电气参数运算口诀

电气参数运算口诀
电气参数运算口诀

电机在有时也根据级数不同电流不同,但已知三相电动机容量,求其额定电流口诀:容量除以千伏数,商乘系数点七六。

说明:

(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。

三相二百二电机,千瓦三点五安培。

常用三百八电机,一个千瓦两安培。

低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。

高压六千伏电机,八个千瓦一安培。

(2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。

(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。

(4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。

(5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。

这是电工速算口诀上的

交流电机的启动电流一般是额定电流的5-6倍的样子,选择接触器时主要也是考虑这个参数。至于正常运行时的电流当然是有计算公式了,《电机学》上有。P 等于根号三*电压*电流。

对三相交流异步电动机,其额定电流计算,可以按经验公式计:即每KW约=2A,

5KW*2=10A

交流接触选择,应略大于电动机的额定电流为好,否则易出问题(应16A)。电动机的启动电流,按国家中级考的标准说法应是4-7倍。

已知变压器容量,求其各电压等级侧额定电流

口诀a :

容量除以电压值,其商乘六除以十。

说明:适用于任何电压等级。

在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:

容量系数相乘求。

已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。

口诀b :

配变高压熔断体,容量电压相比求。

配变低压熔断体,容量乘9除以5。

说明:

正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。

测知无铭牌电动机的空载电流,估算其额定容量

口诀:

无牌电机的容量,测得空载电流值,

乘十除以八求算,近靠等级千瓦数。

说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。

测知电力变压器二次侧电流,求算其所载负荷容量

口诀:

已知配变二次压,测得电流求千瓦。

电压等级四百伏,一安零点六千瓦。

电压等级三千伏,一安四点五千瓦。

电压等级六千伏,一安整数九千瓦。

电压等级十千伏,一安一十五千瓦。

电压等级三万五,一安五十五千瓦。

说明:

(1)电工在日常工作中,常会遇到上级部门,管理人员等问及电力变压器运行情况,负荷是多少?电工本人也常常需知道变压器的负荷是多少。负荷电流易得知,直接看配电装置上设置的电流表,或用相应的钳型电流表测知,可负荷功率是多少,不能直接看到和测知。这就需靠本口诀求算,否则用常规公式来计算,既复杂又费时间。

(2)“电压等级四百伏,一发零点六千瓦。”当测知电力变压器二次侧(电压等级400V)负荷电流后,安培数值乘以系数0.6便得到负荷功率千瓦数。

测知白炽灯照明线路电流,求算其负荷容量

照明电压二百二,一安二百二十瓦。

说明:工矿企业的照明,多采用220V的白炽灯。照明供电线路指从配电盘向各个照明配电箱的线路,照明供电干线一般为三相四线,负荷为4kW以下时可用单相。照明配电线路指从照明配电箱接至照明器或插座等照明设施的线路。不论供电还是配电线路,只要用钳型电流表测得某相线电流值,然后乘以220系数,积数就是该相线所载负荷容量。测电流求容量数,可帮助电工迅速调整照明干线三相负荷容量不平衡问题,可帮助电工分析配电箱内保护熔体经常熔断的原因,配电导线发热的原因等等。

测知无铭牌380V单相焊接变压器的空载电流,求算基额定容量

口诀:

三百八焊机容量,空载电流乘以五。

单相交流焊接变压器实际上是一种特殊用途的降压变压器,与普通变压器相比,其基本工作原理大致相同。为满足焊接工艺的要求,焊接变压器在短路状态下工作,要求在焊接时具有一定的引弧电压。当焊接电流增大时,输出电压急剧下降,当电压降到零时(即二次侧短路),二次侧电流也不致过大等等,即焊接变压器具有陡降的外特性,焊接变压器的陡降外特性是靠电抗线圈产生的压降而获得的。空载时,由于无焊接电流通过,电抗线圈不产生压降,此时空载电压等于二次电压,也就是说焊接变压器空载时与普通变压器空载时相同。变压器的空载电流一般约为额定电流的6%~8%(国家规定空载电流不应大于额定电流的10%)。这就是口诀和公式的理论依据。

***

已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流口诀:

电机过载的保护,热继电器热元件;

号流容量两倍半,两倍千瓦数整定。

说明:

(1)容易过负荷的电动机,由于起动或自起动条件严重而可能起动失败,或需要限制起动时间的,应装设过载保护。长时间运行无人监视的电动机或3kW及以上的电动机,也宜装设过载保护。过载保护装置一般采用热继电器或断路器的延时过电流脱扣器。目前我国生产的热继电器适用于轻载起动,长时期工作或间断长期工作的电动机过载保护。

(2)热继电器过载保护装置,结构原理均很简单,可选调热元件却很微妙,若等级选大了就得调至低限,常造成电动机偷停,影响生产,增加了维修工作。若等级选小了,只能向高限调,往往电动机过载时不动作,甚至烧毁电机。(3)正确算选380V三相电动机的过载保护热继电器,尚需弄清同一系列型号的热继电器可装用不同额定电流的热元件。热元件整定电流按“两倍千瓦数整定”;热元件额定电流按“号流容量两倍半”算选;热继电器的型号规格,即其额定电流值应大于等于热元件额定电流值。

已知380V三相电动机容量,求其远控交流接触器额定电流等级

口诀:

远控电机接触器,两倍容量靠等级;

步繁起动正反转,靠级基础升一级。

说明:

(1)目前常用的交流接触器有CJ10、CJ12、CJ20等系列,较适合于一般三相电动机的起动的控制。

已知小型380V三相笼型电动机容量,求其供电设备最小容量、负荷开关、保护熔体电流值

口诀:

直接起动电动机,容量不超十千瓦;

六倍千瓦选开关,五倍千瓦配熔体。

供电设备千伏安,需大三倍千瓦数。

说明:

(1)口诀所述的直接起动的电动机,是小型380V鼠笼型三相电动机,电动机起动电流很大,一般是额定电流的4~7倍。用负荷开关直接起动的电动机容量最大不应超过10kW,一般以4.5kW以下为宜,且开启式负荷开关(胶盖瓷底隔离开关)一般用于5.5kW及以下的小容量电动机作不频繁的直接起动;封闭式负荷开关(铁壳开关)一般用于10kW以下的电动机作不频繁的直接起动。两者均需有熔体作短路保护,还有电动机功率不大于供电变压器容量的30%。总之,切记电动机用负荷开关直接起动是有条件的!

(2)负荷开关均由简易隔离开关闸刀和熔断器或熔体组成。为了避免电动机起动时的大电流,负荷开关的容量,即额定电流(A);作短路保护的熔体额定电流(A),分别按“六倍千瓦选开关,五倍千瓦配熔件”算选,由于铁壳开关、胶盖瓷底隔离开关均按一定规格制造,用口诀算出的电流值,还需靠近开关规格。

同样算选熔体,应按产品规格选用。

已知笼型电动机容量,算求星-三角起动器(QX3、QX4系列)的动作时间和热元件整定电流

口诀:

电机起动星三角,起动时间好整定;

容量开方乘以二,积数加四单位秒。

电机起动星三角,过载保护热元件;

整定电流相电流,容量乘八除以七。

说明:

(1)QX3、QX4系列为自动星形-三角形起动器,由三只交流接触器、一只三相热继电器和一只时间继电器组成,外配一只起动按钮和一只停止按钮。起动器在使用前,应对时间继电器和热继电器进行适当的调整,这两项工作均在起动器安装现场进行。电工大多数只知电动机的容量,而不知电动机正常起动时间、电动机额定电流。时间继电器的动作时间就是电动机的起动时间(从起动到转速达到额定值的时间),此时间数值可用口诀来算。

(2)时间继电器调整时,暂不接入电动机进行操作,试验时间继电器的动作时间是否能与所控制的电动机的起动时间一致。如果不一致,就应再微调时间继电器的动作时间,再进行试验。但两次试验的间隔至少要在90s以上,以保证双金属时间继电器自动复位。

(3)热继电器的调整,由于QX系列起动器的热电器中的热元件串联在电动机相电流电路中,而电动机在运行时是接成三角形的,则电动机运行时的相电流是

线电流(即额定电流)的1/√3倍。所以,热继电器热元件的整定电流值应用口诀中“容量乘八除以七”计算。根据计算所得值,将热继电器的整定电流旋钮调整到相应的刻度-中线刻度左右。如果计算所得值不在热继电器热元件额定电流调节范围,即大于或小于调节机构之刻度标注高限或低限数值,则需更换适当的热继电器,或选择适当的热元件。

已知笼型电动机容量,求算控制其的断路器脱扣器整定电流

口诀:

断路器的脱扣器,整定电流容量倍;

瞬时一般是二十,较小电机二十四;

延时脱扣三倍半,热脱扣器整两倍。

说明:(1)自动断路器常用在对鼠笼型电动机供电的线路上作不经常操作的断路器。如果操作频繁,可加串一只接触器来操作。断路器利用其中的电磁脱扣器(瞬时)作短路保护,利用其中的热脱扣器(或延时脱扣器)作过载保护。断路器的脱扣器整定电流值计算是电工常遇到的问题,口诀给出了整定电流值和所控制的笼型电动机容量千瓦数之间的倍数关系。

(2)“延时脱扣三倍半,热脱扣器整两倍”说的是作为过载保护的自动断路器,其延时脱扣器的电流整定值可按所控制电动机额定电流的1.7倍选择,即3.5倍千瓦数选择。热脱扣器电流整定值,应等于或略大于电动机的额定电流,即按电动机容量千瓦数的2倍选择。

已知异步电动机容量,求算其空载电流

口诀:

电动机空载电流,容量八折左右求;

新大极数少六折,旧小极多千瓦数。

说明:

(1)异步电动机空载运行时,定了三相绕组中通过的电流,称为空载电流。绝大部分的空载电流用来产生旋转磁场,称为空载激磁电流,是空载电流的无功分量。还有很小一部分空载电流用于产生电动机空载运行时的各种功率损耗(如摩擦、通风和铁芯损耗等),这一部分是空载电流的有功分量,因占的比例很小,可忽略不计。因此,空载电流可以认为都是无功电流。从这一观点来看,它越小越好,这样电动机的功率因数提高了,对电网供电是有好处的。如果空载电流大,因定子绕组的导线载面积是一定的,允许通过的电流是一定的,则允许流过导线的有功电流就只能减小,电动机所能带动的负载就要减小,电动机出力降低,带过大的负载时,绕组就容易发热。但是,空载电流也不能过小,否则又要影响到电动机的其他性能。一般小型电动机的空载电流约为额定电流的30%~70%,大中型电动机的空载电流约为额定电流的20%~40%。具体到某台电动机的空载电流是多少,在电动机的铭牌或产品说明书上,一般不标注。可电工常需知道此数值是多少,以此数值来判断电动机修理的质量好坏,能否使用。

(2)口诀是现场快速求算电动机空载电流具体数值的口诀,它是众多的测试数据而得。它符合“电动机的空载电流一般是其额定电流的1/3”。同时它符合实践经验:“电动机的空载电流,不超过容量千瓦数便可使用”的原则(指检修后的旧式、小容量电动机)。口诀“容量八折左右求”是指一般电动机的空载电流值是电动机额定容量千瓦数的0.8倍左右。中型、4或6极电动机的空载电流,

就是电动机容量千瓦数的0.8倍;新系列,大容量,极数偏小的2级电动机,其空载电流计算按“新大极数少六折”;对旧的、老式系列、较小容量,极数偏大的8极以上电动机,其空载电流,按“是小极多千瓦数”计算,即空载电流值近似等于容量千瓦数,但一般是小于千瓦数。运用口诀计算电动机的空载电流,算值与电动机说明书标注的、实测值有一定的误差,但口诀算值完全能满足电工日常工作所需求。

****

已知电力变压器容量,求算其二次侧(0.4kV)出线自动断路器瞬时脱扣器整定电流值

口诀:

配变二次侧供电,最好配用断路器;

瞬时脱扣整定值,三倍容量千伏安。

说明:

(1)当断路器作为电力变压器二次侧供电线路开关时,断路器脱扣器瞬时动作整定值,一般按

*****

电工需熟知应用口诀

巧用低压验电笔

低压验电笔是电工常用的一种辅助安全用具。用于检查500V以下导体或各种用电设备的外壳是否带电。一支普通的低压验电笔,可随身携带,只要掌握验电笔的原理,结合熟知的电工原理,灵活运用技巧很多。

(1)判断交流电与直流电口诀

电笔判断交直流,交流明亮直流暗,

交流氖管通身亮,直流氖管亮一端。

说明:

首先告知读者一点,使用低压验电笔之前,必须在已确认的带电体上验测;在未确认验电笔正常之前,不得使用。判别交、直流电时,最好在“两电”之间作比较,这样就很明显。测交流电时氖管两端同时发亮,测直流电时氖管里只有一端极发亮。

(2)判断直流电正负极口诀:

电笔判断正负极,观察氖管要心细,

前端明亮是负极,后端明亮为正极。

说明:

氖管的前端指验电笔笔尖一端,氖管后端指手握的一端,前端明亮为负极,反之为正极。测试时要注意:电源电压为110V及以上;若人与大地绝缘,一只手摸电源任一极,另一只手持测民笔,电笔金属头触及被测电源另一极,氖管前端极发亮,所测触的电源是负极;若是氖管的后端极发亮,所测触的电源是正极,这是根据直流单向流动和电子由负极向正极流动的原理。

(3)判断直流电源有无接地,正负极接地的区别口诀

变电所直流系数,电笔触及不发亮;

若亮靠近笔尖端,正极有接地故障;

若亮靠近手指端,接地故障在负极。

说明:

发电厂和变电所的直流系数,是对地绝缘的,人站在地上,用验电笔去触及正极或负极,氖管是不应当发亮的,如果发亮,则说明直流系统有接地现象;如果发亮在靠近笔尖的一端,则是正极接地;如果发亮在靠近手指的一端,则是负极接地。

(4)判断同相与异相口诀

判断两线相同异,两手各持一支笔,

两脚与地相绝缘,两笔各触一要线,

用眼观看一支笔,不亮同相亮为异。

说明:

此项测试时,切记两脚与地必须绝缘。因为我国大部分是380/220V供电,且变压器普遍采用中性点直接接地,所以做测试时,人体与大地之间一定要绝缘,避免构成回路,以免误判断;测试时,两笔亮与不亮显示一样,故只看一支则可。(5)判断380/220V三相三线制供电线路相线接地故障口诀

星形接法三相线,电笔触及两根亮,

剩余一根亮度弱,该相导线已接地;

若是几乎不见亮,金属接地的故障。

说明:

电力变压器的二次侧一般都接成Y形,在中性点不接地的三相三线制系统中,用验电笔触及三根相线时,有两根比通常稍亮,而另一根上的亮度要弱一些,则表示这根亮度弱的相线有接地现象,但还不太严重;如果两根很亮,而剩余一根几乎看不见亮,则是这根相线有金属接地故障。

现场急救触电才人工呼吸法

触电人脱离电源后,应立即进行生理状态的判定。只有经过正确的判定,才能确定抢救方法。

(1)判定有无意识。救护人轻拍或轻摇触电人的户膀(注意不要用力过猛或摇头部,以免加重可能存在的外伤),并在耳旁大声呼叫。如无反应,立即用手指掐压人中穴。当呼之不应,刺激也毫无反应时,可判定为意识已丧失。该判定过程应在5S内完成。

当触电人意识已丧失时,应立即呼救。将触电人仰卧在坚实的平面上,头部放平,颈部不能高于胸部,双臂平放在驱干两侧,解开紧身上衣,松开裤带,取出假牙,清除口腔中的异物。若触电人面部朝下,应将头、户、驱干作为一个整体同时翻转,不能扭曲,以免加重颈部可能存在的伤情。翻转方法是:救护人跪在触电人肩旁,先把触电人的两只手举过头,拉直两腿,把一条腿放在另一条腿上。然后一只手托住触电人的颈部,一只手扶住触电人的肩部,全身同时翻转。

(2)判定有无呼吸。在保持气道开放的情况下,判定有无呼吸的方法有:用眼睛观察触电人的胸腹部有无起伏;用耳朵贴近触电人的口、鼻,聆听有无呼吸的声音;用脸或手贴近触电人的口、鼻,测试有无气体排出;用一张薄纸片放在触电人的口、鼻上,观察纸片是否动。若胸腹部无起伏、无呼气出,无气体排出,纸片不动,则可判定触电人已停止呼吸。该判定在3~5S内完成。

如何根据电机的容量来计算导线和开关?

根据三相鼠笼异步电动机的容量,选择空开、接触器、热元件及导线的计算方法如下:

1、电动机的容量设为N KW,则电动机的额定电流为:2N A,一般情况下,和电动机铭牌上的额定电流相差无几!如果不相信的话,可以拿电动机手册查一下,这个公式可以说是非常准确的!

例如:电动机功率7.5KW,则额定电流为15A;

电动机功率55 KW,则额定电流为110A;

额定电流是选择空开、接触器、导线的最主要依据!

2、选择空开如下:

电动机的容量设为N KW,则电动机的额定电流为:2N A,一般情况下,选择空开的容量是4N A左右;

例如:电动机功率7.5KW,则额定电流为15A;空开的容量应该是32 A;电动机功率55 KW,则额定电流为110A;空开的容量应该是250 A;

注意:风机、泵类的空开和接触器选择要大一些,因为它们的启动时间较长,启动转矩较大;

3、接触器选择同上,即(3.5—4)N A;

4、导线选择:根据电动机的额定电流来选择,一般是额定电流的1.5倍,但是要考虑铺设环境,铺设方式等,在乘以适当的系数。

电工常用计算公式

电工常用计算公式(口诀) 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀c :容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV 电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。

建筑电气设计相关计算公式大全

一、常用的需要系数负荷计算方法 1、用电设备组的计算负荷(三相): 有功计算负荷 Pjs=Kx·Pe(Kw); 无功计算负荷 Qjs=Pjs·tgψ(Kvar); 视在功率计算负荷Sjs=√ ̄Pjs2+ Qjs2(KVA); 计算电流 Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 式中:Pe---用电设备组额定容量(Kw); Cosψ---电网或供电的功率因数余弦值(见下表); tgψ ---功率因数的正切值(见下表); Ux---标称线电压(Kv)。 Kx---需要系数(见下表) 提示:有感抗负荷(电机动力)时的计算电流,即: Ijs=Sjs/√ ̄3·Ux·Cosψ·η(A) η---感抗负荷效率系数,一般取值0.65~0.85。 民用建筑(酒店)主要用电设备需要系数Kx及Cosψ、tgψ的取值表: 注:照明负荷中有感抗负荷时,参见照明设计。

2、配电干线或变电所的计算负荷: ⑴、根据设备组的负荷计算确定后,来计算配电干线的负荷,方法如下:总有功计算负荷∑Pjs=K∑·∑(Kx·Pe); 总无功计算负荷∑Qjs= K∑·∑(Pjs·tg); 总视在功率计算负荷∑Sjs=√ ̄(∑Pjs)2+(∑Qjs)2。 配电干线计算电流∑Ijs=∑Sjs/√ ̄3·Ux·Cosψ(A)。 式中:∑---总矢量之和代号; K∑---同期系数(取值见下表1)。 ⑵、变电所变压器容量的计算,根据低压配电干线计算负荷汇总后进行计算,参照上述方法进行。即: ∑Sjs变= K∑·∑Sjs干线(K∑取值范围见下表2)。 变压器容量确定:S变=Sjs×1.26= (KVA)。 (载容率为80﹪计算,百分比系数取1.26,消防负荷可以不计在内)。变压器容量估算S变= Pjs×K×1.26= Pjs×1.063×1.26= (Kva)。 同期系数K∑值表: 计算负荷表(参考格式):

电力电缆主要电气参数计算及计算实例

电力电缆主要电气参数计算及计算实例 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.设计电压 及附件的设计必须满足额定电压、雷电冲击电压、操作冲击电压和系统最高电压的要求。其定义如下: 额定电压 额定电压是电缆及附件设计和电性试验用的基准电压,用U0/U表示。 U0——电缆及附件设计的导体和绝缘屏蔽之间的额定工频电压有效值,单位为kV; U——电缆及附件设计的各相导体间的额定工频电 压有效值,单位为kV。 雷电冲击电压 UP——电缆及附件设计所需承受的雷电冲击电压的峰值,既基本绝缘水平BIL,单位为kV。 操作冲击电压 US——电缆及附件设计所需承受的操作冲击电压的峰值,单位为kV。 系统最高电压 Um——是在正常运行条件下任何时候和电网上任何点最高相间电压的有效值。它不包括由于故障条件和大负荷的突然切断而造成的电压暂时的变化,单位为kV。 定额电压参数见下表(点击放大)

330kV操作冲击电压的峰值为950kV;500kV操作冲击电压的峰值为1175kV。 2.导体电阻 导体直流电阻 单位长度电缆的导直流电阻用下式计算: 式中: R'——单位长度电缆导体在θ℃温度下的直流电阻; A——导体截面积,如导体右n根相同直径d的导线扭合而成,A=nπd2/4; ρ20——导体在温度为20℃时的电阻率,对于标准软铜ρ20=Ω˙mm2/m:对于标准硬铝:ρ20=Ω˙mm2/m; 1 α——导体电阻的温度系数(1/℃);对于标准软铜:=℃-1;对于标准硬铝:=℃-1; k1——单根导线加工过程引起金属电阻率的增加所引入的系数。一般为(线径越小,系数越大);具体可见《电线电缆手册》表3-2-2; k2——用多根导线绞合而成的线芯,使单根导线长度增加所引入的系数。对于实心线芯,=1;对于固定敷设电缆紧压多根导线绞合线芯结构,=(200mm2以下)~(240mm2以上) k3——紧压线芯因紧压过程使导线发硬、电阻率增加所引入的系数(约);

实用的电气计算公式

实用的电气计算公式 Revised as of 23 November 2020

掌握实用的计算公式是工作者应具备的能力,但公式繁多应用时查找不方便,下面将整理和收集的一些常用的实用公式和口诀整理出来,并用实例说明和解释。 1、照明电路电流计算及熔丝刀闸的选择 口诀:白炽灯算电流,可用功率除压求; 日光灯算电流,功率除压及功率因数求(节能日光灯除外); 刀闸保险也好求,一点五倍额定流; 说明:照明电路中的白炽灯为电阻性负荷,功率因数cosΦ=1,用功率P单位瓦除以电压等于其额定电流。日光灯为电感性负荷,其功率因数cosΦ为(一般取),即P/U/cosΦ=I。 例1:有一照明线路,额定电压为220V,白炽灯总功率为2200W,求总电流选刀闸熔丝。 解:已知 U=220V,总功率=2200W 总电流I=P/U=2200/220=10A 选刀闸:QS=I×~=15A 选熔丝:IR=I×~=10×=11A (取系数 QS--------刀闸 IR---------熔丝 答:电路的电流为10安培,刀闸选用15安培,熔丝选用11安培。 例2:有一照明电路,额定电压为220V,接有日光灯440W,求总电流选刀闸熔丝。(cosΦ=) 解:已知U=220V, cosΦ=,总功率=440W 总电流I=P/U/ cosΦ=440/220/=4A

选刀闸:QS=I×~=4×=6A 选熔丝:IR=I×~= 4×=6A 答:电路的总电流为4A,刀闸选用6A,熔丝选用6A。 2 、380V/220V常用负荷计算 口诀:三相千瓦两倍安,热,伏安,一千乏为一点五 单相二二乘四五,若是三八两倍半。 说明:三相千瓦两倍安是指三相容量1千瓦,电流2安培,热,伏安,一千乏一点五是指三相电热器,变压器,器容量1千瓦,1千伏安,1千乏电容电流为安培,单相二二乘四五,若是三八两倍半是指单相220V容量1千瓦,电流为安,380V单相电焊机1千伏安为安培。 例1:有一台三相,额定电压为380V,容量为14千瓦,功率因数为,效率为,计算电流 解:已知 U=380V cosΦ= n= P=14千瓦 电流I=P/(×U×cosΦ×n)=P/×380××=28(安) 答:电流为28安培。 例2:有一台三相380伏、容量为10千瓦加热器,求电流 解:已知 U=380V P=10千瓦 电流I=P/(×U)=10/×=(安) 答:电流为15安。 例3:有一台380伏的三相变压器,容量20千伏安,求电流

电气计算公式

电气计算公式 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是 2.63A,以上说的是指的单相的情况。 380V三相的时候,公式是 I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算: I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2 Q2 S=√(P2 Q2) 视在功率S=1.732UI 有功功率P=1.732UIcosΦ 无功功率Q=1.732UIsinΦ 功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率 Pj:计算有功功率 Sj:计算视在功率 Ij:计算电流 Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器;FR表示热继电器;SQ表示限位开关; SB表示按钮开关; Q表示刀开关; FU表示熔断器; FR 表示热继电器

同轴电缆的电气参数计算

同轴电缆的电气参数计算同轴电 缆的一个回路是同轴对,它是对 地不对称的.在金属圆管(称为外 导体)内配置另一圆形导体(称为 内导体),用绝缘介质使两者相互 绝缘并保持轴心重合,这样所构 成的线对称同轴对。同轴电缆可 用于开通多路栽波通信或传输电 视节 目,也可用同轴电缆传输高数码的数据信息(如 UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大?而与

内外导体直径比没直接的关系? (2).电感随频率的增大而减小,随内外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下 1.1.有效电阻: 同轴电缆的有效电阻包括内导体的有效电阻及外导体的有效电阻,当内外导体都是铜导体时,总的有效电阻为: d d D 1.2有效电感: 同轴回路的电感由内?外导体的内电感和内外导体之间的外电感组成,当内外导体都是铜时回路的电感为: 2? 132 1 1 *

L=①恤(孑)十卡主〒+万沪L(T宮萤醛 1.3同轴电缆电容: 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对内外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw外导体结构的修正系数(理想外导体Dw=O 非理想外导体Dw编织外导体中的单线直径) K1-内导体结构的修正系数, D1-同轴线外导体内径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成:一是由绝缘介质极化作用引起的交流电导G?,另一个部分是由于绝缘不完善而引起的直流电导G0: G=GO+G? f 一r" 4 ”aji I n m ii .i.? a 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数a ,及相移常数. 2.1.同轴电缆特性阻抗:

电气实用速算法

电气实用速算法 (1)变压器低压侧电流为容量的1.5倍(精确时为1.44倍) (2)变压器低压出口三相短路电流为容量的150倍除以变压器短路阻抗百分数(精确时为144倍) (3)变压器10kV侧额定电流为容量的6%(精确为5.8%);6kV 侧额定电流为容量 10%(精确时为9.6%) (4)0.4kV三相补偿电容器额定电流为容量的1.5倍(精确时为1.44倍) (5)380V三相电机额定电流为容量和2倍 (6)一般情况下低压侧功率因数补偿至0.95,电容器容量约为变压器容量的1/3~2/5。一般使用场所适用,特殊场合,如电阻炉或气体放电灯的容量大的场所例外。 (8)三相380V笼式电机额定及起动电流保护计算: 额定电流安培数为其容量千瓦数的2倍,其起动电流约为容量的12~14倍,对直接起动的电机,保护短塑壳开关瞬动电流为其容量17~24倍;对轻载且不经常起动的电机,熔丝电流为电机额定电流的2.5~3倍;对重载起动电机,熔丝电流为其额定电流的4~5倍。 (9)低压补偿电容器容量及保护熔断器的选择

一般情况,补偿千乏数为变压器容量千伏安数和30%~40%,单只容量电流安培数为其容量千乏数的1.5倍,保护熔断器熔丝电流不小于电容器额定电流的1.5倍。 估算举例: 一台1250KVA变压器,短路阻抗为6%, 低压0.4KV额定电流Ie=1.5*1250=1875A, 低压短路电流Ik=1250/6=31250=31.25Ka, 高压10kV侧电流I1=12508*6%=75A, 低压电容补偿容量线为Q=150*1/3=420kVar。 因此,高压电流互感器选75/5, 低压电流互感器2000/5,2500/5, 断路器选断流能力不小于35KA即可; 补偿电容器柜两台,一台200kVar,一台220 kVar。 注:若高压电流互感器动稳定不符合要求时,可加大变比或另选电流互感器。 五、电气基本知识 (1)高压柜五防要求: 对固定柜要求为: ①防误拉、合断路器; ②防误拉、全隔离开关; ③防带电挂接地线;

电气手算工程量方法及步骤

有关安装算量手算的要点总结(电气部分) 拿到图纸以后先核对一下图纸是不是齐全,齐全在进行下一步。 符号认识:所有未标注的数字除标高的单位是m外,其他的都是mm。(附表1)所有安装从室外进来的水平管都称做干管,从干管上立起来的称为立管,从立管上接出来的称为支管。切记要核实图上的比例是否是正确的。 (一)电气工程(包括强电部分、弱电部分及防雷接地部分) 一、强电部分: 1、熟悉图纸:①先看设计说明,把设计说明上的工程所用材料及防雷部分的说明全部记下来,然后说明上一般都附有图例,把图例上所有的需要数个数的(配电箱分不同规格、灯具、插座、开关等)都分别统计出数量;②看系统图时应对上平面图,了解管子的走向。系统图上的上下方向一般在平面图只有点或圈表示(说明是垂直走的);系统图上的左右方向在平面图上左右走;系统图上的斜线45度方向走,说明在平面图上前后走的管道;系统图上用标高推其立管的高度,平面图上可以量出干管及支管的水平段长度; 2、工程量计算流程:首先从室外→→→总配电箱→→→单元配电箱→→→户内配电箱→→→各个回路(照明、插座等)。 3、计算步骤:先算管(槽)后算线(缆),管(槽)不进箱、线(缆)进箱。 4、有关规定:室外进线图纸上未标注的情况下,室外预留1.5m(室外至外墙皮);电缆进箱长度加2m,电线进箱长度为配电箱的半周长;没给实际做法的情况,考虑地面做法为0.3m。所有的电线管子全部为暗敷(在混凝土楼板及墙面、地面中,在平面图中量管子时只有楼梯处的管子一般按图上画的量,其它房间的管子可以按两点间最短距离量) 计算电气工程应撑握以下的计算规律: 1)、照明灯具支线一般是两根导线,要求带接地的则是三根导线,一根火线与

电缆结构计算

电缆结构设计与物料用量计算 电缆结构设计是把线材各组成部分参数书面化.在设计过程中,主要是根据线材的有关标准,结合本厂的生产能力,尽量满足客户要求.并把结果以书面形式表达出来,为生产提供依据. 物料用量计算是根据设计线材时选用的材料及结构参数,计算出各种材料的用量,为会计部计算成本及仓储发料提供依据. 导体部分有关设计与计算: 导体在结构上有实心及绞线两种,而其成份方面有纯金属.合金.镀层及漆包线等.在设计过程中,对于不同的线材选用这些导体材料时,基于下面几个方面: 1.线材的使用场所及后序加工方式. 2.导体材料的性能:导电率,耐热性.抗张强度.加工性.弹性系数等. 1.导体绞合节距设计: 绞线中绞合节距大小一般根据绞合导体线规选取(主要针对UL电子线系列, 电源线,UL444系列,CSA TR-4系列对导体的节距有要求,需根据标准设计),有时为了改善某种性能可选其它的节距.如通信线材为了降衰减选用小节距,为了提供好的弯曲性能选用较小的节距.下面的节距表选择表是针对UL电子线. 美制线规对应截面积及绞线节距 2.多根绞合导体绞合外径计算: 导体绞合采用束绞方式进行,绞合外径采用下面两种方法计算: 方法1: 方法2: d----单根导体的直径 D---绞合后绞合导体外径 N---导体根数 上述两种方法中,方法2比较适合束绞方式导体绞合外径计算: 3.导体用量计算:

1.单根导体 2.绞合导体 d----单根导体直径 ρ—导体密度 N---导体绞合根数 λ---导体绞入系数 注:用量计算为单芯时导体用量,当多芯时须考虑芯线绞合时的绞入系数. 4.导体防氧化. 为防止导体氧化, 可在导体绞合时, 加BAT或DOP油(如电源线,透明线)。 押出部分有关的设计与计算: 押出部分包括绝缘押出.内被押出及外被押出,在押出过程中,因对线材要求不同采用押出方式不同.一般情况下,绝缘押出采用挤压式,内护层与外护层采用半挤管式.有时为了满足性能要求采用挤管式.其具体选择方法,参照押出技术. 1.押出料的选择: 设计过程中押出料的选择主要根据胶料的用途、耐温等级、光泽性、软硬度、可塑剂耐迁移性、无毒性能等来选择. 2.押出外径: D2=D+2*T D------押出前外径 D2----押出后外径 T------押出厚度 押出厚度(T)主要根据线材有关标准,结合厂内设备生产能力尽量满足客户要求. 3.胶料用量: 采用不同的押出方式,押出胶料用量计算公式也有不同. 挤管式 挤压式 W=(S成品截面-S缆芯内容物)*ρ ρ-----胶料密度. 考虑到线材的公差, 现期线缆企业一般采用下面计算方法. W=3,14159*1.05*T*(2*D+T)* ρ 芯线绞合有关设计与计算: 芯线绞合国内称为成缆,是大多数多芯电缆生产的重要工序之一。由若干绝缘线芯或单元组绞合成缆芯的过程称芯线绞合。其原理类似如导体绞合,芯线绞合的一般工艺参数计算及线芯在绞合过程中的变形与绞线相似。芯线绞合根据绞合绝缘线芯直径是否相同分为对称绞合和不对称绞合。因为芯线在绞合过程中有弯曲变形,有些较粗绝缘芯线在绞合过程采用退扭。如UL2919、CAT.5、IEEE1394、DVI芯线及其它高发泡绝缘芯线。以下分几个方面叙述芯线绞合的工艺参数计算: 1.对绞:

电气实用速算法,记住这些,你就是这么任性

电气实用速算法,记住这些,你就是这么任性 1、变压器低压侧电流为容量的1.5 倍(精确时为1.44 倍); 2、变压器低压出口三相短路电流为容量的150倍除以变压器短路阻抗百分数(精确时为144 倍): 3、变压器10kV 侧额定电流为容量的6%(精确时为5.8%)6kV 侧额定电流为容量的10%(精确时为9.6%); 4、0.4kV 三相补偿电容器额定电流为容量的1.5 倍(精确时为1.44 倍); 5、380V 三相电机额定电流为容量和2倍; 6、一般情况下低压侧功率因数补偿至0.95,电容器容量约为变压器容量的1/3~2/5。一般使用场所适用,特别场合,如电阻炉或气体放电灯的容量大的场所例外。 7、铜排载流量估算表铜排截面S(mm2)、认可载流量为I(A)、铜排截面S(mm2)、认可载流量为(IA)S≤100 I=3.5S;200<S≤600 I=2.5S100<S≤200 I=3S ;S>600 I=2S注:铜排厚度越小,每mm2载流量就越大.8、三相380V笼式电机额定及起动电流庇护计算额定电流安培数为其容量千瓦数的2倍,其起动电流约为容量的12~14倍,对直接起动的电机,庇护短路塑壳开关瞬动电流为其容量17~24倍;对轻载且不经常起动的电机,熔丝电流为电机额定电流的2.5~3倍;对重载起动电机,熔丝电流为其额定电流和4~5 倍.9、低压补偿电容器容量如何选择?其庇护熔断器如何选?一般情况,补偿总千乏数为变压器容量千伏安数和30%~40%,单只容量电流安培数为其容量千乏数的1.5倍,庇护熔断器熔丝电流不小于电容器额定电流的1.5倍。估算举例:一台1250kVA 变压器,短路阻抗为6%, 低压0.4kV 额定电流Ie=1.5*1250=1875A; 低压短路电流Ik=1250*150/6=31250=31.25kA; 高压10kV 侧电流I,I=1250*6%=75A;低压电容补偿容量约为Q=1250*1/3=420kVar.因此, 高压电流互感器选75/5;低压电流互感器2000/5,2500/5;断路器选断流能力不小于35kA即可;补偿电容器柜两台,一台200kVar,一台220kVar.注:若高压电流互感器动稳定不符合要求时,可加大变比或另选电流互感器。

同轴电缆的电气参数计算

同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)配置另一圆形导体(称为导体),用绝缘介质使两者相互绝缘并保持轴心重合,这样所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大.而与外导体直径比没直接的关系. (2).电感随频率的增大而减小,随外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括导体的有效电阻及外导体的有效电阻,当外导体都是铜导体时,总的有效电阻为: 1.2有效电感: 同轴回路的电感由.外导体的电感和外导体之间的外电感组成,当外导体都是铜时,回路的电感为: 1.3同轴电缆电容﹕ 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径) K1-导体结构的修正系数, D1-同轴线外导体径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0: G=G0+G~ 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数. 2.1.同轴电缆特性阻抗﹕ 2.1.1.对于斜包,铝箔纵包可近似看作是理想外导体,计算如下:

实用的电气计算公式

掌握实用得计算公式就是电气工作者应具备得能力,但公式繁多应用时查找不方便,下面将整理与收集得一些常用得实用公式与口诀整理出来,并用实例说明与解释。 1、照明电路电流计算及熔丝刀闸得选择 口诀:白炽灯算电流,可用功率除压求; 日光灯算电流,功率除压及功率因数求(节能日光灯除外); 刀闸保险也好求,一点五倍额定流; 说明:照明电路中得白炽灯为电阻性负荷,功率因数cosΦ=1,用功率P单位瓦除以电压等于其额定电流。日光灯为电感性负荷,其功率因数co sΦ为0、4-0、6(一般取0、5),即P/U/cosΦ=I。 例1:有一照明线路,额定电压为220V,白炽灯总功率为2200W,求总电流选刀闸熔丝。 解:已知U=220V,总功率=2200W 总电流I=P/U=2200/220=10A 选刀闸:QS=I×(1、1~1、5)=15A 选熔丝:IR=I×(1、1~1、5)=10×1、1=11A (取系数1、1) QS--------刀闸 IR---------熔丝 答:电路得电流为10安培,刀闸选用15安培,熔丝选用11安培。 例2:有一照明电路,额定电压为220V,接有日光灯440W,求总电流选刀闸熔丝。(cosΦ=0、5) 解:已知U=220V, cosΦ=0、5,总功率=440W 总电流I=P/U/ cosΦ=440/220/0、5=4A 选刀闸:QS=I×(1、1~1、5)=4×1、5=6A 选熔丝:IR=I×(1、1~1、5)= 4×1、5=6A 答:电路得总电流为4A,刀闸选用6A,熔丝选用6A。 2 、380V/220V常用负荷计算 口诀:三相千瓦两倍安,热,伏安,一千乏为一点五 单相二二乘四五,若就是三八两倍半。 说明:三相千瓦两倍安就是指三相电动机容量1千瓦,电流2安培,热,伏安,一千乏一点五就是指三相电热器,变压器,电容器容量1千瓦,1千伏安,1千乏电容电流为1、5安培,单相二二乘四五,若就是三八两倍半就是指单相220V容量1千瓦,电流为4、5安,380V单相电焊机1千伏安为2、5安培。 例1:有一台三相异步电动机,额定电压为380V,容量为14千瓦,功率因数为0、85,效率为0、95,计算电流?解:已知U=380V cosΦ=0、85 n=0、95 P=14千瓦 电流I=P/(×U×cosΦ×n)=P/(1、73×380×0、85×0、95)=28(安) 答:电流为28安培。 例2:有一台三相380伏、容量为10千瓦加热器,求电流? 解:已知U=380V P=10千瓦

技术贴:电缆测试方法及电气特性指标资料

信号电缆测试方法及电气特性指标 一、综合测试 各种信号电缆在敷设前应进行单盘测试,接续前、后应进行电气测试,电缆工程结束后应进行综合测试。各项测试应认真做好记录,并妥善保存,以作为竣工验收时重要的原始记录。各主要电气特性测试结果应符合表3-1的要求。 表3-1信号电缆主要电气特性 1、用兆欧表测试绝缘可按:R x=0.001×L×R m计算。

式中:L-电缆实际长度(m) R m-仪表测量值(MΩ) R x-换算到每千米电缆的实际绝缘电阻值(MΩ) 2、电缆如经暴晒后测量所得数据不得作为电缆电气特性的结论。 对于工程中所采用的特殊规格电缆,其电气特性应符合设计要求及其相关产品技术标准的规定。 二、普通信号电缆绝缘测试 信号电缆绝缘测试包括下列内容: 1、芯线间绝缘电阻测试 将电缆两端的芯线互相分开,测试端剥去约20㎜外皮。用500V兆欧表一线与芯线1连接,以每分钟120转的速度摇动手摇把,另一线依次与其他各芯线接触。与芯线2刚一接触时,兆欧表指针会向零偏转,但很快又回升,稳定在实际绝缘值处。指针稳定后,可读出芯线1与芯线2之间的绝缘电阻值。另一线离开芯线2与芯线3接触,测出芯线1与芯线3之间的绝缘电阻值。用同样方法测出芯线1与其他各芯线之间的绝缘电阻值。将兆欧表一线换成与芯线2连接,另一线依次与芯线3之后的各线相碰,可分别测出芯线2与其他各芯线之间的绝缘电阻值。并用依次测出其他芯线之间绝缘电阻值。 测试电缆芯线间绝缘电阻还有另一种方法:兆欧表一线于芯线1连接,其他各芯线并联后与另一线连接,只需摇动一次即可测出芯线1与其他各芯线之间的绝缘电阻值。测出芯线1的绝缘电阻值之后,从并联芯线中抽芯线2,同样方法测出其与其他各芯线间的绝缘电阻值。如测到某芯线与其他各芯线间绝缘电阻为零或低于标准时,再分开并联芯线逐一接触,以查明与其中的某一芯线绝缘不良。 2、芯线与地之间绝缘电阻测试 测试尚未敷入地下的电缆芯线与地之间绝缘时,兆欧表接地端子的表棒与电缆的铠装钢带连接(聚氯乙烯外护套型电缆需待敷设后方测试芯线对地绝缘),摇动摇把,线路端子另一表棒分别与每一芯线接触一次,即可测出芯线与地之间的绝缘。也可将全部

电气仪表使用口诀汇总

电气仪表使用口诀汇总 1、正确使用万用表 正确使用万用表,用前须熟悉表盘。两个零位调节器,轻轻旋动调零位。正确选择接线柱,红黑表笔插对孔。 转换开关旋拨档,档位选择要正确。合理选择量程档,测量读数才精确。看准量程刻度线,垂视表面读数准。 测量完毕拨表笔,开关旋于高压档。表内电池常检查,变质会漏电解液。用存仪表环境好,无振不潮磁场弱。 2、正确运用万用表的欧姆档 正确运用欧姆档,应知应会有八项。电池电压要富足,被测电路无电压。选择合适倍率档,针指刻度尺中段。 每次更换倍率档,须重调节电阻零。笔尖测点接触良,测物笔端手不碰。测量电路线通断,千欧以上量程档。 判测二极管元件,倍率不同阻不同。测量变压器绕组,手若碰触感麻电。 3、万用表测量电压时注意事项 用万用表测电压,注意事项有八项。清楚表内阻大小,一定要有人监护。被测电路表并联,带电不能换量程。 测量直流电压时,搞清电路正负极。测感抗电路电压,期间不能断电源。测试千伏高电压,须用专用表笔线。

感应电对地电压,量程不同值差大。 4、万用表测量直流电流的方法 用万用表测电流,开关拨至毫安档,确定电路正负极,表计串联电路中。选择较大量程档,减小对电路影响。 5、直流法判别三相电动机定子绕组的首尾端 三相电动机绕组,首尾直流法判断。万用表拨毫安档,直流电源干电池。一相绕组接仪表,另相绕组触电池。 通电瞬间表针转,反转正极都是首。若不反转换接线,余相绕组同法判。 6、剩磁法判别三相电动机定子绕组的首尾端 运转过的电动机,首尾剩磁法判断。三相绕组出线头,作好标记后并联。万用表拨毫安档,跨接并联公共点。 慢慢转动电机轴,同时观看仪表针。指针无明显摆动,三首三尾各并连。指针向左右摆动,二首一尾并一端。 一相绕组调换头,再用同法来测辨。直至表针不摆动,首尾分别并一端。 7、环流法判别三相电动机定子绕组的首尾端

电气相关计算公式(研究材料)

电气相关计算公式 一电力变压器额定视在功率Sn=200KVA,空载损耗Po=0.4KW,额定电流时的短路损耗PK=2.2KW,测得该变压器输出有功功率P 2=140KW时,二次则功率因数2=0.8。求变压器此时的负载率和工作效率。 解:因P 2=×Sn×2×100% =P 2÷(Sn×2)×100% =140÷(200×0.8)×100%=87.5% =(P2/P1)×100% P1=P2+P0+P K =140+0.4+(0.875)2×2.2 =142.1(KW) 所以 =(140×142.08)×100%=98.5%

答:此时变压器的负载率和工作效率分别是87.5%和98.5%。 有一三线对称负荷,接在电压为380V的三相对称电源上,每相负荷电阻R=16,感抗X L=12。试计算当负荷接成星形和三角形时的相电流、线电流各是多少? 解;负荷接成星形时,每相负荷两端的电压,即相电压为U入Ph===220(V) 负荷阻抗为Z===20() 每相电流(或线电流)为 I入Ph=I入P-P===11(A) 负荷接成三角形时,每相负荷两端的电压为电源线电压,即==380V 流过每相负荷的电流为 流过每相的线电流为 某厂全年的电能消耗量有功为1300万kwh,无功为1000万kvar。求该厂平均功率因数。 解:已知P=1300kwh,Q=1000kvar 则 答:平均功率因数为0.79。 计算: 一个2.4H的电感器,在多大频率时具有1500的电感? 解:感抗X L=则 =99.5(H Z) 答:在99.5H Z时具有1500的感抗。 某企业使用100kvA变压器一台(10/0.4kv),在低压侧应配置多大变比的电流互感器? 解:按题意有 答:可配置150/5的电流互感器。 一台变压器从电网输入的功率为150kw,变压器本身的损耗为20kw。试求变压器的效率?

电气设计相关计算公式大全

电气设计相关计算公式大全 一、常用的需要系数负荷计算方法 1、用电设备组的计算负荷(三相): 有功计算负荷Pjs=Kx·Pe(Kw); 无功计算负荷Qjs=Pjs·tgψ(Kvar); 视在功率计算负荷Sjs=√ ̄Pjs2+ Qjs2(KVA);计算电流Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 式中:Pe---用电设备组额定容量(Kw); Cosψ---电网或供电的功率因数余弦值(见下表);tgψ ---功率因数的正切值(见下表); Ux---标称线电压(Kv)。 Kx---需要系数(见下表) 提示:有感抗负荷(电机动力)时的计算电流,即:Ijs=Sjs/√ ̄3·Ux·Cosψ·η(A) η---感抗负荷效率系数,一般取值0.65~0.85。

民用建筑(酒店)主要用电设备需要系数Kx及Cosψ、tgψ的取值表: 注:照明负荷中有感抗负荷时,参见照明设计。 2、配电干线或变电所的计算负荷: ⑴、根据设备组的负荷计算确定后,来计算配电干线的负荷,方法如下:总有功计算负荷∑Pjs=K∑·∑(Kx·Pe); 总无功计算负荷∑Qjs= K∑·∑(Pjs·tg); 总视在功率计算负荷∑Sjs=√ ̄(∑Pjs)2+(∑Qjs)2。 配电干线计算电流∑Ijs=∑Sjs/√ ̄3·Ux·Cosψ(A)。 式中:∑---总矢量之和代号; K∑---同期系数(取值见下表1)。

⑵、变电所变压器容量的计算,根据低压配电干线计算负荷汇总后进行计算,参照上述方法进行。即: ∑Sjs变= K∑·∑Sjs干线(K∑取值范围见下表2)。 变压器容量确定:S变=Sjs×1.26= (KVA)。 (载容率为80﹪计算,百分比系数取1.26,消防负荷可以不计在内)。变压器容量估算S变= Pjs×K×1.26= Pjs×1.063×1.26= (Kva)。同期系数K∑值表: 计算负荷表(参考格式):

电缆规格、电流标准、计算公式

Pe:额定功率 Pj:计算有功功率 Sj:计算视在功率 Ij:计算电流 Kx:同时系数 cosφ:功率因数 Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 如果假设采用~220V单相供电,同时系数Kx取,功率因数cosφ取,则 Pe=13KW Pj=13*1=13KW Ij=1300/(*220)= I=P/(U** S=I/5 I=电流 P=功率 U=电压 S=电线截面积 kV交联聚乙烯绝缘电力电缆规格型号及载流量 (含普通型,阻燃型,耐火型,无卤低烟阻燃型) 1.产品特点及用途 交联聚乙烯绝缘电力电缆具有高机械强度、耐环境应力好、优良的电气性能和耐化学腐蚀等特点,重量轻,结构简单,使用方便。本产品适用于交流额定电压Uo/U为1kV及以下的输配电线路上。 阻燃电力电缆的主要特点是电缆不易着火或着火时延燃仅局限在一定范围内,适用于电缆敷设密集程度较高的发电站、地铁、隧道、高层建筑、大型工矿企业、油田、煤矿等场所。 耐火电力电缆的主要特点是电缆除了能在正常的工作条件下传输电力外,电缆在着火燃烧时仍能保持一定时间的正常运行,适用于核电站、地铁、隧道、高层建筑等与防火安全和消防救生有关的地方。 低烟无卤阻燃型电缆的特点是电缆不仅具备阻燃性能,而且具有低发烟性和无害性(毒性和腐蚀性较小),适用于对电缆阻燃、烟密度、毒性指数等有特别要求的场所,如地铁、隧道、核电站等。

2.产品标准 本产品按GB/T 12706-2002或IEC 60502标准组织生产,还可按用户要求的其他标准生产。 阻燃型电缆除按上述标准外,其阻燃性能按GB/标准规定分成A、B、C三种

电工常用经验公式(一)

电工常用经验公式(一) 为了促进电气专业从业人士有关于设计、施工中遇到的容量、电流等问题的探讨,特将一些常用的计算规则、经验口诀整理后提供给大家,希望大家踊跃探讨,共同提高: 一、用电设备电流估算:当知道用电设备的功率时可以估算它的额定电流: 三相电动机的额定电流按照电机功率的2倍算,即每千瓦乘以2就是额定电流的电流量,譬如一个三相电机的额定功率为10千瓦,则额定电流为20 安培。这种估算方式对三相鼠笼式异步电动机尤其是四级最为接近,对于其它类型的电动机也可以 单相220V电动机每千瓦电流按8A计算 三相380V电焊机每千瓦电流按2.7A算(带电动机式直流电焊机应按每千瓦2A 算) 单相220V电焊机每千瓦按4.5A算 单相白炽灯、碘钨灯每千瓦电流按4.5A算 注意:工地上常用的镝灯为380V电源(只有两根相线,一根地线),电流每千瓦按照2.7A算 二、不同电压等级的三相电动机额定电流计算 口诀:容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三

相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 2)口诀使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV 电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。(5)误差。由口诀中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到

干一辈子电气总结出来的口诀

一、工长要求: 电工工长请注意,施工程序要牢记。设计图纸为依据,认真看图提问题。交叉施工多变化,规范标准须熟记。施工之前先交底,材料计划应早提。文明施工排在前,安全生产列首位。技术措施要得力,质量保证有体系。样板做法要推广,质量推行T.Q.C。先进科技要采用,操作要用新工艺。材料设备先检查,记录表格填详细。产品要有合格证,检验证书要备齐。 二、施工准备: 准备项目内容多,下面列举分明细。动力照明配电箱,高压电压配电柜。电线电缆硬母线,大型灯具和避雷。断路器和变压器,各类互感与电机。操作机构和仪表,应急电源电容器。变压器油莫忘记,蓄电池用硫酸液。管材线材都要检,水泥电杆也在内。附属材料要合格,各种附件应齐备。安装孔洞要早留,位置标高要弄准,梁柱墙体与顶板,装饰面与箱口齐。凸凹现象要克服,凹2厘米要修理。周围封堵须严密,不得空鼓外观美。 三、电管敷设: 预埋管路须防护,管子应埋墙中心。结构埋管要除锈,土墙内刷防腐漆。线管钢筋宜绑扎,主筋与管焊不得。小管宜用丝扣连,套焊对接也可以。七十以上明配管,允许使用套管焊。管口对准套中心,套长尺寸要标准。二点二倍管外径,薄管套焊绝不许。管箍连接跨地线,每端必须两面焊。地线直径按规定,扁钢施焊要三面。扁钢焊长2倍宽,管子焊长6d圆。主筋当作避雷线,引下部分要接焊。接地电阻先测记,隐检示意画齐全。TN—S来供电,保护地线箱盒连。壁厚小于2毫米,不做地线压接点。线管进出箱盒处,采用丝扣锁母线。线管暗敷进箱盒,宜在四周做点焊。点焊仅做三五处,焊口防腐漆两遍。交流低于五十伏,直流百二为界限。属于安全电压挡,配管不作跨接线。消防按钮接线盒,莫装暗箱墙后面。预埋工作都结束,接地连接要完全。工序完结做隐蔽,及时检查做收验。隐蔽内容分五点,项目部位写周全。地带连接接地极,结构内埋电线管。不能进入吊顶中,隐蔽要做敷设管。主筋连接做避雷,隐前电阻先测记。直埋电缆莫漏掉,品种规格一起填。记录内容写详细,不能应付嫌麻烦。三方验收都签字,存好资料进档案。工程变更出洽商,难点要找设计院。 四、下线安装: 工程配合一大半,安装穿线有条件。结构工程已核验,砖混装修初步完。成品保护有保障,管内干燥保绝缘。为了安全好施工,导线颜色要分清。干线颜色可不分,箱盒支路要明显。零线应为淡蓝色,相线分成黄绿红。绿黄双色为PE,不可随便乱选用。暗配管路各部位,严格连接要紧密。导线不能有明露,箱盒盖板要封闭。鼠害火灾不可逞,安全供电有保证。导线连接有规定,熔焊缠绕绝不行。压线帽子螺旋钮,单股铝线应采用。线鼻截面要相符,铜铝连接要过渡。箱内配线扎成束,盒内连接有余留。干净整齐无污染,护口配齐有标签。箱板活门宜接地,PEN线分明显。单相插座讲安全,左零右火上地线。三相下面成三角,地线孔大在上边。灯具开关安装完,横平竖直讲美观。明装按照顺序做,每道工序都预检。

电气设计相关计算公式大全

电气设计相关计算公式大全 注:因根号属于特殊字符,所以根号下的式子采用了例如A=√ ̄b+c的形式,表示A等于根号下b+c。

同期系数K∑值表: 计算负荷表(参考格式): 计算举例(方法参照如上计算): Pjs=Kx·Pe(Kw);Qjs=Pjs·tgψ(Kvar);Sjs=√ ̄Pjs2+Qjs2(KVA);Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 提示:按设备组计算,配电干线逐项计算累加后,来计算变电所低压母线和变压器的容量。变电所低压母线一般按计算电流的1.35—1.5倍的系数考虑。 3、推荐的配电干线、配变综合需要系数简明方法 综合系数(K综)表: 注明:建筑电气计算中变电所的综合同期系数,可作为估算时使用,即:住宅建筑综合系数K∑综一般取0.45~0.55; 商业建筑综合系数K∑综一般取0.6~0.8; 计算举例: S变=Pe·K综,或S配电干线=Pe·K综。 计算举例:S变=Pe·K综,或S配电干线=Pe·K综。 二、单位面积功率的电力负荷计算方法 建筑物单位面积功率Pe(负荷密度)乘以建筑总面积S。 即: Pjs=Pe·AS/1000(Kw) 式中:Pjs---有功计算负荷(Kw); Pe---单位面积的功率指标(W/m2); AS----建筑总面积(m2)。 民用建筑用电负荷估算指标(表) 注明:1、此方法主要用于初步设计或方案设计阶段,负荷的最终确定以实际为准。

2、配电变压器的容量估算,一般按计算总负荷的70~80﹪初定,即: S变=(Pe·S/1000)·(70~80﹪)(KVA) 变压器容量的最终确定,按实际计算结果来进行校正。 三、建筑照明设计简明方法 1、照度lx与照度计算公式: E=F/A 式中: E---单位面积上接受的光通量,称照度,计量单位lx(勒克斯); F---光通量,lm(流明); A---光照的面积(m2); 流明与照度的关系:1勒克斯(lx)=1流明(lm)/1平米(m2)。 光源换算举例: 直管荧光灯每瓦功率W是60~94lm取值80lm(见表5), 40W荧光灯管×80lm=3200lm(lx参照的近似值)。 2、常用的单位容量法照明计算: W=∑P/A(W/m2) 式中:W---在某最低照度下的单位容量W/m2; ∑P---房间内照明总安装容量(含镇流器功率在内)W; A---房间的面积m2。 ∑P=W·A/Kmin 式中:Kmin---最小照度值(查表)。 灯具盏数N=∑P/W’ 式中:N---在规定照度下所需灯具盏数; W’----每盏灯具的功率(包括镇流器功率在内)W;3、照明负荷计算方法: (1)、在初步设计方案设计阶段时,可采用单位面积容量方法(见表)进行估算。 (2)、在施工图设计阶段时,可采用下述方法计算: ①照明分支线路计算负荷,即: Pjsc=∑(Pe+Pb);或Pjsc=∑Pe(1+Ka); ②照明干线计算负荷,即: Pjsc=Kx·∑(Pe+Pb);或Pjsc=K∑·∑Pe(1+Ka); ③照明负荷分布不均匀时的计算负荷,即: Pjsc=3·Kx·∑(Pm+Pb);或Pjsc=3·Kx·∑Pm(1+Ka);

相关文档
最新文档