低压开关柜互感器选型分析

低压开关柜互感器选型分析
低压开关柜互感器选型分析

低压开关柜互感器选型分析对比表

电流互感器的参数选择计算方法

附件3: 电流互感器的核算方法参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。项目名称 代号 参数 备注 额定电流比 Kn 600/5 额定二次电流 Isn 5A 额定二次负载视在功率 Sbn 30VA(变比:600/5) 50VA(变比:1200/5) 不同二次绕组抽头对应的视在功率不同。 额定二次负载电阻 Rbn

1.2Ω 二次负载电阻 Rb 0.38Ω 二次绕组电阻 Rct 0.45Ω 准确级 10 准确限值系数 Kalf 15 实测拐点电动势 Ek 130V(变比:600/5) 260V(变比:1200/5) 不同二次绕组抽头对应的拐点电动势不同。

最大短路电流 Iscmax 10000A 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)Es1:CT额定二次极限电动势(稳态); (2)Kalf:准确限制值系数; (3)Isn:额定二次电流; (4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。(5)Rbn :CT额定二次负载,计算公式如下: Rbn=Sbn/ Isn 2=30/25=1.2Ω; ——Rbn :CT额定二次负载; ——Sbn :额定二次负荷视在功率; ——Isn :额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT 额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 Es1=127.5V

如何正确选择及使用电流互感器,民熔

如何正确选择及使用电流互感器,民熔 1.前言近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。 电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以策各位读者朋友。 2电流互感器的原理互感器,一般W14W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。 原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通m的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变m,但U1一定时,m是基本不变的,即保持IOW1 不变,因为I2的出现,必使原边电流I1增加,以抵消I2W2的去磁作用,从而保证IOW1不变,故有:IW=IW+(-IW)(1) 即IO=I1+WI/W(2)在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得:IW=-I2W2 有:T1/T2=-W2/W1 3电流互感器的选择3.1电流互感器选择与检验的原则1)电流互感器额定电压不小于装设点线路额定电压;2)根据一次负荷计算电流IC选择电流互感器变化;3)根据二次回路的要求选择电流互感器的准确度并校验准确度;4)校验动稳定度和热稳定度。 3.2电流互感器变流比选择电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=Iln/I2n ~N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1电流互感器准确级和误差限值3.3电流互感器准确度选择及校验所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。 准确度选择的原则:计费计量用的电流互感器其准度为0.2~0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0-3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:52≤s2n。 二次回路的负荷1:。取决于二次回路的阻抗Z2的值,则:S2=In'|z.|~In-(Z|zil+R+Rc) 或SV~Si+Ian'(R,+Rx)式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.12,L为二次回路导线电阻,计算公式化为:Rm=L/(r×s)。

电流互感器的选型

电流互感器的选型 在电压互感器选型的时候需要依据一次接线方式(包括Y型连接和V 型连接)、一次电压的用电等级、二次线路对容量的要求以及对变换精度的要求来作出选择选择。 电流互感器主要装配于不同的开关设备当中,电流互感器的型号不同,电流互感器在结构上往往也产生较大差异(包括铜排搭接形式、铁心、外形等及动热稳定的耐受能力)。例如中置式手车柜配备的电流互感器多为LZZBJ9或AS12等型号,然而配备固定柜的型号会有很多。 同一型号与规格的电压互感器不相同之处也会有很多。一般主要由于变比不同、二次线圈的容量、保护线圈以及计量线圈精度的不同会出现多种组合。在选择电流互感器的变比时,应该首先得到实际负载额定电流,这种电流最好处于电流互感器测量范围的65%-85%处。例如:额定电流为70A,就应该选择100/5变比的电压互感器。 电流互感器变比100/5(100/5的意思是一次电流100A时,产生的二次输出电流为5A,这个数值描述的是变比数值、额定测量数值和额定输出值。电流互感器和电流表的变比是必须选用的。)表示在100*120%的电流范围内,测量的精度可以满足电流互感器铭牌上所标识的测量精度,例如:0.2级(测量精度误差为0.2%),0.5级(测

量精度误差为0.5%)。如果超过该电流的测量结果就可能与实际电流产生较大误差。如果过高的电流进入铁心的饱和区,测量的数据就没有意义了。 1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联; 2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故; 3)二次侧绝对不允许开路 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等装置的需要,在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置。

如何计算电流互感器的饱和点

如何计算电流互感器的饱和点 点击次数:380 发布时间:2010-3-14 10:22:10 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及 参数选择的建议。

2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互感器在额定负荷下的二次极限电动势E s=(ALF)· I sn·(R ct+R bn),此时综合误差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限

电流互感器二次容量的选型及计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。 一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。 电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA 或30VA,特殊情况可选的更大一些。 电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想; 2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点; 3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点: 1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。电流互感器二次容量的计算及选择 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。

0.4kv电压互感器型号_35kv电压互感器型号

0.4kv电压互感器型号_35kv电压互感器型号 什么是电压互感器?电压互感器(PotenTIaltransformer简称PT,V oltagetransformer也简称VT)和变压器类似,是用来变换线路上的电压的仪器。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器的工作原理其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发

电流互感器饱和度计算

电流互感器饱和计算: 估算,当一次侧电流达到电流互感器额定电流的10倍时,保护用电流互感器就认为饱和了。 电流互感器的暂态饱和及应用计算 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及参数选择的建议。 2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互 感器在额定负荷下的二次极限电动势E s =(ALF)· I sn ·(R ct +R bn ),此时综合误 差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF 与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限值的条件下,适当提高ALF的可用值。但应指出,对于某些不符合低漏磁要求的互感器,如U型电流互感器、一次多匝的互感器等,在一次短路电流倍数超过ALF时,由于铁心局部饱和可能引起二次极限电动势降低,不能在降低二次负荷时,按反比提高ALF。有些制造厂提供的

(完整版)电流互感器二次容量的计算及选择

电流互感器容量选择 电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。 电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。 电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想; 2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点; 3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了; 另外提醒注意以下几点: 1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。 电流互感器二次容量の计算及选择

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

高压电压互感器选型指南

高压电压互感器选型指南 使用条件: 1、温度-25~40℃; 2、海拔高度≤1000m; 3、地震烈度Ⅷ(8)度; 4、污秽等级:户内不低于2级,户外不低于3级; 5、户内需考虑:(1)环境空气无明显灰尘、烟、腐蚀性气体、蒸汽或盐等污秽;(2)湿度条件:24h内测得的相对湿度平均值不超过95%;24h内水蒸气压力平均不超过2.2kPa;一个月内相对湿度平均值不超过90%;一个月内水蒸气压力平均不超过1.8kPa。 6、户外需考虑:(1)24h期间测得的环境气温平均值不超过40℃;(2)日照辐射达到1000W/m2(晴天中午)时应予以考虑;(3)环境空气可能有灰尘、烟、腐蚀性气体、蒸汽或盐污秽;(4)风压不超过700Pa(相当于34m/s);(5)应考虑出现凝露和降水。 7、特殊使用条件(另作考虑) 产品铭牌标志: 1、制造单位名及其所在地名或国名(出口产品),以及其他容易识别制造单位的标志、生产序号和日期; 2、互感器型号及名称、采用标准的代号、计量许可标志及计量许可批号; 3、额定一次电压和额定二次电压(例如:35/0.1kV); 4、额定频率(例如:50Hz); 5、额定输出和其相应的准确级(例如:50V A 0.5级); 6、设备最高电压Um(例如40.5kV);

7、额定绝缘水平;额定电压因数和相应的额定时间; 8、绝缘耐热等级; 9、二次绕组性能参数; 10、设备种类:户内或户外; 11、结构型式:油浸式或全封闭浇注式 12、一次绕组带熔断器保护; 下表中负载功率因数取cosΦ=0.8(滞后),产品性能要符合标准:GB1207-2006《电压互感器》。

电流互感器的参数选择计算方法

电流互感器的参数选择计算 本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。 一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值) 1、计算二次极限电动势: E s1=K alf I sn(R ct+R bn)=15×5×(0.45+1.2)=123.75V 参数说明: (1)E s1:CT额定二次极限电动势(稳态); (2)K alf:准确限制值系数;

(3)I sn:额定二次电流; (4)R ct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值: 5A产品:1~1500A/5 A产品0.5Ω 1500~4000A/5 A产品 1.0Ω 1A产品:1~1500A/1A产品6Ω 1500~4000A/1 A产品15Ω 当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。 (5)R bn:CT额定二次负载,计算公式如下: R bn=S bn/ I sn 2=30/25=1.2Ω; ——R bn:CT额定二次负载; ——S bn:额定二次负荷视在功率; ——I sn:额定二次电流。 当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT额定二次负载 2、校核额定二次极限电动势 有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。 E s1=127.5V

路电流下CT裕度是否满足要求) 1、计算最大短路电流时的二次感应电动势: E s=I scmax/K n(R ct+R b)=10000/600×5×(0.45+0.38)=69.16V 参数说明: (1)K n:采用的变流比,当进行变比调整后,需用新变比进行重新校核; (2)I scmax:最大短路电流; (3)R ct:二次绕组电阻;(同上) 当通过改变CT二次绕组接线方式调大CT变比时,应重新测量CT额定二次绕组电阻 (4)R b:CT实际二次负荷电阻(此处取实测值0.38Ω),当有实测值时取实测值,无实测值时可用估算值计算,估算值的计 算方法如下: 公式:R b = R dl+ R zz ——R dl:二次电缆阻抗; ——R zz:二次装置阻抗。 二次电缆算例: R dl=(ρl)/s =(1.75×10-8×200)/2.5×10-6 =1.4Ω ——ρ铜=1.75×10-8Ωm; ——l:电缆长度,以200m为例; ——s:电缆芯截面积,以2.5mm2为例; 二次装置算例:

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择 摘要:电流互感器的二次电流有 1A及5A两种,选用不同的二次电流,则二次的负荷及容量不同,所用的控制电缆截面也不同。 关健词:电流互感器;二次负荷;二次容量 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。信息来源: 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。 2.1 测量用的电流互感器的负荷计算。信息来源: 一般在工程计算时可负略阻抗之间的相位差,二次负荷Z2可按下式计算信息来源: Z2=Kcj.zkZcj+Klx.zkZlx+Zc 信息来源: 式中:Zcj-------测量表计线圈的阻抗(Ω) Zlx-------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。

电压互感器的分类方法

按用途分 测量用电压互感器或电压互感器的测量绕组:在正常电压范围内,向测量、计量装置提供电网电压信息; 保护用电压互感器或电压互感器的保护绕组:在电网故障状态下,向继电保护等装置提供电网故障电压信息。 按绝缘介质分 干式电压互感器:由普通绝缘材料浸渍绝缘漆作为绝缘,多用在及以下低电压等级; 浇注绝缘电压互感器:由环氧树脂或其他树脂混合材料浇注成型,多用在及以下电压等级; 油浸式电压互感器:由绝缘纸和绝缘油作为绝缘,是我国最常见的结构型式,常用于及以下电压等级; 气体绝缘电压互感器:由气体作主绝缘,多用在较高电压等级。 通常专供测量用的低电压互感器是干式,高压或超高压密封式气体绝缘(如六氟化硫)互感器也是干式。浇注式适用于35kV及以下的电压互感器,35kV以上的产品均为油浸式。 按相数分 绝大多数产品是单相的,因为电压互感器容量小,器身体积不大,三相高压套管间的内外绝缘要求难以满足,所以只有3-15kV的产品有时采用三相结构。 按电压变换原理分 电磁式电压互感器:根据电磁感应原理变换电压,原理与基本结构和变压器完全相似,我国多在及以下电压等级采用; 电容式电压互感器:由电容分压器、补偿电抗器、中间变压器、阻尼器及载波装置防护间隙等组成,用在中性点接地系统里作电压测量、功率测量、继电防护及载波通讯用; 光电式电压互感器:通过光电变换原理以实现电压变换,还在研制中。 按使用条件分 户内型电压互感器:安装在室内配电装置中,一般用在及以下电压等级; 户外型电压互感器:安装在户外配电装置中,多用在及以上电压等级。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/a58771691.html,。

电流互感器型号及主要参数

电流互感器的型号由字母符号及数字组成,通常表示电流互感器绕组类型、绝缘种类、使用场所及电压等级等。字母符号含义如下:第一位字母:L——电流互感器。 第二位字母:M——母线式(穿心式);Q——线圈式;Y——低压式;D——单匝式;F——多匝式;A——穿墙式;R——装入式;C——瓷箱式。 第三位字母:K——塑料外壳式;Z——浇注式;W——户外式;G——改进型;C——瓷绝缘;P——中频。 第四位字母:B——过流保护;D——差动保护;J——接地保护或加大容量;S——速饱和;Q——加强型。 字母后面的数字一般表示使用电压等级。例如:LMK-型,表示使用于额定电压500V及以下电路,塑料外壳的穿心式S级电流互感器。LA-10型,表示使用于额定电压10k V电路的穿墙式电流互感器。 电流互感器型号及主要参数 一、电流互感器型号: 第一字母:L—电流互感器 第二字母:A—穿墙式;Z—支柱式;M—母线式;D—单匝贯穿式;V—结构倒置式;J—零序 接地检测用;W—抗污秽;R—绕组裸露式

第三字母:Z—环氧树脂浇注式;C—瓷绝缘;Q—气体绝缘介质;W—与微机保护专用 第四数字:B—带保护级;C—差动保护;D—D级;Q—加强型;J—加强型ZG 第五数字:电压等级产品序号 二、主要技术术要求 额定容量:额定二次电流通过二次额定负荷时所消耗的视在功率。额定容量可以用视在功率表示,也可以用二次额定负荷阻抗Ω表示。 一次额定电流:允许通过电流互感器一次绕组的用电负荷电流。用于电力系统的电流互感器一次额定电流为5~25000A,用于试验设备的精密电流互感器为~50 000A。电流互感器可在一次额定电流下长期运行,负荷电流超过额定电流值时叫做过负荷,电流互感器长期过负荷运行,会烧坏绕组或减少使用寿命。 二次额定电流:允许通过电流互感器二次绕组的一次感应电流。 额定电流比(变比):一次额定电流与二次额定电流之比。 额定电压:一次绕组长期对地能够承受的最大电压(有效值以kV为单位),应不低于所接线路的额定相电压。电流互感器的额定电压分为,3,6,10,35,110,220,330,500kV等几种电压等级。 10%倍数:在指定的二次负荷和任意功率因数下,电流互感器的电流误差为-1 0%时,一次电流对其额定值的倍数。10%倍数是与继电保护有关的技术指标。 准确度等级:表示互感器本身误差(比差和角差)的等级。目前电流互感器的准确度等级分为~1多种级别,与原来相比准确度提高很大。用于发电厂、变电站、用电单位配电控制盘上的电气仪表一般采用级或级;用于设备、线路的继电保护一

如何进行电流互感器计算

如何进行电流互感器计算 我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗,比如大功率开关电源,由于电流过大所以需要使用电流互感线圈来监测电流以减少损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁 性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。 假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。当然,我们可以用一个1V/10A=100mΩ的电阻来测量,但是电阻将造成的损耗为1V×10A=10W,这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10/N)R=1V,在电阻中消耗的功率为P=(1V)^2/R。我们假设消耗的功率为50mW(也就是说,我们可以使用100mW规格的电阻),这就要求R 不得小于20Ω,如果采用20Ω的电阻,由欧姆定律可得副边匝数N=200。现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流为10A/200=50mA。互感器输出电压为1V,加上二极管的通态电压1V,总 电压大约2V。250kHz频率工作时,磁芯上的磁感应强度不会超过其中4us 为一个周期的时间,实际肯定是不到一个周期的。 由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此Ae 可以很小,而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由200匝的绕组所占体积来确定。你可以用40号的导线流过500mA的峰值电流,但是这种导线实在太细,一般的变压器厂家不会

如何选择合适的电流互感器

如何选择合适的电流互感器,用以设计高性能和经济的电功率测量表2009-9-15 10:01:52 Bertrand KLAIBER Pierre TURPIN 供稿 摘要:电功率计算包括根据不同应用领域的具体电气和机械特性进行电流测量。在实芯电磁感应技术已经能够暂时以低成本提供良好性能的同时,一些钳形互感器最近在技术上取得了重大进展,重新彰显了其在涉及将功率表加进现有设备进行更新等应用场合方面的价值。钳形互感器并非新鲜出炉,但是在过去这些互感器又大又笨重,所采用的传统技术有着诸多弊病。这些互感器不是采用昂贵的材料制造就是在精确度方面性能很差。在这种情况下,不确定度指的不是读数本身,而是线性度、输出电流的移相误差和读数超时的持续性。下文对传统的电流感应技术和一些创新技术进行了分析,侧重这些互感器在不同功率测量应用领域的优点和缺点。 功率测量应用 电功率测量已经成为1)电源管理、2)用电控制3)状态监控等工业领域中众多应用场合的重中之重。 1)由于电源管理是所有工业和商业活动的根本,因此是基本的功率测量应用领域。电源管理主要侧重发电和配电公司,但是也兼顾工业专业人士,这些人员通过监控其电力质量和功率因数来实现对其设备征收的费率进行控制,尤其是当操作低功率因数的负载时。 2)由于实施能量二次计量可以对能量成本进行跟踪并对其进行分配,同时也对电量消耗进行进一步的分析,从而提高其效率,因此逐步引起设备和工厂经理的关注。电源选型和计费通常取决于峰值消

耗,对整个系统进行动态管理可以降低运营成本并防止故障发生。了解和管理主要消费对象以及确定通常由于故障电器或设备用量不足(比如不合适的照明、加热或空气调节)而造成的能量浪费需要对能量进行二次计量。 3)状态监控要求对故障进行及时检测并做出反应,从而防止对设备造成损坏或临界进程发生中断。电功率测量给出一套反映电机负载特性(比如传送机、轴承、泵、切削刀具等)的综合信息(电流、有效功率、功率因数、频率等)。通常情况下,这种监控对异常情况的检测速度要比传统互感器快,比如温度、压力、振荡等。及时对这些电气参数的变化进行分析甚至能够实现对故障进行估计,从而可以计划有效的预先维护。 功率测量不仅在工业领域受到关注,在监控商业和住宅负载方面也是如此。不管从成本还是从环境保护方面来考虑,节约能源在全球日益成为公众关注的话题。关键问题是如何实现能源消耗实质性的持续降低。最可靠的解决方案是要了解用户如何消耗他们的能量以及如何使其对这些能量负责。锁定该领域仍然是一个工业课题,而且日益成为政府机构的关注重点。许多国家正在开展各种减少能源消耗的运动并且制定各种激励预算。这些激励措施的启用要求各种机构开发各种精确的测量性能。 电流互感器要求 工程师设计功率监控系统应该根据非常具体的特性谨慎选择所需要的电流互感器:

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法 电流互感器的选用原则及方法1、额定电压电流互感器额定电压应大于装设点线路额定电压。 2、变比应根据一次负荷计算电流IC选择电流互感器变比。电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150、2×a/C)等多种规格,二次侧额定电流通常为1A或5A。其中2×a/C表示同一台产品有两种电流比,通过改变产品的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2×a/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 3、准确级应根据测量准确度要求选择电流互感器的准确级并进行校验。下表为不同准确级电流互感器的误差限值: 准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:S2≤S2n。 二次回路的负荷l:取决于二次回路的阻抗Z2的值,则: S2=I2n2︱Z2︱≈I2n2(∑︱Zi︱+RWl+RXC) 或S2V1≈∑Si+I2n2(RWl+RXC) 式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.1Ω,RWL为二次回路导线电阻, 计算公式化为:RWL=LC/(r×S)。 式中,r为导线的导电率,铜线r=53m/(Ωmm2),铝线r=32m(Ωmm2),S为导线截面积(mm2),LC为导线的计算长度(m)。设互感器到仪表单向长度为L1,

电流互感器的计算公式(图文)民熔

电流互感器的计算公式 我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗,比如大功率开关电源,由于电流过大所以需要使用电流互感线圈来监测电流以减少损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难 基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。

当然,我们可以用一个1V/10A=100mΩ的电阻来测量,但是电阻将造成的损耗为1V×10A=10W,这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图1所示。 图1 用电流检测互感器减小损耗当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。

如果副边匝数为N,由欧姆定律可得 (10/N)R=1V,在电阻中消耗的功率为 P=(1V)^2/R。 我们假设消耗的功率是50MW(也就是说,我们可以使用100MW电阻),这就要求R不应小于20Ω。如果使用20Ω的电阻,二次侧匝数可根据欧姆定律得出,n=200。 现在我们来看看磁芯。假设二极管是一个普通二极管,通态电压约为1V,电流为 10A/200=50mA。变压器输出电压为1V,二极管导通状态电压为1V,总电压约为2V,频率为250kHz时,磁芯上的磁感应强度不超过 其中4us为一个周期的时间,实际肯定是不到一个周期的。由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。

相关文档
最新文档