要性能。传统混凝土配合比设计方法以保罗米公式为重要基础已经不适合现代混凝土。

普通配合比设计新规范的要点

3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度

等级的混凝土,可不受表3.0.4的限制。

表3.0.4 混凝土的最小胶凝材料用量

注:①结构用混凝土必须以上

②所有水泥用量均未说明水泥品种和强度

普通配合比设计新规范的要点

3.0.5 矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量

宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。

表3.0.5-1钢筋混凝土中矿物掺合料最大掺量

表预应力钢筋混凝土中矿物掺合料最大掺量

5 2 5 1 5 0200.100.0 卑、4進

mpm

基准

粉煤灰

確灰/%

> 0.40 25 20 粒化高炉矿渣粉 < 0.40

55 45 > 0.40 45 35 钢渣粉 一 20 10 磷渣粉 一 20 10 硅灰

一 10 10 复合掺合料

< 0.40

55 45 > 0.40

45

35

3.0.8 对于有预防混凝土碱骨料反应设计要求的工程,混凝土中最大碱含量不应大于

3.0kg/m3,并宜掺用适量粉煤灰等矿物掺合料;对于矿物掺合料碱含量,粉煤灰碱含量可 取实测值的1/6,粒化高炉矿渣粉碱含量可取实测值的 1/2。

预防混凝土碱骨料反应

对可能发生碱-骨料反应的混凝土,宜采用大掺量矿物掺和料;单掺磨细矿渣的用量占胶凝 材料总重

a > 50%,单掺粉煤灰a >40%,单掺火山灰质材料不小于30%,并应降低水 泥和矿物掺和料中的含碱

量和粉煤灰中的游离氧化钙含量。

AAR 指碱集料反应

07

川型水泥,碱含*1%

?F级盼煤灰

■ASTMC227 -----

0 10 20 30 40

当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差d可按表4.0.2取值。

混凝土强度标准值< C20C25~C45C50~ C55

4.0

5.0

6.0

遇有下列情况时应提高混凝土配制强度:

1 ?现场条件与试验室条件有显著差异时;

2. C30等级及其以上强度等级的混凝土,采用非统计方法评定时。

5.1.1混凝土强度等级不大于C60等级时,混凝土水胶比宜按下式计算:

f b

W/B 二、£a

当胶凝材料28d胶砂抗压强度无实测值时,公式( 5.1.1-1)中的fb值可按下式计算:

f b = f

g s g f ce 表5.1.1-1粉煤灰影响系数f和粒化高炉矿渣粉影响系数s

当水泥胶砂抗压强度无实测值时,公式)中的值可按下式计算:

fee C g f ce,g

5.1.2回归系数:a和:b宜按下列规定确定:

1?根据工程所使用的原材料,通过试验建立的水胶比与混凝土强度关系式来确定;

2?当不具备上述试验统计资料时,可按表5.1.2选用。

表5.1.2 回归系数二a、b选用表

应至少采用三个不同的配合比。当采用三个不同的配合比时,其中一个应为本规程第6.1.4条确定的试拌配合比,另外两个配合比的水胶比宜较试拌配合比分别增加和减少0.05,用水量应与试拌配合比相同,砂率可分别增加和减少1%。

6.2.4 配合比调整后,应对设计要求的混凝土耐久性能进行试验,符合设计规定的

耐久性能要求的配合比方可确定为设计配合比。

表7.3.3高强混凝土水胶比、胶凝材料用量和砂率

C100 0.2 4 ?0.26 550?600

外加剂和矿物掺合料的品种、掺量,应通过试配确定;矿物掺合料掺量宜为25%?40% ; 硅灰掺量不宜大于10% ;粗骨料最大粒径不大于25毫米;水泥用量不宜大于500kg/m3。

733计算后调整拌合物的试拌配合比,另外两个配合比的水胶比,宜较试拌配合比分别增加和减少0.02。

7.3.6高强混凝土抗压强度宜采用标准试件通过试验测定;使用非标准尺寸试件时,尺寸折算

系数应由试验确定。

3.0.3 控制最大水胶比是保证混凝土耐久性能的重要手段,而水胶比又是混凝土配合比设计

的首要参数。《混凝土结构设计规范》GB50010对不同环境条件的混凝土最大水胶比作了规

定。

3.0.4 在控制最大水胶比条件下,表 3.0.4中最小胶凝材料用量是满足混凝土施工

性能和掺加矿物掺合料后满足混凝土耐久性能的胶凝材料用量下限。

3.0.5 规定矿物掺合料最大掺量主要是为了保证混凝土耐久性能。当采用超出表

3.0.5-1和表3.0.5-2给出的矿物掺合料最大掺量时,全然否定不妥,通过对混凝土性能进

行全面试验论证,证明结构混凝土安全性和耐久性可以满足设计要求后,还是能够采用的。

当掺量小于20%时,可按普通水泥使用

当掺量大于20%时,水胶比应不大于0.5

当掺量大于30%时,水胶比应不大于0.45

当掺量超过50%时,水胶比应不大于0.42

随掺量的增大,水胶比降低

在没有特殊规定的情况下,混凝土强度试件在28d龄期进行抗压试验;当设计规定

采用60d或90d等其它龄期强度时,混凝土强度试件在相应的龄期进行抗压试验。

水胶比是不是一定要通过计算获得?

新规范规定“混凝土强度等级小于C60等级时,混凝土水胶比宜按下式计算”

W/B 二

■新规范采用改进的保罗米公式来计算水胶比。尽管对公式中的参数和系数作了修改,此公式仍是依据胶凝材料28天胶砂强度与混凝土28天配制强度的关系建立的混凝土水胶比

计算公式。这样的混凝土配合比设计方法,首先要满足的是混凝土28天强度。

但如果我们更多地从耐久性角度考虑,在结构荷载允许的前提下,对掺加较多矿物掺合料的混凝土可能越来越多地选择60天、90天或更长龄期评定混凝土强度。如此新规范使用改进的保罗米公式就不再适合。

许多人认为水胶比计算出来比较可靠,其实并非如此。对于一定等级的混凝土如果考虑耐久性要求,在特定胶凝材料组成下水胶比的范围并不大,可以进行选择,选择3-4个水

胶比进行混凝土试配。

也就是说混凝土的水胶比不一定是算出来的,可依据混凝土性能目标进行选择,经试配确定,这需要我们基于对现代混凝土的深刻认识而转变观念。

混凝土单位体积用水量的重要性没有得到充分体现

规范将最少水泥用量”改为最少胶凝材料用量”。体现了现代混凝土的技术理念,但没有限定最高胶凝材料用量。胶凝材料用量过高,混凝土体积稳定性差,开裂的风险就越大。

■规范对混凝土浆骨比指标没有提及。其实浆骨比是保证硬化前后混凝土性能的核心因素。

尤其对于混凝土体积稳定性更为重要。

应参考《混凝土结构耐久性设计规范》,规定胶凝材料用量上限。

■其实如果充分重视混凝土耐久性,配合比设计理念应该实现从水胶比一强度的关系转变到单位体积用水量一耐久性关系上来。

矿物掺合料掺加比例的规定考虑不周

规范规定了矿物掺合料最大掺量,并在条款说明中提出当采用超出表3.0.5-1和表3.0.5-2给出的矿物掺合料最大掺量时,全然否定不妥,通过对混凝土性能进行全面试验论证,证明结构混凝土安全性和耐久性能满足设计要求后,还是能够采用的。

虽然为混凝土大比例掺加矿物掺合料留下了余地,但作为规范这样明文规定矿物掺合料最大掺加比例不利于绿色高性能混凝土技术的推广应用。

其实混凝土矿物掺合料的掺加比例应根据使用环境、结构形式和混凝土水胶比而定,例如北京近年来许多工程的大基础底板混凝土中矿物掺合料掺加比例都超过了新规范规定,混凝土性能良好,技术趋于成熟。

至于预应力钢筋混凝土中掺合料掺加比例更低的要求,可能是考虑张拉时混凝土强度的需要,其实过早张拉导致混凝土追求高早强对于耐久性不利。

混凝土强度试验水胶比取值规定得商榷

规范6. 1. 5在试拌配合比的基础上应进行混凝土强度试验,并应符合下列规定:应至少采

用三个不同的配合比。当采用三个不同的配合比时,其中一个应为本规程第 6.1.4条确定的

试拌配合比,另外两个配合比的水胶比宜较试拌配合比分别增加和减少0.05。对于中低强

度混凝土试配,这样的水胶比取值幅度可能过大,笔者认为0.03较为适宜。

规范仍认为骨料干燥状态作为基础设计配合比为宜不能令人信服

目前混凝土大量使用机制砂,且混凝土骨料品种多,品质各异,尤其是吸水率差别大时以干燥状态设计混凝土配合比可能造成有效水胶比不同;此外使用干燥状态骨料生产混凝土时,若骨料吸水多,则同时也吸附了一定量的减水剂,造成混凝土坍落度损失大;以干燥状态为基础设计配合比易导致混凝土生产中由于水的控制较难,质量波动增大。所以以

饱和面干状态骨料为混凝土配合比设计基础为宜。

质量法计算砂石存在问题

对于混凝土企业实验室,测定原材料密度的技术条件应该具备。由于混凝土矿物掺合料一般比水泥轻,且骨料表观密度差别也可能较大,假定表观密度可能不准。现代六组分混凝土的配合比设计应采用体积法更合理。

对于混凝土企业实验室,测定原材料密度的技术条件应该具备。由于混凝土矿物掺合料一般比水泥轻,且骨料表观密度差别也可能较大,假定表观密度可能不准。现代六组分混凝土的配合比设计应采用体积法更合理。

条款说明5.5中这样解释:在实际工程中,混凝土配合比设计通常采用质量法。混凝土配合比设计也允许采用体积法,可视具体技术需要选用。与质量法比较,体积法需要在测定水泥和矿物掺合料的密度以及骨料的表观密度等,对技术条件要求略高。

混凝土配合比设计规范不宜修订和保留

混凝土不是算出来的,而是配出来的,混凝土配合比设计可以编指南,定原则,但保留并修订设计规范其实没有必要。定的指标、限制越多,越具体,就越容易成为束缚混凝土技术人员的绳索”阻碍混凝土技术的发展。标准规范条款应该更多以性能要求和导向为主。

目前的工程实际是混凝土搅拌站试配出合理的配合比后,为了使混凝土配合比设计资料复合标准规范,按照现有规范设计方法挖空心思“对号入座”,编资料。

比如:C30混凝土配合比中实际用胶凝材料380kg,水胶比0.45,为了资料满足规范,混凝土搅拌站技术部门都采用反算的思路:从W/B到fb 再推算rf、rs。针对这些情况, 《普通混凝土配合比设计规程》JGJ55-2011又有何意义?规范编制人员应该认真反思。普通配合比设计新规范的点评

规范标准应该与时俱进,不能刻舟求剑。要深刻了解现代混凝土的复杂性。

抗压强度、变形性能和耐久性

混凝土抗压强度高与低,满足设计要求即可;

并非混凝土强度越高,就意味着水平”越高(HSC似乎还不过瘾,又出现了

UHSC)无论混凝土强度高低,必须具有匀质性、体积稳定性和耐久性,这是“根本” 抗渗混凝土

影响混凝土抗渗性最关键的两个指标是:

水胶比、粗骨料最大粒径事实上并不存在单独具有抗渗性超强的混凝土,其与混凝土强度等级不无关系使得C25 及以下的混凝土具有良好的抗渗性,才体现出水平

配制抗渗混凝土要点

限制水胶比

限制骨料最大粒径

控制粗骨料的粒形、级配、含泥量

控制细骨料的级配、含泥量

优先掺粉煤灰,其次掺磨细矿渣,有条件时,双掺,并掺入高效减水剂和引气剂

抗冻混凝土

混凝土抗冻性好,首先要求其抗渗性好

控制水胶比和骨料最大粒径

掺入高效减水剂和引气剂

控制临界强度

绝对(最好)不要使用防冻剂、早强剂

高强混凝土

现代混凝土技术赋予混凝土强度绝对是件“易如反掌”的事情高强混凝土技术之所以被单独提出来,并非配制“高强”有什么技术“玄机”;而是,强度越高,体积稳定性越差,开裂的风险就越大,如何确保高强混凝土的耐久性才是高强混凝土技术的难点所在

泵送混凝土

泵送混凝土有两个指标绝对要进行控制:第一,流动性与粘聚性的统一;第二,泵送压力的选择,即必须采用高压泵!

绝对不能以低压泵为“借口”,将本来已经满足泵送要求的混凝土拌合物的流动性人为地放大,这样带来的不仅仅是成本问题,更重要的是耐久性问题,这又是舍本逐末!

大体积混凝土

体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝结构混凝土应从控制原材料的温度入手水胶比过低也容易导致开裂!低与高,要权衡!原材料的温度,尤其是水泥的温度特别重要,拌和水要降温。

此外,早期养护更是重要!

关于配合比设计还要说的话

没有任何可以以不变应万变的配合比,试配工作是必须的,目前并没有什么全计

算”

对原材料质量差异的控制比对配料计量误差的限制更重要。

对变化了的材料不能使用不变的方法。

用科学思维方法指导混凝土技术

任何给工程带来好处的措施,必然同时存在某些不利因素,有所得必有所失。

没有任何事物(材料、技术)只有优点没有缺点,有利必有弊;必须因地制宜、因事制宜、因

时制宜、因人(使用者的素质)制宜。

对变化了的材料使用不变的方法往往会得出错误的结论。

新拌混凝土流动性大与小,能施工就行

混凝土强度高与低,满足设计要求就行

混凝土质量的根本有两点:一是混凝土长龄期强度的发展,二是混凝土结构的耐久性为此,混

凝土的匀质性、体积稳定性是必须满足的质量要求

配合比设计的原则与注意事项

低水胶比对现代混凝土很重要,依靠高效减水剂和优质矿物细粉掺合料实现混凝土的低水胶

比。

不能过分地提高胶凝材料的用量。胶凝材料过多,不仅成本高,混凝土的体积稳定性也差,同

时,对获得高的强度意义不大。应该通过合理调整粗细骨料用量及砂率控制空隙率,实现较低

水胶比下的良好和易性。

技术理念的改变

认为;昆凝土而t久性可以用控带H水肢比的办

,去来控芾U是名音俣的。阖为不星水月交比. 而星用

t对控制开裂更为重姜。

保持弓虽度丰目同白勺条彳牛下?可随之相应隅M氐水泥

用早,从而減小混癡土的温度收缩、自身收缩

干口干缩口所以为了获得耐久性,选择予昆癡土酉己合比的标准也必须进彳亍一次重大的改变g

R D LlHii tg, EJti ■"nHle Struct tire* fit Tine C- etii CI. Nf JOO 1

注意在強调从W/CIII強度关系转变到用水畳-耐久性关系过程,需要比现在惯用的建设实践更密切得多地关注骨料级配"应用良好的斗级配可以大幅度地降低用水量,进一步降低可以通过使用中效或高效減水剂,大掺呈粉煤灰或矿渣水淀,以及粗磨硅酸盐水泥来达到。

BuiklLi Oimble Sfi ucfure^ in The 21 * CJetitiiry. CI, M AF T2C0 ]

GB/T50476-2008混凝土结构耐久性设计规范条款

£ itj i 单位体积糧纂土的胶離聊料用■

址.骨料粒fttt小时可适SWin-

匕引气混擬上的皎凝材糾川看范帼与非引气混凝上英求相同.

GB/T50476-2008混凝土结构耐久性设计规范条款

环境类别与作用等级

*3.12 环境作用第81

注:对于无钢筋的壺臟土结构,坏境件用尊圾见344条规定.

B.1配筋混凝土的胶凝材料中,矿物掺和料用量占胶凝材料总量的比值应符合下表规定。

3.4.3结构构件的混凝土强度等级应同时满足构件承载能力和耐久性的设计要求。

表3^3 满足耐久性整求的}R操土星煤强度零圾

注;"对于预应力JB凝土构fh垠低强腹等绽竹或低于cw?

2.冻融环境作tII等级为U-D ffl II-F的混决上闵采用引气技术$

3、如能加大钢筋的保护展厚丿L大戡面爱压燃*柱的混凝上强度等级可yite J&中规定

的数值,但不应低F 3.4.4矢攪罡的素混腿tU低强度等级■

结构混凝土性能技术规范 6.2

表6.2不同等级混凝土最大浆骨比和用水量

径选择

表A3畝般土网最大公称齡血

简易配合比设计方法

吴中伟提出的简易配合比设计方法的基本原则是要求砂石有最小的混合空隙率,按绝对体积法原理计算。

具体步骤和实例如下:

1)首先选择高性能混凝土平均或常用性能指标作为基准,或选用工程要求的性能为基准,

然后再试配调整,满足其他条件或要求。

例如要求耐久性为低渗透性,要求用Nernst-Einstein法测定的氯离子扩散系数为(50?100)

x 10-14m2/s 配制强度为40?50MPa,工作性要求坍落度为180?200mm, 1h坍落度损

失不大于10%,无离析等

2)求砂石混合空隙率a,选择最小值

可先从砂率38%?40%开始,将不同砂石比的砂石混合,分三次装入一个

15?20L的不变形的容重筒中,用直径为15mm的圆头捣棒各插捣30下(或在振动台上振动至试料不再下沉为止),刮平表面后称量,并换算成松椎密度p 0 (kg/m3),

测出砂石混合料的混合表观密度p (kg/m3), 一般为2.65g/cm3左右。计算,最经济的混合空隙率约为16%,一般为20%?22%。

3)计算胶凝材料浆量

胶凝材料浆量等于砂石混合空隙体积加富余量。胶凝材料浆富余量取决于工作性要求和外加剂性质和掺

量,可先按坍落度180?200mm估计为8%?10%,由试拌决定。假设为8% , a为20%,则浆体积为a

+8%=28%,即280L/m3。

4)计算各组分用量

设选用水胶比为0.4,掺入磨细矿渣30%,水泥密度为3.15g/cm3磨细矿渣密度

2.5g/Cm3

则胶

凝材料用量

0.7

+

3.15

即1L 浆用胶凝材料1.35kg 。

1 m3胶凝材料总用量 =280X 1.35 =378 kg/m3

水泥用量 =378X 0.7=265 kg/m3 矿渣用量 =378X 0.3=113 kg/m3 水用量 =378x 0.4=151kg/m3

集料总用量 =(1000-280)x 2.65=1908 kg/m3 砂用量 =1908X 40% =763kg/m3 石用量 =佃08-763 =1145 kg/m3

因引入了浆体积富余量,总体积略超过 1m3,故所计算的各材料用量总需按实测的 表观密度校正。

在以上基础上,经多次试拌,求得符合要求的合理、经济的配合比。但针对此方法 提出两点改进建议,第一是浆体富余量在 8%以上,不一定在8—10%之间,由试 拌决定。第二是粗骨料应该采取两个以上粒级混拌的方法,使混拌后的粗骨料空隙 率小于42%。

浆体积 1

+0.4 2.5

混凝土配合比设计步骤分析报告

普通混凝土的配合比设计 普通混凝土的配合比是指混凝土的各组成材料数量之间的质量比例关系。确定比例关系的过程叫配合比设计。普通混凝土配合比,应根据原材料性能及对混凝土的技术要求进行计算,并经试验室试配、调整后确定。普通混凝土的组成材料主要包括水泥、粗集料、细集料和水,随着混凝土技术的发展,外加剂和掺和料的应用日益普遍,因此,其掺量也是配合比设计时需选定的。 混凝土配合比常用的表示方法有两种;一种以1m3混凝土中各项材料的质量表示,混凝土中的水泥、水、粗集料、细集料的实际用量按顺序表达,如水泥300Kg、水182 Kg、砂680 Kg、石子1310 Kg;另一种表示方法是以水泥、水、砂、石之间的相对质量比及水灰比表达,如前例可表示为1:2.26:4.37,W/C=0.61,我国目前采用的量质量比。 一、混凝土配合比设计的基本要求 配合比设计的任务,就是根据原材料的技术性能及施工条件,确定出能满足工程所要求的技术经济指标的各项组成材料的用量。其基本要; (1)达到混凝土结构设计要求的强度等级。 (2)满足混凝土施工所要求的和易性要求。 (3)满足工程所处环境和使用条件对混凝土耐久性的要求。 (4)符合经济原则,节约水泥,降低成本。 二、混凝土配合比设计的步骤 混凝土的配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计4个设计阶段。首先按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出“初步计算配合比”。基准配合比是在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正得到;实验室配合比是通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案;而施工配合绋考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,是实际应用的配合比,配合比设计的过程是逐一满足混凝土的强度、工作性、耐久性、节约水泥等要求的过程。 三、混凝土配合比设计的基本资料 在进行混凝土的配合比设计前,需确定和了解的基本资料。即设计的前提条件,主要有以下几个方面; (1)混凝土设计强度等级和强度的标准差。 (2)材料的基本情况;包括水泥品种、强度等级、实际强度、密度;砂的种类、表观密度、细度模数、含水率;石子种类、表观密度、含水率;是否掺外加剂,外加剂种类。 (3)混凝土的工作性要求,如坍落度指标。 (4)与耐久性有关的环境条件;如冻融状况、地下水情况等。 (5)工程特点及施工工艺;如构件几何尺寸、钢筋的疏密、浇筑振捣的方法等。 四、混凝土配合比设计中的三个基本参数的确定 混凝土的配合比设计,实质上就是确定单位体积混凝土拌和物中水、水泥。粗集料(石子)、细集料(砂)这4项组成材料之间的三个参数。即水和水泥之间的比例——水灰比;砂和石子间的比例——砂率;骨料与水泥浆之间的比例——单位用水量。在配合比设计中能正确确定这三个基本参数,就能使混凝土满足配合比设计的4项基本要求。

混凝土配合比设计——试算法

混凝土配合比设计的试算法 傅坚明戚勇军贾丽杰 [摘要]根据“每种骨料均有在某个粒径围颗粒含量较多,能在混合料中起决定性作用”的原理,应用富勒理想级配曲线公式方法来确定混凝土“相对密实而易于流动的悬浮密实结构骨料组合比例”,从而确立可操作性强、工作量小、对经验依赖性小的混凝土配合比设计方法——试算法 关键词混凝土配合比富勒级配试算法 引言 迄今为止,混凝土仍然是最有效和最适合于大宗使用的结构材料,同其他用于结构的建筑材料相比,混凝土最廉价、生产工艺最简单,具有不可替代的优势。但同时因为混凝土组成材料多样化,其原材料具有很强的地方性,现代建筑工程对混凝土性能的要求越来越多和越来越高,以及混凝土微结构对环境和时间的依赖性和不确知性,注定了混凝土材料结构体系的复杂性。因此对其配合比的设计极为关键。目前,国外有很多关于配合比设计可行方法的报道,如简易计算法、最大密实度法、最小浆骨比法、计算机法、正填法、逆填法、分步优化法、全计算法等,但都需要对其重要参数“用水量与砂率”根据经验进行假设,然后再进行试配验证。 无论哪种混凝土配合比的设计方法,从本质上来说都是建立一组独立方程式对所需要的未知数求解。但传统的混凝土是由水泥、骨料和水组成的,要求解的未知数为水泥用量、水用量、砂用量、石用量,当代混凝土由于普遍掺入矿物掺和料和高效减水剂,配合比中需要求出的未知数由传统的4个变成5个甚至6个(采用三元复合胶凝材已经是非常普遍的事情)。而所能够建立的独立方程式的数量却还是只有bolomy公式、砂率、全部体积之和等于1立方米这两个半,因为砂率是要从经验数据表格中选取的,充其量算半个(全计算法因创立了干砂浆的概念,增加一个独立方程,但仍少于未知数的量)。如果方程式数量少于未知数的量,从数学求解的结果只能够是无穷多。目前,常见的设计方法是依赖选择几个经验数据的方法来弥补。但是依赖的经验数据多了,就造成工作量巨大、对经验依赖性高、实际结果与设计目标偏差大的问题。 当绞尽脑汁仍然无法建立更多的独立方程式时,是否可以改变思路,采用分步解决、减少未知数数量的方法来解决或者改善呢?根据我们十余年的使用效果来看,是完全可行的。 1 参数的确定 待求参数:用水量、胶凝材用量、骨料用量

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

自密实混凝土配合比设计方案

自密实混凝土配合比设计方案 一.工程概况 二.设计依据 CECS 203-2006自密实混凝土应用技术规程 JGJT 283-2012 自密实混凝土应用技术规程 三.配合比设计 1.自密实砼性能要求: 自密实性能:二级强度等级:C40 (1)根据自密实性能等级选取单位体积粗骨料体积用量Vg=0.32m3=320L,则质量为 M g=ρg×V g=2.707?320=866.24kg (2)确定单位体积用水量V W、水粉比W/P和粉体体积V P 考虑到掺入粉煤灰配制C40等级的自密实砼,而且粗细骨料粒形级配良好,砂石表面比较粗糙,选择单位体积用水量175.0L和水粉比0.80(后根据砂率进行微调至0.814)。 V P=V W÷W P =175÷0.814=215L 粉体单位体积用量为0.215m3介于推荐值0.16~0.23m3。 浆体量为0.2150+0.1750=0.390m3介于推荐值0.32~0.40m3。 (3)确定含气量 根据经验以及所使用外加剂的性能设定自密实砼的含气量为1.5%,即15L。(4)计算单位体积细骨料量 因为细骨料中含有2%的粉体,所以根据下式可计算的出细骨料体积用量为281L,质量为731.837kg。 V g+V P+V W+V a+1?2%V S=1000L M s=ρs×V s=2.608?281=731.837kg (5)计算单位体积胶凝材料体积用量V ce

因为未使用惰性掺合料,所以可由下式计算 V ce=V P?2%V S=215?2%×281=209L (6)粉煤灰掺量30%(胶凝材料的质量比例)进行计算 M B×30% ρf + M B×70% ρc =V ce 即: M B×30% 2.3+ M B×70% 3.1 =209 得: M B=587.770kg,M C=M B×70%=411.739kg,M f=176.131kg V c=M C ρC =132.72L,V f= M f ρf =76.67L 水胶比W/B=0.298。 强度计算得到的水胶比如下: f cu,0=f cu,k +1.645σ=40+1.645×5.0=48.23Mpa f b=γf f ce=0.70×56=39.2Mpa W = σS×f b cu,0s b b = 0.53×39.2 =0.396>0.298 强度条件满足,固取自密实自密实性能计算所得水胶比W/B=0.298 (7)聚羧酸系高性能减水剂的用量取为胶凝材料质量的1.5%。

现代混凝土配合比设计与质量控制新技术

现代混凝土配合比设计与质量控制新技术 返回会员学习中心 共60道题,您答对了58道,答错了2道,共得分:97分。 ?(1) 混凝土配合比设计的各项 参数中,对混凝土强度影响最 大的参数是()。 ?A、水泥用量 ?B、水胶比 ?C、用水量 ?D、砂率 ?√您的答案:B | 正确答案: B (+1.5分) ?(2) 水泥混凝土用粉煤灰的细 度指标试验用筛孔尺寸为 ()μm。 ?A、80 ?B、45 ?C、30 ?D、16 ?√您的答案:B | 正确答案: B (+1.5分)

?(3) 混凝土配合比设计若采用细砂,其砂率应较中砂()。 ?A、增大 ?B、不变 ?C、减少 ?D、 ?√您的答案:C | 正确答案: C (+1.5分) ?(4) 抗渗混凝土配合比时,设计试配抗渗压力比设计值应 提高()。 ?A、0.4MPa ?B、0.2MPa ?C、0.15MPa ?D、0.1MPa ?√您的答案:B | 正确答案: B (+1.5分) ?(5) 引起钢筋混凝土中钢筋发生锈蚀的主要因素是( )。 ?A、氯离子 ?B、碱含量 ?C、Ca(OH)2含量

?D、NaOH含量 ?×您的答案:B | 正确答案:A ?(6) 硅酸盐熟料矿物中水化最快的是( )。 ?A、C3S ?B、C2S ?C、C3A ?D、C4AF ?√您的答案:C | 正确答案: C (+1.5分) ?(7) 安定性试验时,沸煮法主要是检验水泥中是否含有过 量的游离()。 ?A、CaO ?B、MgO ?C、SO3 ?D、Na2O ?√您的答案:A | 正确答案: A (+1.5分) ?(8) 混凝土的抗冻性可用多种指标表示,快冻法采用()。

普通混凝土配合比设计规程《JGJ 55-2011》

普通混凝土配合比设计规程 《JGJ 55-2011》 3 基本规定 3.0.1 混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。 3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 最大水胶比最小胶凝材料用量(kg/m3) 素混凝土钢筋混凝土预应力混凝土 0.60 250 280 300 0.55 280 300 300 0.50 320 ≤0.45330 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤0.40≤45≤35 >0.40 ≤40≤30 粒化高炉矿渣粉≤0.40≤65≤55 >0.40 ≤55≤45 钢渣粉-≤30≤20 磷渣粉-≤30≤20 硅灰-≤10≤10 复合掺合料≤0.40≤60≤50 >0.40 ≤50≤40 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤0.40≤35≤30 >0.40 ≤25≤20

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。

现代混凝土配合比设计注意事项

现代混凝土配合比设计注意事项 我国混凝土的现状 ■强度水平提高 ■严酷环境中工程增多,耐久性要求突出 ■水泥和混凝土的关系变化 ■流变性能要求提高 ■现场劳动力素质、管理水平与质量要求的矛盾 传统观念形成的理由 例如,许多规范、标准限定混凝土中粉煤灰的掺量应在25%以下,尤其是预应力混凝土构件中的掺量。这是因为过去我们的混凝土中没有掺用减水剂,混凝土的水灰比较大(一般都高于0.5)。在这种情况下掺入粉煤灰,减少水泥的用量,就会使混凝土的凝结时间明显延缓、硬化速率减慢,表现为早期强度低、混凝土渗透性增大。 高水灰比的水泥浆体里,水泥颗粒悬浮于水分中,水化环境良好,可以迅速地生成表面积增大1000倍的硅酸盐水化物等,有良好地填充浆体内空隙的能力。虽然从颗粒形状来说,粉煤灰易于堆积密实,但是它水化缓慢,生成的凝胶量少,难以填充颗粒周围的空隙,所以掺粉煤灰水泥浆体的强度和其他性能总是随其掺量增大(水泥用量减少)呈下降趋势(在早龄期尤为显著)。 为什么粉煤灰掺量如此之大的混凝土各项性能会很优异呢? 但是现今高效减水剂的应用已经很普遍,混凝土所用水灰比,尤其是掺有矿物掺合料混凝土的水胶比很容易降至0.5以下,同时现今的水泥活性则远高于二十世纪八十年代以前的水泥(因为早强矿物C3S(硅酸三钙)含量显著提高、粉磨细度加大),因此掺加矿物掺合料的混凝土,即使是掺量很大的混凝土,与过去混凝土相比,其早期强度的发展速率也大大加快了。 在低水胶比(如0.3左右)的水泥浆体里情况就大不一样了。不掺粉煤灰时,高活性的水泥因水化环境较差,即缺水而不能充分水化,所以随水灰比下降,未水化水泥的内芯增大,生成产物量下降;但由于颗粒间的距离减小,要填充的空隙同时减小,因此混凝土强度发展迅速。 这种情况下用粉煤灰代替部分水泥,在低水胶比条件下,水泥的水化条件相对改善,因为粉煤灰水化缓慢,使混凝土的“水灰比”增大,水泥的水化程度因而提高,这种作用机理随着粉煤灰的掺量增大愈加明显(掺量为58%:左右,初期水灰比则约0.65)。水泥水化程度的改善,则有利于粉煤灰作用的发挥,然而与此同时,需要粉煤灰水化产物填充的空隙已经大大减小,所以其水化能力差的弱点在低水胶比条件下被掩盖,而降低温升等其他优点则依然起着有利于混凝土性能提高的作用。 以上所述低水胶比下粉煤灰作用的变化,可以用一个“动态堆积”的概念来认识,这是相对沿用的静态堆积而言的。通常在选择混凝土原材料和配合比时,是以各种原材料在加水之前的堆积尽量密实为依据的;但是当加水搅拌后,特别是在低水胶比条件下,如何通过粉状颗粒水化的交叉进行,使初始水胶比尽量降低,混凝土单位用水量尽量减少,配制出的混凝土在密实成型的前提下,经过水化硬化过程,形成的微结构应更为密实。 传统混凝土配合比设计方法的问题整体体强度水平高了,拌合物从低塑性发展到当前的泵送,流动性大大提高;原材料也有很大变化:水泥强度等级高细度细,骨料粒形和级配差了,且品种多样化,品质相差很大;外加剂和矿物掺合料普遍使用,水胶比普遍降低,关键是混凝土耐久性逐渐成为混凝土的重要性能。传统混凝土配合比设计方法以保罗米公

混凝土配合比试验设计方案

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。

2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 项目技术要求 颗粒尺寸筛孔尺寸mm(圆孔筛)40 20 10 5 累积筛余(%)0~5 50~70 70~90 90~100 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要求确定使用下列材料:

《普通混凝土配合比设计规程》(JGJ55-)简介

《普通混凝土配合比设计规程》(JGJ 55-2011)简介 配合比设计是混凝土设计、生产和应用中的最重要环节之一,配合比设计成功与否,决定了混凝土的技术先进性、成本可控性和发展可持续性等问题。早在上世纪70年代末、针对原建设部下达的“使用新标准水泥配制混凝土”研究 课题,中国建筑科学研究院组织有关单位进行了混凝土配制技术研究,该研究成果经建设部组织全国性验证,对科学合理地在全国范围内解决水泥新标准使用起到重要作用。为统一我国混凝土配制的方法和步骤,并为混凝土配合比设计者提供基础技术参数,在上述研究成果基础上,中国建筑科学研究院主编了《普通混凝土配合比设计规程》(JGJ55)(以下简称《规程》)。为配合比设计者提供了易于操作、程序简单的快捷配制技术。自《规程》颁布实施以来,被广泛用于基础建设、轨道交通、市政环卫、工业与民用建筑、海港工程、铁路工程等领域。对我国混凝土的推广、应用和发展起到基础性作用。随着现代混凝土技术的快速发展,配合比设计面临新的挑战,例如:以耐久性能为设计指标、矿物掺合料的种类和掺量不断增多、普遍应用外加剂、特殊性能要求增多等。因此,《普通混凝土配合比设计规程》(JGJ55)需修订完善。经中国建筑科学研究院申请,《规程》被列入原建设部《2005年度工程建设标准规范制订、修订计划(第一

批)》,并于2010年11月完成编制和通过审查。住房和城乡建设部于2011年4月22日发布公告,批准本《规程》为行业标准,编号为JGJ55-2011,自2011年12月1日起实施。其中,第6.2.5条为强制性条文。原《普通混凝土配合比设计规程》(JGJ55-2000)同时废止。2 主要修订内容《规程》共分7章,主要内容如下:(1)总则提出《规程》的编制目的和适用范围。《规程》适用于工业与民用建筑及一般构筑 物所采用的普通混凝土配合比设计。(2)术语、符号增加了胶凝材料、胶凝材料用量、水胶比、矿物掺合料掺量和外加剂掺量等5个术语,上述术语在混凝土工程技术领域已被普遍接受。修订了相关符号,使计算过程更加清晰。(3)基本规定依据我国混凝土实际应用情况与技术条件,本《规程》新增“基本规定”一章,详细规定了混凝土配合比设计原则、原材料要求、最大水胶比、矿物掺合料限值、氯离子最大含量、最小含气量和最大碱含量等技术指标。本章重点强调混凝土配合比设计应满足耐久性能要求,即混凝土配合比设计不仅应满足配制强度要求,还应满足施工性能、其他力学性能、长期性能和耐久性能的要求,并规定配合比设计所用原材料应采用工程实际使用的原材料。宜采用干燥状态骨料进行配合比设计,也可选用饱和面干状态骨料,两者均为过程控制的一种手段。混凝土的最大水胶比应符合现行国家标准《混凝土结构设计规范》(GB 50010)的规定。水胶比和最

混凝土配合比设计作业指导书.docx

混凝土配合比设计作业指导书 混凝土配合比设计作业指导书 1、基本规定 1.0.1 、混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久 性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别 符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080 、《普通混凝土力学性能试验方法标准》GB/T50081 和《普通混凝土长期性能和耐久性 能试验方法标准》 GB/T50082 的规定。 1.0.2 、混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标 准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5% ,粗骨料含水率应小于0.2% 。 1.0.3 、混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010 的规定。 1.0.4 、混凝土的最小胶凝材料用量应符合表 1.0.4 的规定,配制 C15 及其以下 强度等级的混凝土,可不受表 3.0.4 的限制。 表 1.0.4混凝土的最小胶凝材料用量 最大水胶比3) (kg/m 最小胶凝材料用量 素混凝土钢筋混凝土预应力混凝土 0.60250280300 0.55280300300 0.50320 ≤ 0.45330

1.0.5 、矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表 1.0.5-1 的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表 1.0.5-2 的规定。 - 1 - 混凝土配合比设计作业指导书 表 1.0.5-1钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量( %) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤ 0.4045 ≤≤ 35 > 0.40≤4030≤ 粒化高炉矿渣粉0.40≤6555 ≤≤ > 0.40≤5545≤ 钢渣粉-30 ≤20≤ 磷渣粉-≤3020≤ 硅灰-≤1010≤ 复合掺合料0.406050≤ ≤≤ > 0.4050 ≤40≤ 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿 物掺合料用量之和应不大于按普通硅酸盐水泥用量20% 计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③ 复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表 1.0.5-2预应力钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤ 0.40≤35≤ 30 > 0.40≤2520 ≤

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

混凝土配合比设计继续教育自测试题答案

第1题 抗冻混凝土应掺()外加剂。 A.缓凝剂 B.早强剂 C.引气剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第2题 一般地,混凝土强度的标准值为保证率为()的强度值。 A.50% B.85% C.95% D.100% 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第3题 进行混凝土配合比配置强度计算时,根据统计资料计算的标准差,一般有()的限制。 A.最大值 B.最小值 C.最大值和最小值 D.以上均不对 答案:B 您的答案:B 题目分数:2 此题得分:2.0 批注: 第4题 在混凝土掺加粉煤灰主要为改善混凝土和易性时,应采用()。 A.外加法 B.等量取代法

C.超量取代法 D.减量取代法 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第5题 进行水下混凝土配合比设计时,配制强度应比相对应的陆上混凝土()。 A.高 B.低 C.相同 D.以上均不对 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第6题 大体积混凝土中,一定不能加入的外加剂为()。 A.减水剂 B.引气剂 C.早强剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第7题 在配制混凝土时,对于砂石的选择下列说法正确的是()。 A.采用的砂粒较粗时,混凝土保水性差,宜适当降低砂率,确保混凝土不离析 B.采用的砂粒较细时,混凝土保水性好,使用时宜适当提高砂率,以提高拌合物和易性 C.在保证混凝土不离析的情况下可选择中断级配的粗骨料 D.采用粗细搭配的集料可使混凝土中集料的总表面积变大,减少水

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C ) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46( 0.07)cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=-

《普通混凝土配合比设计规程》配合比计算案例-C30

《普通混凝土配合比设计规程》 配合比计算案例 某高层办公楼的基础底板设计使用C30等级混凝土,采用泵送施工工艺。根据《普通混凝土配合比设计规程》(以下简称《规程》)JGJ 55的规定,其配合比计算步骤如下: 1、原材料选择 结合设计和施工要求,选择原材料并检测其主要性能指标如下: (1)水泥 选用P.O 42.5级水泥,28d胶砂抗压强度48.6MPa,安定性合格。 (2)矿物掺合料 选用F类II级粉煤灰,细度18.2%,需水量比101%,烧失量7.2%。 选用S95级矿粉,比表面积428m2/kg,流动度比98%,28d活性指数99%。 (3)粗骨料 选用最大公称粒径为25mm的粗骨料,连续级配,含泥量 1.2%,泥块含量0.5%,针片状颗粒含量8.9%。 (4)细骨料 采用当地产天然河砂,细度模数 2.70,级配II区,含泥量 2.0%,泥块含量0.6%。 (5)外加剂 选用北京某公司生产A型聚羧酸减水剂,减水率为25%,含固量为20%。 (6)水 选用自来水。 2、计算配制强度 由于缺乏强度标准差统计资料,因此根据《规程》表4.0.2选择强度标准差σ为5.0MPa。 表4.0.2 标准差σ值(MPa) 混凝土强度标准值≤C20C25~C45 C50~ C55 Σ 4.0 5.0 6.0 采用《规程》中公式4.0.1-1计算配制强度如下: (4.0.1- 1)式中:f cu,0——混凝土配制强度(MPa);

f cu,k——混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值(MPa); σ——混凝土强度标准差(MPa)。 计算结果:C30混凝土配制强度不小于38.3MPa。 3、确定水胶比 (1)矿物掺合料掺量选择(可确定3种情况,比较技术经济) 应根据《规程》中表3.0.5-1的规定,并考虑混凝土原材料、应用部位和施工工艺等因素来确定粉煤灰掺量。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 注:1 采用其它通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料; 2 复合掺合料各组分的掺量不宜超过单掺时的最大掺量; 3 在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合 表中复合掺合料的规定。 综合考虑:方案1为C30混凝土的粉煤灰掺量30%。 方案2为C30混凝土的粉煤灰掺量30%,矿粉掺量10%。 方案3为C30混凝土的粉煤灰掺量25%,矿粉掺量20%。 (2)胶凝材料胶砂强度 胶凝材料胶砂强度试验应按现行国家标准《水泥胶砂强度检验方法(ISO 法)》GB/T 17671规定执行,对3个胶凝材料进行胶砂强度试验。也可从《规程》中表5.1.3选取所选3个方案的粉煤灰或矿粉的影响系数,计算f b。

现代混凝土配合比设计-全计算法

现代混凝土土配合比设计------全计算法 传统混凝土配合比设计方法(如绝对体积法和假容重法),是以强度为基础的半定量计算方法,不能全面满足现代混凝土的性能要求,现代混凝土配合比计算方法是以工作性、强度和耐久性为基础建立数学模型,通过严格的数学推导的到混凝土的用水量和砂率的计算公式,并将此二式与水灰(胶)比定则相结合能计算出混凝土各组分(水泥、细掺料、砂、石、含气量、用水量和超塑化剂掺量等)之间的定量关系和用量。用于流态混凝土、高强混凝土、泵送混凝土、自密实混凝土、商品混凝土以及防渗抗裂混凝土等现代化混凝土的配合比设计。 (一)高性能混凝土配合比全计算法设计高性能混凝土(HPC)与高强混凝土(HSC)和流态混凝土(FLC)最显著的差别就是混凝土配合比考虑工作性、强度和耐久性,其配合比设计的基本原则是:(1)满足工作性的情况下,用水量要小;(2)满足强度的情况下,水泥用量少、细掺料多掺;(3)材料组成及其用量合理,满足耐久性及特殊性能要求;(4)掺多功能复合超塑化剂(CSP)改善和提高混凝土的多种性能。因此,HPC的配合比设计比HSC和FLC更为严格合理,图--1表示各种材料类型的混凝土配合比分区范围,无论采取什么方法设计,HSC、FLCHE和PLC(塑性混凝土)的配合比在一个范围之内,而HPC在AB线附近,由此证明HPC的配合比设计必须严格、精确和合理。 图1 混凝土配合比组成图 一、强度与水灰(胶)比的关系 混凝土配合比设计是混凝土材料学中最基本而又最重要的一个问题,早在1919年Duff Abrams(D.艾布拉姆斯)就发表了混凝土强度的水灰比定则:“对于一定的材料,强度仅取决于一个因素,即水灰比。”这一定则可用下列公式表示: σc=a/b1.5(W/C) 式中:σ c----一定龄期的抗压强度

混凝土配合比设计计算实例JGJ552011

混凝土配合比设计计算实例(JGJ/T55-2011) 一、已知:某现浇钢筋混凝土梁,混凝土设计强度等级C30,施工要求坍落度为75~90mm, 使用环境为室内正常环境使用。施工单位混凝土强度标准差σ取5.0MPa。所用的原材料情况如下: 1.水泥:4 2.5级普通水泥,实测28d抗压强度f ce为46.0MPa,密度ρc=3100kg/m3; 2.砂:级配合格,μf=2.7的中砂,表观密度ρs=2650kg/m3;砂率βs取33%; 3.石子:5~20mm的卵石,表观密度ρg=2720 kg/m3;回归系数αa取0.49、αb取0.13; 4. 拌合及养护用水:饮用水; 试求:(一)该混凝土的设计配合比(试验室配合比)。 (二)如果此砼采用泵送施工,施工要求坍落度为120~150mm,砂率βs取36%,外加剂选用UNF-FK高效减水剂,掺量0.8%,实测减水率20%,试确定该混凝土的设计配合比(假定砼容重2400 kg/m3)。

解:(一) 1、确定砼配制强度 f cu , 0 =f cuk+1.645σ=30+1.645×5 = 38.2MPa 2.计算水胶比: f b = γf γs f ce =1×1×46=46 MPa W/B = 0.49×46/(38.2+0.49×0.13×46)= 0.55 求出水胶比以后复核耐久性(为了使混凝土耐久性符合要求,按强度要求计的水灰比值不得超过规定的最大水灰比值,否则混凝土耐久性不合格,此时取规定的最大水灰比值作为混凝土的水灰比值。) 0.55小于0.60,此配合比W/B 采用计算值0.55; 3、计算用水量(查表选用) 查表用水量取m w0 =195Kg /m 3 4.计算胶凝材料用量 m c0 = 195 / 0.55 =355Kg 5.选定砂率(查表或给定) 砂率 βs 取33; 6. 计算砂、石用量(据已知采用体积法) 355/3100+ m s0/2650+ m g0/2720+195/1000+0.11×1=1 a b cu,0a b b /f W B f f ααα= +

水泥混凝土配合比设计步骤

水泥混凝土配合比设计步骤 (1) 配制强度:f cu,k=25Mpa f cu,o= f cu,k+1.645* o=25+1.645*5=33.2Mpa (2) 初步确定水灰比:(用经验公式计算,各指标选取) W/C= a a*f ce/(f cu,0 + a a*a b*f ce) =(0.53*36.5) / (33.2+0.53*0.20*36.5) =0.52 (3) 选取单位体积水泥混凝土的用水量: 由水灰比为0.52,混凝土拌合物的坍落度为10-30mm,碎石最大粒径为31.5mm, 在满足混凝土施工要求的基础上选取混凝土的单位用水量为:m wo=175kg/m 3。(4) 计算1m3水泥混凝土水泥用量: 由W/C=0.52,m w0=185 (kg/m3),得m co=m wo/(W/C)=337(kg/m3) 查表符合耐久性要求的最小水泥用量为320kg/m 3,所以取按强度计算的单位水 泥用量m co=337 ( kg/m 3) (5) 选取合理砂率,计算粗细集料用量:最大粒径31.5mm,水灰比0.52,查表 取混凝土砂率B s =35%o (6) 计算一组(3块试件)水泥混凝土各材料用量 3水用量175kg/ m '水泥用量337kg/m 砂用量680 kg/m 碎石用量1263 kg/m

(7) 配合比确定: 个人认为,单位用水量可取180(kg/m3) ,为保证混凝土强度,水灰比取0.5,单 位水泥用量360(kg/m3) ,根据密度法计算配合比,假定表观密度为2400 (kg/m3 ),单位粗集料用量与单位细集料用量为未知量,可设方程求解 M c0+ M g0+ M s0+ M w0=2400 M s0/ (M s0+ M g0 )*100=35 解得M g0=1560(kg/m3) ,M s0=840 (kg/m3) 通过计算得到个人的配合比为:单位用水量:单位水泥用量:单位细集料用量:单位粗集料用量=180:360: 840:1560

相关文档
最新文档