阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理
阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时)

一、 目的与要求: 了解高阶微分方程与一阶微分方程组的

等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理.

二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理.

三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质.

四、教学方法:讲练结合法、启发式与提问式相结合教学法.

五、教学手段:传统板书与多媒体课件辅助教学相结合.

六、教学过程:

1 课题引入

在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质.

例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,)

(,,,)x y z

v f t x y z v f t x y z v f t x y z =??=??=?

且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是

求一阶微分方程组

123(,,,)(,,,)

(,,,)x f t x y z y f t x y z z f t x y z =??=??=?

的满足初始条件

00(),x t x = 00(),y t y = 00()z t z =

的解(),(),()x t y t z t .

另外,在n 阶微分方程

(1.12)

()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

1

1221111(,,,,)

n n n n dy y dx dy y dx dy y dx dy f x y y y dx

----?=???=?????=???=

? 注意,这是一个含n 个未知函数11,,

,n y y y - 的一阶微分方程组.

含有n 个未知函数12,,

,n y y y 的一阶微分方程组的一般形

式为: 11122112112(,,,,)

(,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx

?=???=?????=?

? (3.1)

如果方程组(3.1)右端函数不显含x , 则相应的方程称为是

自治的.

方程组(3.1)在[,]a b 上的一个解,是这样的一组函数

12(),(),

,()n y x y x y x

使得在[,]a b 上有恒等式 12()(,(),(),,())i i n dy x f x y x y x y x dx = (1,2,

,)i n =

含有n 个任意常数12,,

,n C C C 的解

1112221212(,,,,)(,,,,)(,,,,)

n n n n n y x C C C y x C C C y x C C C ???=??=????=?

称为(3.1)的通解. 如果通解满足方程组

11212212121212(,,,,,,,,)0(,,,,,,,,)0(,,,,,,,,)0

n n n n n n n x y y y C C C x y y y C C C x y y y C C C Φ=??Φ=????Φ=?

则称后者为(3.1)的通积分.

如果已求得(3.1)的通解或通积分,要求满足初始条件

1010202000(),(),

,()n n y x y y x y y x y ===

(3.2) 的解,可以把初始条件(3.2)代入通解或通积分之中,得到关于12,,

,n C C C 的n 个方程式,如果从其中解得12,,,n C C C ,再代回通解或通积分中,就得到所求的初值问题的解.

2 一阶微分方程组的向量和矩阵表示

为了简洁方便,经常采用向量与矩阵来研究一阶微分方程组(3.1). 令n 维向量函数

12()()(),()n y x y x Y x y x ??????=??????

11221212(,,,,)(,,,,)(,)(,,,,)n n n n f x y y y f x y y y F x Y f x y y y ??????=??????

并定义 111(),dy dx dy dY x dx dx dy dx ??????????=??????????

00001()()()()x x x x n x x x n x f x dx f x dx F x dx f x dx ????????=??????????????

则(3.1)可记成向量形式

(,)dY F x Y dx

= (3.3)

初始条件(3.2)可记为

00(),Y x Y = 其中102000n y y Y y ????

??=??????

(3.2)′

(3.3)的满足(3.2)′的初值问题可记为

00(,)

()dY F x Y dx Y x Y ?=???=?

(3.4)

这样,从形式上看,一阶方程组与一阶方程式完全一样了.

进一步,对n 维向量Y 和矩阵()ij A a =,

12,n y y Y y ??????=?????? 111212122212n n

n n nn a a a a a a A a a a ??

??

??

=???

?

??

定义

1,

n

i i Y y ==∑

,1n ij i j A a ==∑

易于证明以下性质:

1.0Y ≥,

且0Y =, 当且仅当0

Y =

(0 表示零向量,下同);

2.1212Y Y Y Y +≤+;

3.对任意常数α,有Y Y αα=;

4.

0A ≥; 5.A B A B +≤+; 6.对任意常数γ,有A A γγ

=;

7.AY A Y

; 8. AB A B

≤.

称Y 和A 分别为向量Y 和矩阵A 的范数.

进而还有如

下性质

00()()x

x x x F x dx F x dx ≤??

有了n 维空间的范数定义后,我们可以定义按范数收敛的概念. 即:如果对[,]a b 上的任意x ,有

lim ()()0n n Y x Y x →∞

-= 则称()n Y x 在[,]a b 上按范数收敛于Y (x ).如果上式对

[,]a b 上的x 为一致的,则称()n Y x 在上[,]a b 按范数一致收敛于()Y x .

另外, 如果对n 维向量函数F (x )有

0lim ()()0x x F x F x →-= 则称()F x 在0x 连续. 如果()F x 在区间[,]a b 上每一点0x 都连续, 则称()F x 在区间[,]a b 上连续. 有了以上准备,完全类似于第二章定理2.2,我们有如下的关于初值问题(3.4)的解的存在与唯一性定理. 定理3.1 如果函数(,)F x Y 在1n + 维空间的区域

00:,R x x a Y Y b -≤-≤

上满足:

1) 连续;

2) 关于Y 满足李普希兹条件,即存在0N >, 使对于R 上任意两点1(,),x Y 2(,)x Y ,有

1212

(,)(,)F x Y F x Y N Y Y -≤-

则存在00h >, 使初值问题(3.4)的解在00x x h -≤ 上存在且唯一,其中0min(,

),b h a M

= (,)max (,)x Y R M F x Y ∈=. 定理的证明方法与定理2.2完全类似,也是首先证明(3.4)与积分方程

0()(,())x x Y x Y F x Y x dx =+? (3.5)

同解.为证(3.5)的解在00x x h -≤ 上的存在性,同样用逐次逼近法,其步骤可以逐字逐句重复定理2.2的证明.最后,唯一性的证明,同样用贝尔曼不等式完成.

对于方程组(3.3)也有类似第二章关于纯量方程(1.9)的解的延展定理和解对初值的连续依赖性定理,这只要在第二章相应定理中把纯量y 换成向量Y 即可.

最后,我们要指出方程组(3.3)解的几何意义:我们已经知道,纯量方程(1.9)的一个解是二维空间xoy 平面上的一条

曲线,或称为积分曲线,那么,很自然地有方程组(3.3)的一个解就是

x Y中的一条曲线了,也称它为方程组(3.3) n 维空间(,)

1

的积分曲线.

本节要点:

1.一阶微分方程组解的存在唯一性定理及解的几何意义.

2.一阶线性微分方程组解的存在唯一性定理及其特征:系数和非齐次项连续区间上整体存在.

作业: 完成定理3.1的证明.

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件: (1)、在上连续; (2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和有以下不等式:。 则初值问题在区间上存在唯一解, 其中

二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得到次近似。 从而构造逐步迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式 证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。

证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数 由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得证。 现设 则在上有定义、连续且 命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛于。 于是即 是积分方程在上的连续解。 命题5:设是积分方程在上的另一连续解。则。 证: 现证也是序列在上的一致收敛极限函数。由, , 得: , 。 设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的唯一性,得。

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

【精选习题】第五章线性微分方程组.doc

第五章线性微分方程组 研究对象 —?阶线性微分方程组 X; = 4 ]⑴州+ 02(°兀2 +…+仇⑴兀"+ f\⑴ X;=勺1 (')" + a22 (Z)^2 + …+ a2n⑴兀“ + fl (Z) X;=(0^1 + d”2(0X2+…+a nn (t)x n + f n (/) 1基本概念 1)一阶微分方程组的标准型 含有〃个未知函数旺,勺,…/”及其一阶导数的微分方程组 兀=齐(佔,兀2,…,兀”)兀;= ./;(/,兀],兀2,…,X”) (5. 1) X:=力亿旺,兀2,…,百) 称为一阶微分方程组的标准型,其中/;(,旺,兀2,…,兀)(7 = 1,2,…,砒是定义在77 + 1维空间(r,x,,x2,---,x z/)的某区域Q内已知的连续函数,/是白变最。 2)初值问题 求满足方程组(5. 1)及初值条件“(5)= 〃1,兀2(,0)= “2,…,X”(/o)= 的解的问题称为一阶微分方程组的初值问题(或柯西问题)。表示如K X =/|(7,“,兀2,???,心) x; =/2(r,x1,x2,---,x…) 、X;=九(/,兀],兀2,…,百) 及兀1仏)=〃1,兀2仏)=〃2,…,X”仏)=〃”。 3)通解 方程组(5.1)含冇乃个独立的任意常数C|,C2,???,C”的解 X】=0(',G,°2,…,c“) 兀2 = 02(',G,°2,八°,C”)兀=?UGG,…,C”)

X = ? ? ? 1 ? ? ? o … 1 … ? ? ?? ? ? ? ? ?X + ■ ■ ■000 (10) 一忑⑴_ a n-\⑴ .............. ⑴ . /(/) U M?B J < 、X 其中x =兀2 z ?,x =■ X ; ? , 并R它的解为(p(t) = 必) ■ 、x,J K丿 “2?, ■ Jin dx ~dt A(t)x + /(/)(5.3) 称为它的通解。 4)高阶线性方程与一阶方程组等价 斤阶线性微分方程的初值问题 J 兀何+6 a)x(i+…+%⑴兀‘+仇(/)% = /(/) 1^0)= "|,疋仏)=“2,…,利7(5)= 〃” 其中4(0(7 = 1,2,???,/?),/(f)是区间[a,b]上确定的函数,f()e \a,bl,g fh,…,几是确定的 常数,它的解为x =(p(t) o只要令£ =兀,兀2 = x r ,x3 =x",…,兀"=x(w_1),它可以化为下歹ij 同时,给定其中一个初值问题的解,就可构造另一个初值问题的解,在这个意义下, 称上面两个初值问题是等价的。 5)一阶线性微分方程组 若(5.1)小函数.力(/,旺,兀2,…,x”)Q = 1,2,???,巾)关于X],X2,???,%…是线性的,即X; = 41 (/)%)+ a I2(/)x2+ …+ a ln (t)x n + f\(t) 兀;=6/2I(/)X,+a22 (/)x2 + ??? + a ln (t)x n + % (/) < Qb. z; X; =⑴X] + % a)*2 + …+ % (叽 + A ⑴ 则称(5. 2)为一阶线性微分方程组,简称为线性方程组,其中勺(/),./;(/),,,丿=1,2,…/在区间[a,b]上连续。 6)线性方程组的向量表示 方程组(5.2)的向量形式为 -阶线性微分方程组的初值问题

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

【典型例题】第五章线性微分方程组

第五章 线性微分方程组 5-1 考虑方程组 x A x )(t dt d = (1) 其中)(t A 是区间b t a ≤≤上的连续n n ?矩阵,它的元素为n j i t a ij ,,2,1,),( =, 1)如果)(,),(),(21t t t n x x x 是(1)的任意n 个解,那么它们的朗斯基行列式 )()](,),(),([21t W t x t x t x W n ≡ 满足下面的一阶线性微分方程 W t a t a t a W nn )]()()([2211+++=' (2); 2)解上面的一阶线性微分方程,证明下面的公式: ],[,,)()(0)]()([0011b a t t e t W t W t t nn ds s a s a ∈=?++ 。 证 1)根据行列式的微分公式 )()() () ()() ()()()()()()()()()()()()()(122111112211111221111t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t W nn n n n nn n n n nn n n n ''+ +''+''=' (3) 由于)(,),(),(21t t t n x x x 是(1)的解,所以 ??? ???? ?? ?? ? ??=??????? ????????? ??='∑∑∑===n j jk nj n j jk j n j jk j nk k k nn n n n k t x t a t x t a t x t a t x t x t x t a t a t a t a t a t a t 11 211211 221111)()()()()()()()()()()()() ()() ()( x , 所以∑==='n j jk ij ik n k i t x t a t x 1 ),,2,1,(),()( )(,把这些等式代入(3)的右端,化 简计算每个行列式,如(3)式右端第一项等于

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称 2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只 就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

第五章 高等数学(理专) 微分方程试题库1

第五章 微分方程 试题库一 1.填空题 (1) 微分方程0),,,()4(='y y y x F 是 阶微分方程. (2)通过点)1,1(处,且在任意一点),(y x P 处的切线斜率为x 的曲线方程为 . (3) 微分方程054=-'-''y y y 的特征方程为 . (4) 微分方程03='-''y y 的通解为 . (5) 微分方程09=-''y y 的通解为 . (6) 微分方程y x x y -=e d d 的通解为 . (7) 微分方程054=-'+''y y y 的通解为 . (8) 微分方程20yy x '+=的通解为 . (9)微分方程560y y y '''-+=的特征方程为 . (10) 微分方程440y y y '''-+=的通解为 . 2.选择题 (1) 微分方程0))(,,,(24='''y y y x F 的通解中含有的相互独立的任意常数的个数是( ). A.1; B.2; C.3; D.4. (2) 下列微分方程中是可分离变量的微分方程的是( ). A.y xy x y +=d d ; B. y x y xy sin e d d =; C. 2d d y xy x y +=; D. 22d d y x x y +=. (3) 下列微分方程中是一阶线性非齐次微分方程的是( ). A. 2d d y xy x y +=; B.x xy y =+''; C.x xy y =+'; D. 02=+'xy y . (4) 微分方程x y e =''的通解为( ). A. x y e =; B. C y x +=e ; C. Cx y x +=e ; D. 21e C x C y x ++=.

变系数_非线性微分方程的求解

变系数/非线性微分方程的求解:Example1: van der Pol equation Rewrite the van der Pol equation (second-order) The resulting system of first-order ODEs is 见:vdp_solve.m及vdp.mdl vdp_solve.m vdp.mdl

Example2: 2 with x(0) = 4 x (0)=0 5(5)5sin()5 +-+= x t x t x 见:exam2_solve.m及exam2.mdl exam2_solve.m exam2.mdl

Example3: ODEs 函数实现及封装说明[以一阶微分方程为例] 510 w i t h (0)4 dx x x dt +==- 引言: 一步Euler 法求解[相当于Taylor 展开略去高阶项]: 11()k k k k k k k k k k k x x x Ax bu t x x t x x t Ax bu ++-==+??=+??=+??+ 补充说明1:对于任意方程/方程组可化为如下一阶形式[方程组]: x Ax Bu =+ 或者(,)(,)M t x x f t x = 补充说明2:ODEs 的解法不同之处在于 1、时间步长的选取(及导数的求解?):有无误差控制 变步长; 2、积分方法:选用哪几个时间状态信息。 见:my_ode_rough.m[直接求解] / test_my_ode.m[按Matlab/ODEs 方式封装] my_ode_rough.m

线性微分方程组

第五章 线性微分方程组 [教学目标] 1. 理解线性微分方程组解的存在唯一性定理,掌握一阶齐(非齐)线性微分方程组解的性质与结构, 2. 理解n 阶线性微分方程与一阶线性微分方程组的关系。 3. 掌握非齐次线性微分方程组的常数变易法, 4. 理解常系数齐线性微分方程组基解矩阵的概念,掌握求基解矩阵的方法。 5. 掌握常系数线性微分方程组的Laplce 变换法。 [教学中难点]求解常系数非齐次线性微分方程组 [教学方法] 讲授,实践。 [教学时间] 16学时 [教学内容] n 阶线性微分方程与一阶线性微分方程组的关系,一阶线性微分方程组解的存在唯一性定理;齐(非齐)线性微分方程组解的性质与结构,求解非齐次线性微分方程组的常数变易法;常系数齐线性微分方程组的基解矩阵及求基解矩阵的方法;求常系数线性微分方程组的Laplce 变换法。 [考核目标] 1.线性微分方程组解的性质与结构。 2.能够求解常系数线性微分方程组。 §5.1 存在唯一性定理 5.1.1记号和定义 考察形如 1 11112211221122222 1122()()()()()()()()()()()()n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++?? ??'=++++? (5.1) 的一阶线性微分方程组,其中已知函数()(,1,2,,)ij a t i j n = 和()(1,2,,)i f t i n = 在区间a t b ≤≤上 上是连续的。方程组(5.1)关于12,,,n x x x 及1 2,,,n x x x ''' 是线性的. 引进下面的记号: 1112121 22 212()() ()()() ()()()() ()n n n n nn a t a t a t a t a t a t A t a t a t a t ??????=?? ? ? ?? (5.2) 这里()A t 是n n ?矩阵,它的元素是2 n 个函数()(,1,2,,)ij a t i j n = . 12()()()()n f t f t f t f t ??????=?????? 12n x x x x ??????=?????? 1 2n x x x x '????'??'=???? '?? (5.3)

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1+u 21 2dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(21 2dx y d +p(x) dx dy 1+q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 21 2dx y d +p(x) dx dy 1+q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

常微分方程第五章微分方程组总结

一.线性微分方程组的一般理论 1. 线性微分方程组一般形式为: 1111122112211222221122()()()(),()()()(), 1 , ()()()(),n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++??????'=++++? () 记: 1112121 22212111222()()()()()()()()()()()()(), , ()n n n n nn n n n a t a t a t a t a t a t A t a t a t a t f t x x f t x x f t x x f t x x ??????=?????? '????????????'??????'===????????????'?????? 非齐次线性方程组表示为: ()() x A t x f t '=+ 齐次线性方程组表示为: ()x A t x '= 2.齐次线性方程组的一般理论 (1)定理 (叠加原理) 如果12(),(),,()n x t x t x t ? 是齐次方程组()x A t x '= 的k 个 解,则它们的线性组合1212()()()n n c x t c x t c x t ++?+ 也是齐次方程组的解,这里 12,,,n c c c ?是任意常数 (2)向量函数线性相关性 定义在区间],[b a 上的函数12(),(),,()n x t x t x t ? ,如果存在不全为零的常数

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程)()(x q y x p dx dy +=解的存在唯一性定理的证明 摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数. 函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为 利普希兹常数 下面我们给出一阶线形微分方程)()(x q y x p dx dy +=(1)解的存在唯一性定理: 如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹 条件,则方程(1)存在唯一的解)(x y ?=,定义于区间h x x ≤-0上,连续且满足初始条件: 00)(y x =? 这里 ), min(M b a h = ),(max y x f M = R y x ∈),( 我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见, 只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样. 现在简单叙述一下运用逐步逼近法证明定理的主要思想,首

先证明求微分方程的初值问题的解等价于求积分方程 []?++=x x dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替 代,因此也就等价于求积分方程 ?+=x x dx y x f y y 0 ),(0 的连续解,然后 去证明积分方程的解的存在唯一性. 任取一个连续函数)(0x ? 代入上面的积分方程右端的y 就得 到函数 dx x x f y x x x ))(,()(0 001?+≡?? 显然)(1x ?也是连续解,如果)(1x ?≡)(0x ?那么)(0x ?就是积分方 程的解.否则,我们又把)(1x ?代入积分方程右端的y 得到 dx x x f y x x x ))(,()(0 102?+≡?? 如果 ≡)(2x ?)(1x ?,那么)(1x ?就是积分方程的解,否则我们继 续这个步骤.一般地做函数 dx x x f y x x x n n ))(,()(0 10?-+≡?? (2) 这样就得到连续函数序列 )(0x ? ,)(1x ?…)(x n ?… 如果≡+)(1x n ?)(x n ?那么)(x n ?就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ?即 )()(lim x x n n ??=∞ → 存在因此对(2)取极限就得到 dx x x f y x x x n n n n ))(,(lim )(lim 0 10?-∞→∞ →+=?? =dx x x f y x x n n ))(,(lim 0 10?-∞ →+? =dx x x f y x x ))(,(0 0?+? 即 dx x x f y x x x ))(,()(0 0?+≡??

1、变系数线性微分方程的求解

本科毕业论文 题目:变系数线性微分方程的求解问题院(部):理学院 专业:信息与计算科学 班级:信计081 姓名:张倩 学号:2008121191 指导教师:庞常词 完成日期:2012年6月1日

目录 摘要 (Ⅱ) ABSTRACT (Ⅲ) 1前言 1.1微分方程的发展和应用 (1) 1.2二阶变系数线性常微分方程的重要性 (2) 1.3本文的研究内容及意义 (2) 2二阶变系数线性微分方程特、通解与系数的关系 2.1基本概念 (3) 2.2二阶变系数线性微分方程的求解定理 (3) 2.3二阶变系数线性微分方程特、通解与系数的关系 (5) 3 微分方程的恰当方程解法 3.1恰当方程的概念 (8) 3.2恰当微分方程解法 (10) 4 微分方程的积分因子解法 4.1积分因子的概念 (14) 4.2积分因子解法 (14) 5二阶变系数微分方程可积的条件 结论 (22) 谢辞 (23) 参考文献 (24)

摘要 微分方程在数学理论中占有重要位置,在科学研究、工程技术中有着广泛的应用。在微分方程理论中,一些特殊的微分方程的性质及解法也已经有了深入的研究,它们总是可解的,但是变系数微分方程的解法比较麻烦的。 如果能够确定某一类型的二阶变系数线性微分方程的积分因子或恰当方程,则该二阶变系数线性微分方程就可以求解,问题在于如何确定积分因子和恰当方程及该类方程在何种情况下可积。 本文通过对微分方程的理论研究,用不同的方法探讨这类问题,扩展了变系数线性微分方程的可积类型,借助积分因子和恰当方程的方法求解方程。 关键词:变系数;二阶微分方程;积分因子;恰当因子

S olve For Varied Coefficient Second Order Liner Differential Equation ABSTRACT Second order liner homogeneous differential equation plays an important role in mathematics theory, and use extensively in science research and technology. In differential equation theory, some special differential equation’s solve ways have already been researched. So they can be seemed as could be solved sort of equation. But varied coefficient equation, however, this solve for this sort of equation is hard. If we can make integrating factor or exact equation of some types of second order liner different equation, and this types of second order liner different equation can be solved. The problem is how to make integrating factor and exact equation, and this type equation can be integral in which condition. This article utilizes different ways to research this problem in different equation theories, which expand could be solved type of varied coefficient second order liner differential equation. By integrating factor and exact equation make varied coefficient second order liner differential equation. Key Words: varied coefficient; second order liner differential equation; integrating factor; exact equation

唯一性定理

唯一性定理 蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。 证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。 如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面 1 S 、2S 上各自的面电荷分布为 σ 和 σe 。壳内外的场是这四 部分电荷共同激发的。 根据定理,首先写出壳内空间电势应满足的条件: (一) 2 ρ?ε ?=- ,ρ 为壳内电荷分布。 (二)壳内表面1S 上的边界条件是:2S 上的总电量 1 s dS q σ=-? (1) 其中 V q dV ρ=? 是壳内的总电量,V 是壳内区域的体积。在壳层 内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1) 成立。 因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - , 和导体壳本身是有电势还是用总电量给定无关。 根据唯一性定理,满足(一)、(二)的 ? 就是解。由于(一) e

和(二)与壳外的 ρe 和 σρ 的电势并不唯一,可以差一个常数。当然当壳用电势 0φ 给定时,1S 上的边界条件就是 1 0|S ?φ= 。所以壳内不但电场唯一,而且电势也是唯一。 2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。试用唯一性定理: (一)判断0 R φ是否球壳外空间的电势分布。 (二)求球壳内空间的电势分布 解:(一)首先必须找出球内外电势应满足的条件,他们是: (a )2 0??= (b )球壳外表面1S 上的边界条件,1 0s ?=φ (c )无穷远边界条件,0R →∞?→ 若R φ 是解,根据唯一性定理,它必须满足以上三个条件。下面来 检验: 2 2 0010R R φ? =φ?= (0),R ≠ 方程已满足。 0,0,R R φ→∞→ 满足(c )。 S1的半径是R1代入 0R φ 后, 00 R φ≠φ 所以它不满足1S 上的边界条 件,它不是球壳外空间的界,下面求正确的解。由上述可知,函数 A R 同时满足方程和无穷远边界条件。A 为待定常数,可由(b )定出。在面1S 上 0,A R φ=

精选习题 第五章 线性微分方程组

第五章 线性微分方程组 研究对象 一阶线性微分方程组 ?????? ?++++='++++='++++=')()()()()()()()()()()()(22112 22221212112121111 t f x t a x t a x t a x t f x t a x t a x t a x t f x t a x t a x t a x n n nn n n n n n n n 1 基本概念 1)一阶微分方程组的标准型 含有n 个未知函数n x x x ,,,21 及其一阶导数的微分方程组 ?????? ?='='='),,,,(),,,,(),,,,(2121222111 n n n n n x x x t f x x x x t f x x x x t f x (5.1) 称为一阶微分方程组的标准型,其中),,2,1)(,,,,(21n i x x x t f n i =是定义在1+n 维空间 ),,,,(21n x x x t 的某区域D 内已知的连续函数,t 是自变量。 2)初值问题 求满足方程组(5.1)及初值条件n n t x t x t x ηηη===)(,,)(,)(0202101 的解的问题称为一阶微分方程组的初值问题(或柯西问题)。表示如下 ?????? ?='='='),,,,(),,,,(),,,,(2121222111 n n n n n x x x t f x x x x t f x x x x t f x 及n n t x t x t x ηηη===)(,,)(,)(0202101 。 3)通解 方程组(5.1)含有n 个独立的任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,(),,,,(),,,,(2121222111n n n n n C C C t x C C C t x C C C t x ???

相关文档
最新文档