声音信号的采集和分析实验

声音信号的采集和分析实验
声音信号的采集和分析实验

声音信号的采集和分析实验

一. 实验目的

将声卡作为双通道A/D卡和D/A卡,通过虚拟示波器和频谱分析仪实现声音信号的采集和分析。掌握声音信号的采集与分析技术。

二. 实验原理

1、声卡简介

声卡是多媒体电脑的主要部件之一,它包含记录和播放声音所需的硬件。声卡的种类很多,功能也不完全相同,但它们有一些共同的基本功能:能选择以单声道或双声道录音,并且能控制采样速率。声卡上有数模转换芯片(DAC),用来把数字化的声音信号转换成模拟信号,同时还有模数转换芯片(ADC),用来把模拟声音信号转换成数字信号。

图1 声卡结构示意图

利用声卡的A/D、D/A功能,再配上虚拟仪器软件界面,就可以构成示波器、信号发生器和频谱分析仪等常用仪器。图2是Virtins公司开发的声卡测量仪器,其主要功能包括示波器、信号发生器、万用表和频谱分析仪等。

图2 Virtins公司开发的声卡测量仪器的功能

2、声卡的信号输入接口(A/D)

声卡信号输入接口包括MIC和Line in两种。MIC插口的输入阻抗为范围是1500 Ω ~ 20 kΩ(与声卡品牌有关),最小输入电压10mV,单通道输入。Line In插口的输入阻抗为10 kΩ~ 47 kΩ(与声卡品牌有关), 信号输入电平范围是500 mV ~ 2 V(与声卡品牌有关),双通道输入。Line In插口的输入信噪比和带宽均高于MIC插口。

通常情况下,传感器信号可以直接用插头连接在Line in或MIC口上,如图3所示。这时需保证输入信号电压许可范围内,否则可能会损坏声卡甚至计算机。

图3 传感器信号与声卡的直接连接

为防止测量信号超声卡量程造成的损坏,可以采用下面的电路对声卡输入端进行保护,如图4所示。用两个二极管将输入电压钳位在2 ? 0.65 = 1.3 (V),可以承受最大± 50 V的电压(取决于电阻和二极管的最大允许电流)。

图4声卡输入端保护连接

3、声卡的输出接口(D/A)

声卡信号输出接口包括Speaker和Line out两种。Speaker口的输出阻抗为8 Ω,输出功率2W(与声卡品牌有关)。Line out口的输出阻抗为20 Ω ~ 500 Ω,最大输出电平2 V(与声卡品牌有关)。Line out口的输出信噪比和带宽均高于Speaker口。

通常情况下,可以直接将插头连接在Line out口或Speaker口,为防止短路对声卡造成的损坏,在连接电路中串联了电阻,如图5所示。

图5声卡输出端保护连接

4、示波器

示波器是工业测量中常用的仪器,它可以用来观察信号的变化,图6是示波器外型图。其主要功能包括:输入通道选择、时间基准调节、信号电平调节,以及波形相加、波形相减、波形相乘和李沙育图形等时域分析功能。

图6、示波器

下面是Virtins公司设计的声卡示波器的主要技术指标:

扫描时间:100 ms~500 s

测量带宽:20 Hz - 96kHz(与声卡品牌有关)

输入电平:± 1V

采样频率:最大192 kHz(与声卡品牌有关)

A/D位数:8/16 bit

触发模式:自由触发、信号电平触发

显示模式:CH1、CH2、CH1+CH2、李沙育图形

X轴、Y轴放大/缩小、滚动

信号最大值、最小值、均值、有效值

测量信号标定

5、频谱分析仪

频谱分析仪也是工业测量中常用的仪器,它提供了多种信号分析功能,包括信号幅频-相频谱、信号功率谱、信号自相关函数和信号互相关函数等。图7是频谱分析仪外型图。

图7、频谱分析仪

下面是Virtins公司设计的声卡频谱分析仪的主要技术指标:

频率分析范围:最大96kHz(与声卡品牌有关)

输入电平:± 1V

采样频率:最大192 kHz(与声卡品牌有关)

A/D位数:8/16 bit

触发模式:自由触发、信号电平触发

显示模式:幅值+相位谱、自相关曲线、互相关曲线

X轴、Y轴放大/缩小、滚动、对数/线性刻度

FFT长度:128 – 32768

窗函数:Rectangle,Triangle,Hanning,Hamming,Blackman

曲线峰值标记

三. 实验内容

利用PC机声卡实现声音信号的采集与分析,观察实时声音信号的峰值、有效值和谱峰频率。

四. 实验报告要求

1.简述实验目的和原理。

2.拷贝实验系统运行界面,插入到实验报告中。

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

基于MATLAB 的声音信号采集系统(论文)

基于MATLAB 的声音信号采集系统 野龙平 (陕西师范大学电子信息科学与技术,陕西) 摘要: 声音是各种信号传递与交流最直接的体现,因此对声音信号的研究有十分重要的意义。本文主要针对Matlab指令系统对声音信号的采集,作者利用Matlab 提供的数据采集工具箱, 介绍了倆种采集方法,简单分析并比较其优缺点。基于matlab的数据采集系统, 具有实现简单、性价比和灵活度高的优点。 关键词: Matlab; 数据采集 0 引言 随着科技的发展,对于语音信号的采集已经有很多种方法,如基于单片机技术、VC,C++等编程、纯硬件电路,本文介绍的方法主要通过一款软件MATLAB。它是MathWorks 公司推出的一种面向工程和科学运算的交互式计算软件, 其中包含了一套非常实用的工具-- 数据采集工具箱。使用此工具箱更容易将实验测量、数据分析和可视化的应用集合在一起。数据采集工具箱提供了一整套的命令和函数, 通过调用这些命令和函数, 可以直接控制数据采集设备的数据采集。 作者简单介绍了一种用声卡进行语音信号采集和MATLAB 的数据采集工具箱进行分析处理的语音信号采集系统。经实验证明, 该系统可实现在线连续采集语音信号并进行分析和处理, 具有实现简单、性价比和灵活度高的特点。 1 语音数据采集系统设计 MATLAB 中提供了强大的数据采集工具箱( DAQ- Data Acquisition Toolbox) , 可满足控制声卡进行数据采集的要求。用户通过调用MATLAB 命令, 可对采集的数据进行分析和处理, 为用户带来了极大的方便。 语音数据采集过程如图1 所示。

图1 声卡采集声音信号有两种方式: 传输线输入方式(LineIn) 和麦克风输入( MicIn) 方式。LineIn 方式是通过传输线把其他声音设备, 如录音机等设备的音频输出信号连接到声卡, 通过声卡记录数据存入计算机。 本系统采用MicIn 方式, 即用麦克风接收语音通过声卡将音频信号存入计算机。利用MicIn 方式通过声卡采集数据有两种方法: 方法一是采用对声卡产生一个模拟输入对象进行采集, 方法二是直接利用MATLAB 数据采集箱中提供的的函数命令进行采集。 1. 1 方法1 本系统是以声卡为对象利用MATLAB 数据采集工具箱提供的环境完成数据采集过程, 麦克风成为数据采集系统中的传感器。数据采集过程与其他硬件设备无关, 只与声卡有关, 因此应对声卡产生一个模拟输入对象(AI) 。 数据采集过程的具体实现: 1) 初始化: 创建设备对象。 ai= analoginput(‘ winsound ’ ) 2) 配置: 根据数据采集硬件设备的特性, 增加通道和控制数据采集的行为。为AI 添加1 个通道, 设置采样频率和采样时间。 addchannel( ai, 1) freq= 8000; % 采样频率fs8000Hz set( AI, sampleRate, freq) %为模拟输入设备设置采样频率 duration= 2; %采样时间为2 秒 set (AI, SamplesPerTriffer, duration* freq) ; % 为模拟输入设备设置触发时间 3) 执行: 启动设备对象, 采集数据。 start( ai) ; %启动设备对象 data= getdata( ai) ; % 获得采样数据 4) 终止: 删除设备对象。 stop( ai) ; % 停止设备对象 语音信号输入 声卡 Matlab 数据采集箱 计算机

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

广东工业大学《测试技术与信号分析》测试实验报告

测试技术与信号处理实验报告 机械转子底座的振动测量和分析 一、实验目的 1.掌握磁电式速度传感器的工作原理、特点和应用。

2.掌握振动的测量和数据分析。 二、实验内容和要求 先利用光电式转速传感器测量出电机的转速;然后利用磁电式速度传感器测量机械转子底座在该电机转速下的振动速度;对测量出的振动速度信号进行频谱分析;找出振动信号的主频与电机转速之间的关系。 三、实验步骤 1.启动实验程序“机械转子系统的振动测量.exe”; 输入个人信息,也可以启动之后通过单击“修改”按钮修改个人信息。 2.单击“采样设置”按钮,输入采集卡连接磁电速度传感器的采样通道号,批量采样频率(建议设为10KHz)、批量采样点数(建议设为10000)。 3.打开转子电机的电源,单击“单点采样”。 4.旋转调节旋钮改变转子的转速,观察图形区显示的磁电速度传感器采集到的转子底座振动信号;如果振动信号比较小,可适当提高转子的转速。 5.转子转速的测量: (1) 单击“采样设置”按钮,输入采集卡连接光电转速传感器的 采样通道号、批量采样频率(建议值为10KHz)、批量采样点 数(建议值为10000)。 (2) 单击“批量采样”按钮,开始采样;采样完成之后,采集到 的波形信号会显示在图形窗口,系统会自动计算出转子的速度

并显示出来。记录下此时的转子的转速(单位:r/s)。 (3) 再重复步骤(2)测量2次。以三次测量的平均值作为此时转子 的转速。 转速的测量结果 单点采样采集通道6,测量3组数据 6.振动信号的测量和频谱分析: (1) 单击“采样设置”按钮,输入采集卡连接磁电速度传感器的 采样通道号、批量采样频率(建议设为10KHz)、批量采样点 数(建议设为10000)。 (2) 单击“批量采样”按钮,开始采样;采样完成之后,采集到 的波形信号会显示在图形窗口。如果信号不正常,重复点击“批 量采样”按钮 (3) 单击“保存”按钮,将采集到的磁电传感器的信号数据保存 为文本文件。文件必须保存到“C:\ExperiData\”目录下。可单 击“保存设置”更改文件名。 (4) 打开刚保存的文本文件,文件前面几行保存了个人信息、采 样频率、采样通道、保存的数据个数等信息。文件中共有四列 数据,第一列为数据的序号,第二列为磁电传感器检测到的数 据。

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

labview声音采集系统

虚拟仪器技术 姓名:史昌波 学号:2131391 指导教师:孙来军 院系(部所):电子工程学院专业:控制工程

目录 1、前言 (3) 2、声卡的硬件结构和特性 (3) 2.1声卡的作用和特点 (3) 2.2声卡的构造 (5) 3、LABVIEW中与声卡相关的函数节点 (5) 4、LABVIEW程序设计 (6) 4.1程序原理 (6) 4.2程序结构 (7) 4.3结果分析 (9) 5、结束语 (9) 6、参考文献 (10)

基于声卡的数据采集与分析 1、前言 虚拟仪器技术是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。在虚拟仪器系统中,硬件解决信号的输入和输出,软件可以方便地修改仪器系统的功能,以适应不同使用者的需要。其中硬件的核心是数据采集卡。目前市售的数据采集卡价格与性能基本成正比,一般比较昂贵1。 随着DSP(数字信号处理)技术走向成熟,计算机声卡可以成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,驱动程序升级方便,在实验室中,如果测量对象的频率在音频范围,而且对指标没有太高的要求,就可以考虑使用声卡取代常规的DAQ设备。而且LABVIEW中提供了专门用于声卡操作的函数节点,所以用声卡搭建数据采集系统是非常方便的2。 2、声卡的硬件结构和特性 2.1声卡的作用和特点 声卡的主要功能就是经过DSP(数字信号处理)音效芯片的处理,进行模拟音频信号的与数字信号的转换,在实际中,除了音频信号以外,很多信号都在音频范围内,比如机械量信号,某些载波信号等,当我们对这些信号进行采集时,使用声卡作为采集卡是一种很好的解决方案。 声卡的功能主要是录制与播放,编辑与合成处理,MIDI接口三个部分3。 (1)录制与播放

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/a618113788.html, for more information,please refer to https://www.360docs.net/doc/a618113788.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

《测试信号分析与处理》实验报告

测控1005班齐伟0121004931725 (18号)实验一差分方程、卷积、z变换 一、实验目的 通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。 二、实验设备 1、微型计算机1台; 2、matlab软件1套 三、实验原理 Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。 差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。用x表示滤波器的输入,用y表示滤波器的输出。 a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1) ak,bk 为权系数,称为滤波器系数。 N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。 y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。 传输函数H(z)是滤波器的第三种实现方法。 H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。 序列x[n]的z变换定义为 X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032 实验一语音信号的低通滤波和短时分析综合实验 一、实验要求 1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号; 2、辨别原始语音信号与滤波器输出信号有何区别,说明原因; 3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因; 4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响; 5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。 二、实验目的 1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。 2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。 三、实验设备 1.PC机; 2.MATLAB软件环境; 四、实验内容 1.上机前用Matlab语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5. 改变滤波带宽,辨别与原始信号的区别。 6.依据曲线对该语音段进行所需要的分析,并且作出结论。 7.改变窗的宽度(帧长),重复上面的分析内容。 五、实验原理及方法 利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws 的转换,对ap和as指标不作变化。边界频率的转换关系为∩=2/T tan(w/2)。接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。

光纤声音采集系统

摘要:科技的发展带来许多电磁干扰或射频干扰的恶劣环境,要想解决电磁干扰问题的,必须从本质上改变麦克风的工作模式。文章提出了利用激光的传输频带宽、通信容量大和抗电磁干扰能力强等优点,研制一种基于光相位干涉的高灵敏度声音采集系统。光纤声音采集能够传送非常高的声音质量,适用于多种恶劣环境下的声音采集。 关键词:光纤声音采集、干涉型光纤传感器 引言: 麦克风在声场和电场中起着重要的沟通界面,它可将声音信号传至任何地方或者记忆装置。传统型的使用电磁场或静电场来产生动作,外部的强电磁场影响会阻绝这些装置的功能。本项目研制的光纤声音采集系统是一种新颖的声音信号传感器,在反射式强度型光纤传感器的原理基础上,利用激光来采集声音信号,由于它与传统的麦克风有着本质的区别,所以在使用方面具有很大的优越性。系统由非导磁材料制成,其主要工作本体是光,即使在强电磁场或高射频环境中也能正常工作。把光纤应用于麦克风,充分利用了光纤传感器体积小、结构简单、灵敏度高、抗电磁干扰且光纤本身低损耗、耐腐蚀、安全可靠等优良特性。 1、系统结构 本系统利用干涉型光纤传感器的原理,开发基于光相位干涉的高灵敏度声音采集系统,由光纤传感探头、光路系统、光信号调制解调器等部分组成。 干涉型光纤传感器通常将被测量转化为光信号的相位,因此,相位测量是该类型传感器信号处理的基本要求。若直接对相位进行测量,那么有两个问题将限制系统的性能:一是系统受到环境的干扰时被测相位会产生随机漂移,从而引入测量误差,此外,相位漂移还会导致信号衰减;二是直接测相意味着直流检测,信号处理易受电路直流漂移的影响。针对这两个问题引出了相位生成载波技术。相位生成载波调制是在被测信号带宽以外的某一频带之外引入大幅度的相位调制,被测信号则位于调制信号的边带上,这样就把外界干扰的影响转化为对调制信号的影响,且把被测信号频带与低频干扰频带分开,以利于后续的噪声分离。 项目研制的光纤声音采集系统,在对传统michelson干涉仪加以改进的基础上,通过构造由光纤耦合器和振动膜组成的动态michelson干涉光路,能够将外界声压对振膜的作用转化为对光路相位的调制,得到的干涉光信号直接光电转换后即可解调还原声音信号。在多种干涉型光纤传感器的解调方法中,相位生成载波解调技术(pgc)由于是一种无源解调技术,并具有高灵敏度、大动态范围和好的线性度而得到广泛的应用。 2、系统原理 2.1光纤传感探头原理: 激光器发出的激光经耦合器到达传输光纤,由光纤出射的光束照射到振动膜上,传输光纤出射端面m1与振动膜构成一个干涉腔,从两表面反射回的光进行干涉,干涉光再经耦合器由光电探测器接收,外界声音信号通过改变干涉腔的光纤出射端面m1和振动膜之间的距离对光相位进行调制。系统中半导体激光器发出的光源光频随输入的调制电流线性变化,振动膜采用硅微技术进行研制。 2.2解调原理: 光纤声音采集系统中的调制解调器是由光源,光电转换器,高增益微弱信号放大电路,背景噪声消除器等组成。 光源向光纤传感头发射一稳定的激光,传感头内的振动薄膜被周围声音振动信号带动,从而对发射到振动薄膜上的激光进行相位调制后再反射回去,被调制的激光在光路系统里发生干涉,形成携带微弱声音强度的激光信号,光电转换系统的探测器将此激光信号转换成电信号,再经高增益微弱信号放大,pgc解调,噪声滤除,后将解调后的电信号还原成声音信号输出。

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

语音信号处理实验一采集和预处理

实验一语音信号的采集及预处理 一、实验目的 在理论学习的基础上,进一步地理解和掌握语音信号预处理及短时加窗的意义及基于matlab的实现方法。 二、实验原理 1.语音信号的录音、读入、放音等:练习matlab中几个音频处理函数,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav)。利用wavplay或soundview放音。也可以利用wavrecord自己录制一段语音,并进行以上操作(需要话筒)。 2.语音信号的分帧:对语音信号进行分帧,可以利用voicebox工具箱中的函数enframe。 voicebox工具箱是基于GNU协议的自由软件,其中包含了很多语音信号相关的函数。3.语音信号的加窗:本步要求利用window函数设计窗口长度为256(N=256)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利用wvtool函数观察其时域波形图及频谱特性,比较得出结论。观察整个信号加矩形窗及汉明窗后的波形,利用subplot与reshape函数将分帧后波形、加矩形窗波形及加汉明窗波形画在一张图上比较。取出其中一帧,利用subplot与reshape函数将一帧语音的波形、加矩形窗波形及加汉明窗波形画在一张图上比较将得出结论。 4.预加重:即语音信号通过一个一阶高通滤波器1 9375 1- -z。 .0 三、实验步骤、实验程序、图形及结论 1.语音信号的录音、读入、放音等 程序: [x,fs,nbit]=wavread('D:\2.wav'); %fs=10000,nbit=16 y=soundview('D:\2.wav') 2.语音信号的分帧 程序: [x,fs,nbit]=wavread('D:\2.wav'); len=256; inc=128; y=enframe(x,len,inc); figure; subplot(2,1,1),plot(x) subplot(2,1,2),plot(y)

基于LabView的双声道声卡数据采集系统

基于LabView的双声道声卡数据采集系统班级:热动1007 姓名:刘堂俊学号:U201011568 在虚拟仪器系统中,信号的输入环节一般采用数据采集卡实现。商用的数据采集卡具有完整的数据采集电路和计算机借口电路,但一般比较昂贵,计算机自带声卡是一个优秀的数据采集系统,它具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、通用性强,软件特别是驱动程序升级方便。如被测对象的频率在音频范围内,同时对采样频率要求不是太高,则可考虑利用声卡构建一个数据采集系统。 1.从数据采集的角度看声卡 1.1声卡的作用 从数据采集的角度来看,声卡是一种音频范围内的数据采集卡,是计算机与外部的模拟量环境联系的重要途径。声卡的主要功能包括录制与播放、编辑和处理、MIDI接口三个部分。 1.2声卡的硬件结构 图1是一个声卡的硬件结构示意图。一般声卡有4~5个对外接口。 图1 声卡的硬件结构示意图 声卡一般有Line In 和Mic In 两个信号输入,其中Line In为双通道输入,Mic In仅作为单通道输入。后者可以接入较弱信号,幅值大约为0.02~0.2V。声音传感器(采用通用的麦克风)信号可通过这个插孔连接到声卡。若由Mic In 输入,由于有前置放大器,容易引入噪声且会导致信号过负荷,故推荐使用Line In ,其噪声干扰小且动态特性良好,可接入幅值约不超过1.5V的信号。另外,输出接口有2个,分别是Wave Out和SPK Out。Wave Out(或LineOut)给出的信号没有经过放大,需要外接功率放大器,例如可以接到有源音箱;SPK Out给出的信号是通过功率放大的信号,可以直接接到喇叭上。这些接口可以用来作为双通道信号发生器的输出。 1.3声卡的工作原理 声音的本质是一种波,表现为振幅、频率、相位等物理量的连续性变化。声卡作为语音信号与计算机的通用接口,其主要功能就是将所获取的模拟音频信号转换为数字信号,经过DSP音效芯片的处理,将该数字信号转换为模拟信号输出。输入时,麦克风或线路输入(Line In)获取的音频信号通过A/D转换器转换成数字信号,送到计算机进行播放、录音等各种处理;输出时,计算机通过总线将数字化的声音信号以PCM(脉冲编码调制)方式送到D/A转换器,变成模拟的音频信号,进而通过功率放大器或线路输出(Line Out)送到音箱等设备转换为声波。

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

相关文档
最新文档