超导纳米线单光子探测器原理及应用-v4

超导纳米线单光子探测器原理及应用-v4
超导纳米线单光子探测器原理及应用-v4

微纳光子学

微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。 最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。 “新兴光器件及集成技术专题报告会”上发布《纳米光子学对光子技术更新换代的重要作用》精彩演讲。报告摘要;从上世纪70年代开始,光子学进入微光子学阶段,经过40年的研究,现在已经比较成熟。以半导体激光器为重点的研究已经逐渐转向对激光控制问题的研究和激光应用的研究。同时,光子技术已经进入光电子技术阶段,其特点是研究开发以电控光、光电混合的器件和系统。光电子技术已经逐步占领了电子技术原有的阵地。它的应用领域已经扩大到人类社会生活的各方面,如光通信与光网,平板显示、半导体照明、光盘存储、数码相机等。光电子产业迅速发展壮大起来。在经济发达国家,光电子产业的总产值已经可以与电子产业相比,甚至超过电子产业。近十年来,国际学术界开始大力发展纳光子学及其技术,使光电子技术与纳米技术相结合,对现有光电子技术进行升级改造。 与国际上科技发达的国家相比,目前我国微纳光子学的研究还不算落后,这从我国在微纳光子学领域发表的论文数量和投稿的杂志级别就可看出。但是我国的光子学研究论文大部分是理论方面的,大多数是跟踪国外的。由于国内缺乏先进的科学实验平台,特别是缺乏制备微纳光子学材料和器件的工艺条件,实验方面的论文比较少(除了少数与国外合作研究的论文),创新的思想无法得到实验验证。微光子学方面的情况尚且如此,在纳光子学方面,由于对仪器、设备、工艺和技术的要求更高,与国外的差距正在加大。 在光电子技术方面,由于国际经济的全球化和我国的改革开放形势,吸引跨国公司将制造、加工基地向我国转移。21世纪初光电子企业的大公司纷纷落户我国。而且大量资金投向我国沿海经济发达地区(如广东、上海和京津地区),建立起一大批中外合资或独资企业。但是这些外国企业或技术人员,控制着产业的高端技术,对我国实行技术垄断,使我国的光电子技术至今还处于“下游”,成为外向加工企业。大多数光电子企业采用这样的生产模式:购买国外的芯片进行器件封装,或者购买国外的器件进行系统组装。目前我国光电子企业严重缺乏核心技术和自主知识产权,无法抵御国际经济危机,面临着很大的风险。 为了加快我国的微纳光子学与相关光子技术的发展,我国应该集中投入一部分资金,凝聚一批高水平研究人才,在某些光电子企业集中的地区,依托光子学研究有实力的单位,采用先进的管理模式,建设我

单光子探测器技术原理

单光子探测器技术原理简介 1. 工作原理 单光子探测器是一种对微弱光信号进行探测的设备,输入光强度最低可到单光子水平。以通信最常用的1550nm和1310nm光波长为例,单个光子的能量分别为1.28*10-19焦耳和1.52*10-19焦耳,这意味着输入信号能量极其微弱,必须使用特殊的光子检测器件探测输入光子脉冲事件。不同种类的雪崩管服务于不同的探测应用目的,例如基于Si的雪崩管适用于可见光波段检测,InGaAs或InP 的雪崩管更适合近红外波段。 薄结工艺标准CMOS工艺厚结工艺 常见的SACM型InGaAs/InP APD的半导体结构

数据来自Micro Photon Devices公司数据来自Perkin Elmer公司 单光子探测器的工作原理是利用工作于盖革模式(Geiger Mode)下的InGaAs/InP雪崩光电二极管(APD)进行单光子探测。所谓盖革模式是指APD 工作时要加反向偏压,偏压幅度略微超过雪崩阈值电压,盖革模式与线性模式的区别在于能够将微弱光生载流子放大产生宏观电流。根据对APD施加偏压的波形,将探测器分为门控工作模式和自由运行模式两类。光子入射到APD内部引发雪崩,产生微弱雪崩电流脉冲。探测器内部处理电路采用跨导放大器将微弱电流脉冲转换成电压脉冲并放大、整形,再经过甄别、死时间处理后输出电平、宽度固定的数字脉冲,探测器有脉冲输出表示检测到了输入单光子或微弱光脉冲,而脉冲前沿位置代表光子输入时刻。光子输入事件及其发生事件正是量子信息、单光子雷达等应用关注的最重要内容,单位时间内计数值则反映了输入光强度。入射光子引发雪崩发生后,必须尽快将雪崩淬灭,一方面避免雪崩管过度放电,更重要的是将雪崩管恢复到可用状态,能够及时检测下一个入射光子事件。根据淬灭方式的不同,将探测器分为主动淬灭和被动淬灭两类。

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

1.5μm单光子探测器在激光遥感中的应用

1.5μm单光子探测器在激光遥感中的应用 单光子探测器作为最精密的测量仪器,可探测到光的最小单元,单个光子。单光子检测技术己广泛应用在激光雷达、分布式光纤探测器、生物荧光检测、量子信息、光学成像等领域。目前,1.5 μm波段单光子探测器主要包括超导纳米线单光子探测器、频率上转换单光子探测器、InGaAs/InP单光子雪崩二极管。1.5 μm波段气溶胶激光雷达具有人眼安全,大气透过率高,受瑞利散射干扰小,太阳背景辐射弱的优点。 本论文针对这三个探测器的特点,分别研制了不同类型的激光遥感设备。本论文的主要工作如下:1.研制了基于上转换单光子探测器的人眼安全1.5μm微脉冲气溶胶激光雷达。采用高探测效率和超低噪声的上转换单光子探测器,实现了大气回波信号的高信噪比探测。在脉冲能量为110μJ,望远镜口径100mm,时间分辨率5分钟,激光雷达实现了水平距离7km的大气气溶胶探测。 在验证实验中,上转换气溶胶激光雷达实现了对大气能见度的昼夜连续24 小时的观测。2.研制了 1.5μm波段的全光纤、微脉冲、人眼安全的高光谱分辨测风激光雷达。通过采用基于扫描Fabry-Perot干涉仪的高光谱分辨率技术,以及单光子检测技术,同时获得了大气气溶胶谱的频移和谱宽信息。在验证实验中,当时间分辨率1分钟时,水平探测距离达到4km。 在距离为1.8km的位置,距离分辨率由30m变换到60m。对比实验中,高光谱分辨测风激光雷达的径向风速测量结果与超声风场传感器Vaisala所得测量结果吻合。根据经验公式,风速的标准偏差在1.8km处为0.76m/s,光谱展宽的标准偏差在1.8km处为2.07MHz。3.研制了基于1.5 μm波段的结构紧凑、人眼安全、双边缘直接探测多普勒测风激光雷达。 通过采用全光纤保偏结构,保证了光学耦合效率,提高了系统稳定性。通过采用时分复用技术,仅采用单通道Fabry-Peort干涉仪和单通道上转换单光子探测器,实现了双边缘探测技术。校准实验中,系统的相对误差低于0.1%。验证实验中,双边缘测风激光雷达实现了连续48小时的大气的风场和能见度探测。 该激光雷达的测量结果与超声测风传感器具有很好的一致性,速度的标准偏差为1.04 m/s,方向的标准偏差为12.3°。4.研制了基于自由运行InGaAs/InP 单光子探测器的1.5气溶胶激光雷达。针对激光雷达应用,对自由运转单光子探

纳米光子学综述

关于《纳米光子学》的基本介绍 关键词: 序言 纳米光子学,被定义为纳米技术和光子学的融合学科,是一个新兴的前沿学科。它为基础研究提供了挑战,也为新技术提供了机遇。纳米光子学在市场上已经取得了一定的影响。它是一个多学科交叉的研究领域,为物理学,化学,应用科学,工程学和生物学,以及生物医学技术创造了机遇。 对于不同的人而言,纳米光子学的意义有所不同,在各自的情况下,纳米光子学的定义都显得非常地狭隘片面。一些书籍和综述里包含了纳米光子学的多个方面以供选择。然而,随着时代的发展,有必要出一本关于纳米光子学的专著来提供一个统一综合的体系。本书迎合了这个需要,就纳米光子学提供了统一的,全方位的描述,以满足各个不同学科读者的需要。本书的目的是为这个涉及面广泛的学科提供必要基础知识,以使各个学科的学者都能迅速掌握最低限度的,必要的知识背景用以研究和发展纳米光子学。作者希望本书既能够作为教育与培训的教科书,也可以作为帮助集光学,光子学和纳米技术于一身的领域研究和发展所需要的参考书。本书的另一个目的是引起研究人员,产业部门和企业促进合作的兴趣,在这个新兴科学上,能够制定出多学科交叉的工程,促使随之产生的技术能够发展和转化。 本书包含了集纳米技术,光子学和生物学于一体的理论知识和各种应用。每章开头的引言介绍了读者能从该章获取的知识。每章结尾的知识要点是需要深刻理解的知识,也可以作为前面所陈述内容的回顾。 纳米光子学—纳米技术领域的研究热点 纳米光子学是一个激动人心的崭新的前沿领域,在这里全世界的研究者们尽情发挥着他们的想象力和创造力。它在纳米范围内处理光与物质的相互作用。纳米光子学作为纳米科技新的分支,向基础研究提出了挑战,并为新技术的诞生创造了机遇。人们对纳米科学方面的兴趣来自于已经实现了的费曼的著名言论——“在底层还有很多的空间”(Feyman,1961,“There’s Plenty of Room at the Bottom”)。他指出如果能将一毫米的长度在十亿分之一米的纳米范围内进行分割,可以想象将会有多少片段和组分可进行操控和处理。 我们生活在一个“纳米热”的时代。纳米方面的一切都被认为是极其令人振奋和有价值的。许多国家已经对纳米技术展开积极的研究。2002年,美国国家研究委员会出版了关于美国国家纳米技术计划的详细报告(NRC Report,2002)。虽然不能断言纳米技术对每个问题都能提供一个较好的解决方法,但纳米光子学仍然创造出足以令人振奋的机会并使新技术成为可能,关键的因素是纳米光子学是在一个比光波长还要短的范围内处理光与物质的相互作用,以及它们的应用。撰写本书的目的是想通过对纳米光子学的介绍激发起更多人对这个新领域的兴趣。为了方便起见,书中列举的例子尽可能出自我们研究所开展的激光,光

光子探测器的应用及行业发展

光子计数探测器的应用 混合像素探测器,为您的实验室精心准备 PILATUS混合像素探测器的设计从理论到现实均达到最佳的数据质量X射线检测。他们带来了两项关键技术,单光子计数和混合像素技术相结合,同步到您的实验室。单光子计数消除所有探测器噪声,并提供卓越的数据。在收集数据时,读数无噪音和暗电流的消失特别具有优势:在实验室中的X射线光源比同步加速时要弱很多,需要更长的曝光时间,并导致较弱的信号。由于没有了暗电流和读数噪音, PILATUS探测器更加适合在实验室使用。混合像素技术可以直接检测X射线,与其他任何探测器技术相比实现了更清晰,更好地解决信号传输问题。加上读取时间短和连续采集的特点,PILATUS探测器可以高效提供优质数据。低功耗和冷却需求,给你一个无忧的、维护量极小探测器系统,。PILATUS探测器系列是专为您在实验室中的需求定制,并提供同步加速器的技术,有无与伦比的价值。利用PILATUS独特的功能,可以从你的最具挑战性的样品获得最佳的数据。 针对您的需求 PILATUS探测器成功推动和同步加速器光束线。PILATUS的独特功能在实验室和相关产业的优势也很明显。根据您在实验室的需求,现在PILATUS的产品阵容,辅以一系列的PILATUS探测器,。固定能量校准和简化的读数电子器件完美匹配了实验室相关要求而且PILATUS完全符合您的预算。混合像素技术和单光子计数,关键的技术,优质的数据和高效率,完全无障碍实施是PILATUS探测器的优势。越来越多的实验室和工业应用的仪器可配备或升级了PILATUS探测器。根据自己的设置或利益自由整合PILATUS,可以从一个现成的仪器变成一个PILATUS OEM合作伙伴

纳米光子学1-余

1表面等离子激元(SPPs): 定义:是在金属表面区域的一种自由电子和光子相互作用的形成的电磁模。 性质:1.在垂直于界面的方向场强呈指数衰减;2.能够突破衍射极限;3.具有很强的局域场增强效应;4.只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。激发方式:(1)波导结构:利用波导边界处的倏逝波激发表面等离子体波,使波导中的光场能量耦合到表面等离子体波中。在实际的研究中,常采用光纤做波导,剥去光纤某段的包层,再镀上金属;(2)棱镜耦合:包括两种,一种是Kretschmann 结构,另一种是Otto 结构。Kretschmann 结构适用于金属薄膜,入射光以大于全反射角的角度入射,利用棱镜的高折射率进行波矢补偿,类似于油浸透镜的原理。2sin spp p k n p q l =;对于较厚的金属膜,Otto 结构比较适合。在该结构中,虽然全反射棱镜和金属膜之间有很小的空气间隙(近场区域),仍可在金属和空气间隙的界面上激发SPPs。(3)光栅耦合:利用光栅引入一个额外的波矢量的增量实现波矢量的匹配。(4)近场耦合:对于粗糙表面,不需要任何额外的结构设计,表面粗糙的衍射效应就可以提供在金属膜表面激发SPPs 所需的波矢补偿即直接的光照射便激发SPPs。(5)NSOM 激发:用一个尺寸小于波长的探针尖在近场范围内去照射金属表面,由于探针尖尺寸很小,从探针尖出来的光会包含波矢量大于SPPs 矢量的分量,这样就能够实现波矢量的匹配。(6)采用强聚焦光束,利用高数值孔径的显微目镜可直接接触到介质层,在介质层与目镜之间涂上匹配油层,高数值孔径能够提供足够大的入射角,实现波矢量匹配,从而激发出表面等离子体波。 2金属电介质界面表面等离子色散关系的物理意义: 1/2m d m d c εεωβεε??=??+??,β为传播常数。m ε表示金属或者半导体介质相对介电常数;d ε表示电介质相对介电常数。其实部和虚部为:1/2d mr r d mr c εεωβεε??=??+??,3/222()mi d mr i mr d mr c εεεωβεεε??=??+?? 物理意义:等离子体中存在的波的频率和波矢之间的关系需满足色散关系,而色散关系完全确定给定条件下等离子体中可能存在的波的全部性质。SPP 色散关系可以完全描述SPP 的光特性,是进行SPP 相关研究的基本理论基础。 3任选一种表面等离子激元应用,简述原理。 表面等离子传感器(图) 偏振光入射到金属薄膜上,经聚焦若入射角度满足()()2121arcsin εωωεωωθ+=,产生SP 激发,SP 与n 有敏感的关系,下面是流体通道,内放有特殊物质,从而折射率n 变化,即θ也变化,角度的变化反应n 变化,从而确定生物组织是否变化。 4光子晶体的基本概念(带隙成因与电子材料的区别) 概念:是一种介电常数周期性调制的微结构材料,尺度为波长量级,具有光子带隙特性的人造周期性电介质结构,是1987年美国贝尔研究中心的Eyablono witch 和普林斯的S.John 分别独立提出了光子晶作的概念。 光子带隙:在一定频率范围内的光子在光子晶体的范围内的某些方向上是禁止传播的。完全带隙,在一定频率范围内,任何偏振与传播方向的电磁波都被严格禁止,这种情况只有在三维晶体中才能实现。光子晶体特性:①抑制自发辐射:带隙中密度力零,自发辐射几乎为零,这也抑制了自发辐射②光子局域化,光子晶体原有的对称性遭到破坏时,即有了缺陷,在光子晶体中禁带就可能出现频宽极窄的缺陷态或域态。与缺陷频率符合的光子会被局限在缺陷位置,而不能向空间传播。 与半导体的区别:半导体:原子周期性排列,原子尺度自然结构,控制电流。1950年电子技术革命。光子晶体:介电常数周期性变化,尺度波长量级,人工结构,控制电磁波传播,现在光学新领域。 与电子材料的区别:①电子和光子具有不同波,可见光400-700nm,电子0.1nm②电子系统遵循薛定谔方程???E )r (V u 2h 22=+??,光子系统依照亥姆霍兹方程()()0E r c E E 22=????+??εω③带隙成因不同:电子在周期场中传播时由于会受到周期势场的布拉格散射会形成能带结绝,带与带之间可能存在带隙,电子波的能量如果落在带隙中,传播是禁止的,电磁波在周期性介质材料中传播时,由于受到调制而形成光子能带结构,频率落在带隙内的电磁波不能通过介质,而被全部反射,即形成光子带隙。 (图) 自然界的光子晶体: 蛋白石:一种天然宝石,以乳白色居多,不同角度观赏呈不周颜色,具有七彩缤纷的外观。成因:含SiO2地下水渗入岩缝沉积形成,沉积1CM3的蛋白石约需10000年。应用:已有多种基于光子晶体的全新光子学器被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路。高晶质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体近期在国际上的应用进一步深化,具体表现在:1、与纳米技术结合,用于制造微米级的激光硅基。2、与量子点结合,使得原子和光子的相互作用影响材的性质,从而达到减小吸收等作用。3、光子晶体的光纤应用。 5微腔的品质因子,精细度,自由电子谱宽度。 光学微腔是一种尺寸在微米量级或者亚微米量级的光学谐振腔。它利用在折射率不连续的界面上的反射全反射散射或衍射效应,至少在一个方面将光限制在一个很小的区域。 最简单模型:(C-J 2模型,即单膜场与二原子能级作用,可给出解析解) )a a a (g a a W 2 W H R d ++++++?=σσ理想腔:无损振荡—Rabi 实际:Dumped 振荡。 三种典型的微腔:1、F-P 腔:Q 不高,模式体积大。2、回单壁模式微腔:轴对称,内反射对光控制,Q 很高,容易集成。3、光子晶体微腔:引入缺陷,Q 高,模式体积小。(画图,公式)

单光子探测器应用

单光子探测技术典型应用 单光子探测是一种探测超低噪声的技术,增强的灵敏度使其能够探测到光的最小能量量子——光子。单光子探测器可以对单个光子进行计数,实现对极微弱目标信号的探测,因此也活跃在许多可获得的信号强度仅为几个光子能量级的新兴应用领域中。 人眼安全激光雷达 激光雷达是一种基于光学探测与测距的光学遥感技术,实用窄线宽短脉冲激光在大气中进行光子激射从而产生背向散射。接收这些微弱的背向散射信号需要用到单光子计数器等高灵敏度的光学探测设备。今天,激光雷达活跃在污染监测,空气质量分析,气候学等很多领域。 激光雷达典型应用 量子密码学/量子密钥分配 量子密码学/量子密钥分配是一种非常前沿的技术,它利用量子物理特性获得传统技术无法企及的安全传输保证。这种技术基于量子原理将秘钥安全保密的分配给通信双方。同光纤通信技术相结合,实现量子密钥分配需要将光信号能量降低至光子水平,因此,高精度的光子探测设备是必须的。在此类应用里,单光子源/双光子纠缠源,单光子计数器都需要用到。特别是单光子计数器,它不仅能够接收极低水平的量子密钥信号,还能够探测不明侵入,从而保障系统安全。 量子通信

光子源特性测试 随着量子物理技术、非线性技术和量子点技术的进步和发展,单光子源和光子纠缠源的开发需求日益增多。在这些设备的开发过程中,需要高灵敏度的检测手段来对其进行特性分析和测试,单光子计数器就是一种有效的手段。 荧光测量 莹光时间测量技术(Fluorescence Timing Measurement)被应用在很多科研和工业领域,例如:分子特性,纳米技术和成像显微技术等等。莹光信号是一种非常微弱的光信号,因此需要非常灵敏的光学探测器进行探测,单光子计数器就是不二之选。

单光子探测器及其发展

单光子探测器及其发展 摘要:本文介绍了光电倍增管单光子探测器、雪崩光电二极管单光子探测器和真空单光子探测器以及它们的基本工作原理和特性,分析了它们各自的优缺点和未来的发展方向。 关键词:单光子探测;光电倍增管(PMT);雪崩光电二极管(APD);真空雪崩光电二极管(VAPD) 中图分类号:TP21.14 文献标识码:A 一、引言 单光子探测技术在高分辨率的光谱测量、非破坏性 物质分析、高速现象检测、精密分析、大气测污、生物 发光、放射探测、高能物理、天文测光、光时域反射、 量子密钥分发系统等领域有着广泛的应用。由于单光子 探测器在高技术领域的重要地位,它已经成为各发达国 家光电子学界重点研究的课题之一。 二、单光子探测器的原理及种类 单光子探测是一种极微弱光探测法,它所探测的光的光电流强度比光电检测器本身在室温下的热噪声水平(10-14W)还要低,用通常的直流检测方法不能把这种湮没在噪声中的信号提取出来。单光子计数方法利用弱光照射下光子探测器输出电信号自然离散的特点,采用脉冲甄别技术和数字计数技术把极其弱的信号识别并提取出来。这种技术和模拟检测技术相比有如下优点[1]: (1)测量结果受光电探测器的漂移、系统增益变化以及其它不稳定因素的影响较小; (2)消除了探测器的大部分热噪声的影响,大大提高了测量结果的信噪比;(3)有比较宽的线性动态区; (4)可输出数字信号,适合与计算机接口连接进行数字数据处理。 入射的光子信号打到光电倍增器件上产生光电子,然后经过倍增系统倍增产生电脉冲信号,称为单光子脉冲。计数电路对这些脉冲的计数率随脉冲幅度大小的分布如图1所示。脉冲幅度较小的脉冲是探测器噪声,其中主要是热噪声;脉冲幅度较大的是单光电子峰。V h为鉴别电平,用它来把高于V h的脉冲鉴别输出,以实现单光子计数。 可用来作为单光子计数的光电器件有许多种,如光电倍增管(PMT)、雪崩光电二极管(APD)、增强型光电极管(IPD)、微通道板(MCP)、微球板(MSP)和真空光电二极管(VAPD)等。 1、光电倍增管(PMT)单光子探测器 光电倍增管是利用光的外光电效应的一种光电器件,主要由光电阴极和打拿极构成。其工作原理如下:首先光电阴极吸收光子并产生外光电效应,发射光电子,光电子在外电场的作用下被加速后打到打拿极并产生二次电子发射,二次电子又

单光子探测器

单光子探测器 单光子探测器是进行光子探测的实验设备,它通常只能探测光子的有或者没有,不能直接给出光量子态的完整信息,要想从探测结果来重构光量子态信息,需要结合其他的理论和实验手段。目前在可见和红外波段,单个光子的能量约为10-19 J,实现对如此低能量粒子的准确探测是很有挑战的工作。早期的单光子主要是光电倍增管,随着材料科学和量子信息科学的发展,单光子探测器的类型也逐渐丰富起来,这里主要介绍单光子探测器性能的主要指标:特征波长范围,死时间,暗计数,探测效率,时间抖动,光子数分辨能力。 探测器的特征波长范围指的是探测器能够响应的光谱频率范围。目前的单光子探测器都只对某一波段的光子敏感,这是由探测器的制作材料及加工工艺决定的,而探测器的光谱响应特性也决定了它的应用范围。例如对自由空间的量子通信来说,使用的光子波长主要集中在可见光波段400nm-1060nm或者近红外波段900nm-1700nm,需要对这一波段较敏感的探测器;而对于光通信来说,由于光纤在1550nm这个波长具有最小的损耗,所以对基于光纤的量子信息网络,探测器必须对1550nm光子有足够高的探测效率。 当探测器探测到一个光子之后,在一定的时间内,探测器不能响应新的光子,这一段时间称为探测器的死时间,一般来说死时间越短越好。在当前的技术条件下,死时间取决于探测器的电子学后处理系统而非探测器的感光材料。例如,对于基于雪崩二极管的单光子探测器,当探测器探测到一个光子之后,探测器需要抑制这个信号带来的后脉冲信号,这样就必须将探测器关断一段时间,等到前一个探测器的后脉冲信号基本消除之后才能重新开启,这一段时间就是雪崩二极管的单光子探测器的死时间,可见光波段400nm-1060nm探测器的死时间一般固定为33ns,近红外波段900nm-1700nm探测器的死时间一般从500ns到1ms可调,死时间决定了探测器的最大计数率。 当没有光子进入探测器时,探测器仍然有计数率,这就是暗计数。暗计数是由于感光材料的缺陷,电压偏置和外界环境的干扰比如温度,湿度,热噪声等因素引起的。暗计数对实验的信噪比有直接影响,因此降低暗计数是单光子探测器发展的重要目标。现在法国Aurea Technology的单光子探测器暗计数可以做到小于25cps(世界第一). 探测效率指的是当有光子进入探测器的时候,它被探测到的概率。目前商用探测器的最大探测效率约为70%,如Aurea Technology生产的SPD_A_VIS.提高探测效率在

光子探测器

单光子探测器 基本概念 单光子探测器:(SPD)是一种超低噪声器件,增强的灵敏度使其能够探测到光的最小能量量子——光子。单光子探测器可以对单个光子进行探测和计数,在许多可获得的信号强度仅为几个光子能量级的新兴应用中,单光子探测器可以一展身手。 光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。 光子计数也就是光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。 研究背景 通常的直流检测方法不能把淹没在噪声中的信号提取出来。微弱光检测的方法有:锁频放大技术、锁相放大技术和单光子计数方法。最早发展的锁频,原理是使放大器中心频率f0与待测信号频率相同,从而对噪声进行抑制。但这种方法存在中心频率不稳、带宽不能太窄、对待测信号缺乏跟踪能力等缺点。后来发展了锁相,它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。但是,当噪声与信号有同样频谱时就无能为力,另外它还受模拟积分电路漂移的影响,因此在弱光测量中受到一定的限制。单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字

计数技术 光子计数原理 1、光子 光是由光子组成的光子流,光子是静止质量为零、有一定能量的粒子。与一定的频率υ相对应,一个光子的能量E p可由下式决定: E p=hυ=hc/λ(15-1) 式中c=3×108m/s,是真空中的光速;h=6.6×10-34J·s,是普朗克常数。例如,实验中所用的光源波长为λ=5000?的近单色光,则E p =3.96×10-19J。光流强度常用光功率P表示,单位为W。单色光的光功率与光子流量R(单位时间内通过某一截面的光子数目)的关系为: P=R·E p (15-2)所以,只要能测得光子的流量R,就能得到光流强度。如果每秒接收到R=104个光子数,对应的光功率为P=R?E p=104×3.96×10-19=3.96×10-15W。 2、测量弱光时光电倍增管输出信号的特征 在可见光的探测中,通常利用光子的量子特性,选用光电倍增管作探测器件。光电倍增管从紫外到近红外都有很高的灵敏度和增益。当用于非弱光测量时,通常是测量阳极对地的阳极电流(图15-1(a)),或测量阳极电阻R L上的电压(图15-1(b)),测得的信号电压(或电流)为连续信号;然而在弱光条件下,阳极回路上形成的是一个个离散的尖脉冲。为此,我们必须研究在弱光条件下光电倍增

超导纳米线单光子探测器的原理特点以及应用

超导纳米线单光子探测器的原理特点以及应用 ?超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已经广泛的应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。SNSPD 器件主要有两种光耦合方式,一种是垂直光耦合方式,光纤端面平行于SNSPD光敏面,光子垂直入射到纳米线上,采用光学腔体或者反射镜结构实现高效光耦合。利用该类耦合结构,上海微系统所已实现NbN基SNSPD系统探测效率超过90%,相关结果发表后受到了国内外广泛关注。该光耦合结构的特点是,可以实现高光耦合效率,但是受限于光耦合结构,工作波长范围受限。另外一种光耦合方式是波导光耦合方式,将纳米线制备在光波导上,可以实现高效的本征吸收。但是光纤到波导的耦合效率较低,使得这类器件仅能作为片上光子学的解决方案,无法作为独立单光子探测器使用。上海微系统所/中国科学院超导电子学卓越创新中心尤立星研究员团队和浙江大学方伟、童利民教授团队合作,首次提出了微纳光纤耦合的SNSPD器件结构。该结构将SNSPD器件置于微纳光纤的倏逝场内,从而实现纳米线对微纳光纤中传输的光子吸收。光学计算显示,该类结构有望实现高吸收效率的同时,保持很好地宽谱特性【Optics Communications 405: 48-52. (2017)】。经过上海微系统所巫君杰博士和浙江大学徐颖鑫博士等近3年实验探索,团队终于成功研制微纳光纤耦合SNSPD器件。在1550 nm/1064 nm工作波长,系统探测效率分别达到20%/50%。相关成果近日发表于Optics Express。该结果有望在新型SNSPD器件及微纳光纤领域开辟新的研究方向。该工作得到了本文工作获得了国家重点研发计划项目“高性能单光子探测技术”

光子计数探测器

PILATUS光子计数探测器 混合像素探测器,为您的实验室精心准备 PILATUS混合像素探测器的设计从理论到现实均达到最佳的数据质量X射线检测。他们带来了两项关键技术,单光子计数和混合像素技术相结合,同步到您的实验室。单光子计数消除所有探测器噪声,并提供卓越的数据。在收集数据时,读数无噪音和暗电流的消失特别具有优势:在实验室中的X射线光源比同步加速时要弱很多,需要更长的曝光时间,并导致较弱的信号。由于没有了暗电流和读数噪音, PILATUS探测器更加适合在实验室使用。混合像素技术可以直接检测X射线,与其他任何探测器技术相比实现了更清晰,更好地解决信号传输问题。加上读取时间短和连续采集的特点,PILATUS探测器可以高效提供优质数据。低功耗和冷却需求,给你一个无忧的、维护量极小探测器系统,。PILATUS探测器系列是专为您在实验室中的需求定制,并提供同步加速器的技术,有无与伦比的价值。利用PILATUS独特的功能,可以从你的最具挑战性的样品获得最佳的数据。 针对您的需求 PILATUS探测器成功推动和同步加速器光束线。PILATUS的独特功能在实验室和相关产业的优势也很明显。根据您在实验室的需求,现在PILATUS的产品阵容,辅以一系列的PILATUS探测器,。固定能量校准和简化的读数电子器件完美匹配了实验室相关要求而且PILATUS完全符合您的预算。混合像素技术和单光子计数,关键的技术,优质的数据和高效率,完全无障碍实施是PILATUS探测器的优势。越来越多的实验室和工业应用的仪器可配备或升级了PILATUS探测器。根据自己的设置或利益自由整合PILATUS,可以从一个现成的仪器变成一个PILATUS OEM合作伙伴

纳米光子软件MODE Solutions介绍

波导光学器件模式求解和传播设计分析软件 MODE Solutions 一公司及软件简介 MODE Solutions软件由加拿大Lumerical Solutions公司出品。该公司成立于2003年,总部位于加拿大温哥华。用户用该公司软件已发表大量高影响因子论文,并被许多国际著名大公司和学术团队所使用。 MODE Solutions是精确多功能的模式求解和传播用来设计和分析波导光学器件的软件,它能求解: 1 共型网格、有限差分模式计算引擎可以求解任意波导结构 --直、弯波导,电介质波导、表面等离子体波导、反谐振波导、光子晶体光纤等 2 二维半基于FDTD的传播引擎可以快速地给出平面波导的计算结果 --全方向Omni-directional引擎可以计算那些BPM技术无法设计的器件如谐振腔 --多系数材料模型可以拟合众多色散材料 二软件特点 1 MODE Solutions是模拟平面波导器件的强力工具 --2.5D FDTD 引擎快速给出精确结果 --多系数材料模型MCMs 准确处理色散材料 --使用多核/多处理器的计算引擎 --内置的优化算法可以很快给出优化设计结果 2模式分析给出近场结果 --适合各种波导 --模式分析提供: *近场电、磁场、强度和坡印庭矢量 *微弯损耗计算 *远场分析 33简便获得波导的频率响应 --有效折射率或传播常数随频率/波长的变化 --损耗随频率/波长的变化 --色散 --群折射率 --群延迟 4模式重叠计算 --重叠积分 --耦合效率,如高斯光束与一个波导模式的耦合

--优化波导模式1(或光束)相对于波导模式2的位置以获得最大耦合效率 5纳米光学设计者需要的关键特点 --全矢量算法 --渐变/非均匀网格,共形网格 --准确的材料色散模型 --设计的参数化和优化算法 --多台计算机同时计算 --强大的文本程式 --模式计算引擎Eigensolver *色散、群速度、群折射率等 *模重叠和功率耦合效率 --传播计算引擎Propagator *2.5D 全方向传播计算 *多核多节点并行计算 *仿真动态可生成影像 ?所有图片版权均属于Lumerical,您可以直接访问https://www.360docs.net/doc/a6380331.html,/。

单光子探测器能够探测到光的最小能量量子

单光子探测器能够探测到光的最小能量量子——光子。单光子探测器可对单个光子进行探测和计数,在信号强度仅为几个光子能量级的条件下,单光子探测器的作用十分巨大。(资料图) 光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。有关专家认为,单光子探测技术能将现有的机载光电探测距离从几十公里提高到几千公里,势必带来机载目标探测系统的革命,极大地改变未来空天战场的作战方式。 隐身飞机将无处“隐身”。F-22、B-2等飞机高超的隐身性能,几乎使现役雷达和光电探测系统变成“瞎子”。但单光子探测系统极高的探测灵敏度,即使对F-22、B-2这样的隐身飞机,作用距离也可达到几百到几千公里,可在极远距离上发现隐身飞机,使其“无处遁形”。

空战将从“中距”拉向“远距”。配装单光子探测系统的作战飞机,由于对空目标探测距离极远,将使空中作战从目前的中距进一步扩为远距。如:配挂单光子超远程空空导弹,火力攻击距离可达到几百到几千公里之外。空中战争将从传统的几十公里的超视距作战变为间隔几千公里的非接触战争。 “全球感知,全球打击”成为可能。利用空中平台或临近空间平台配装单光子探测系统,构建单光子探测网络,只需几部单光子探测系统就可实现对领空的全域覆盖。在此基础上用地面或空中远程导弹构建空中地面联合火力网,把单光子探测网络作为网络中心战的目标探测网络系统,可对任何位置(地面或空中)发射的导弹进行目标指引,有效攻击全球目标,实现“全球感知,全球打击”。(曾尧徐文) 中国专家谈单光子探测技术:千里外就可发现F-22 2012年04月19日09:39 来源:解放军报 字号:T|T 9853人参与0条主评论637条评论0条总评论打印转发

纳米光子学材料与器件的研究进展

Applied Physics 应用物理, 2011, 1, 9-19 doi:10.4236/app.2011.11002 Published Online April 2011 (https://www.360docs.net/doc/a6380331.html,/journal/app/) Copyright ? 2011 Hanspub APP 9 Research Progress in Nanophotonics Materials and Devices Junxi Zhang *, Lide Zhang Institute of Solid State Physics, Key Laboratory of Materials Physics, Chinese Academy of Sciences, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Email: jxzhang@https://www.360docs.net/doc/a6380331.html, Received: Mar. 23th, 2011; revised: Apr. 6th, 2011; accepted: Apr. 7th, 2011. Abstract: The investigation field of nanophotonics is presented, this article provides a comprehensive review of research activities in nanophotonics materials and devices, and furthermore, the research progress of the materials and devices based on quantum confinement effect, light emission, surface plasmon polaritons (SPPs), and periodical structures is demonstrated significantly. Keywords: Nanophotonics; Nanophotonics Materials; Nanophotonics Devices; Quantum Confinement; Light Emission; Surface Plasmon Polaritons; Photonic Crystal; Nanowire Grid Polarizers 纳米光子学材料与器件的研究进展 张俊喜*,张立德 中国科学院固体物理研究所,中国科学院材料物理重点实验室, 安徽省纳米材料与技术重点实验室,合肥 Email: jxzhang@https://www.360docs.net/doc/a6380331.html, 收稿日期:2011年3月23日;修回日期:2011年4月6日;录用日期:2011年4月7日 摘 要:介绍了纳米光子学的研究范畴,综述了纳米光子学材料和器件的研究动态和热点,着重阐述了基于量子限域效应、光发射、表面等离子体激元和周期性结构纳米光子学材料和器件的研究进展。 关键词:纳米光子学;纳米光子学材料;纳米光子器件;量子限域;光发射;表面等离子体激元;光子 晶体;纳米线栅偏振器 1. 引言 随着人类对信息永无止尽地追求,信息的传输和处理速度越来越快、数据存储密度越来越大已成为必然趋势。预计到2015年光纤传输系统的数据速率高达10 Tb/s ,这就要求光子器件的尺度进一步减小并最终突破光的衍射极限而达到亚波长甚至纳米尺度。既然传统的光子器件对光的操纵受到光的半波长衍射极限的限制,因此探索光与物质在纳米尺度上相互作用的新原理、制备纳米光子学材料、构筑纳米光子器件以及发明纳米光子学制造技术将面临着新的挑战和机遇。 纳米光子学是研究在纳米尺度上光与物质相互作用的科学与技术,在纳米尺度上实现对光子的操纵和光学器件的构筑是纳米光子学的研究目标。纳米光子学不仅为研究在小于光波长的尺度上光与物质的相互作用过程提供富有挑战性的机遇,而且为纳米光子学材料在光子器件、纳米医学、纳米生物学等方面的应用创造了新的空间,同时为在更小尺度上的光学制造技术开辟了一条新的途径。人们对这种科学探索和技术发明的不断追求就是在逐步实现Richard P. Feynman 的预言:“在下面尺度有大量的空间。”[1]作为一个新的前沿领域,纳米光子学已经引起了世界

纳米光子学答卷

纳米光子学答卷 孙琼阁07B911004 1.纳米光子学的研究对象, 范围和意义是什么? 答:纳米光子学是在纳米尺度下处理光和物质的相互作用,是一门结合纳米科学与光子学的新型交叉学科。主要研究纳米尺度范围内的光学现象及其应用。其目的是通过制备新型纳米材料和器件对光子进行控制,研究广泛应用于信息处理和国防、安全、医疗以及生物科技方面的量子器件的物理学基本原理和新的应用方法。纳米光子学包含三部分内容: (1)辐射场纳米尺度限制:光被限制在纳米尺度—比光的波长还小的尺度。有许多办法把光限制在纳米尺度范围,如使用近场光的传播;被压缩的光通过金属薄层和逐渐变细的光纤,在这里光通过一个比光波长更小的尖端开口发射。 (2)物质纳米尺度限制:物质被限制在纳米尺度,因此也就限制光和物质间的相互作用在纳米范围。对于光子学物质的纳米尺度的限制制成纳米材料,包括限制物质的尺寸产生纳米结构的各种方法。如人们能利用纳米粒子展示电子和光子的独特性质。发现这些纳米粒子正被用于纳米光子学的各种应用中,是令人满足的,如在遮光剂洗液中UV减震器。纳米粒子能构成有机材料和无机材料,Nanomers,是单节显性有机结构的纳米尺度的低聚体(小数量的重复单元),使纳米粒子的有机相似物。聚合体是大数量的重复单元的长链结构。这些Nanomers表现出依赖尺寸的光学性质。金属的纳米粒子表现出独特光学响应,增强电磁场,组成胞质基因学。有纳米粒子吸收两个IR光子转换到在可视的UV范围的一个光子,相反地,有纳米粒子,叫量子切割机,吸收一个真空UV光子转换成两个可视范围的光子。纳米材料很热门的一个领域是光子晶体,表示一个周期的电介质结构,具有光波长数量级的重复单元。纳米合成物由两个或多个不相似的材料组成的纳米范围的物质,是纳米尺度的相位差。在纳米合成物中每一个纳米域能告知粒子的光学性质。在不同域间的能量传输的光的能量流能被控制。 (3)纳米尺度下光处理:可使用到纳米平板印刷术中制作纳米结构,组成纳米传感器和激励器。纳米光学记忆是纳米制作令人激动的概念之一,纳米制作的一个重要特征是这个光处理能被限制到确定的纳米区域,以便能在精确的几何学和排列中被制作。 纳米光子学对不同的人具有不同的意义。一些人把纳米光子学主要看作近场作用和近场显微镜方法,而其他人则认为纳米光子学集中在光子晶体。主要方向是纳米材料,部分展示了他们的光学性质尺寸的依赖,这些是量子限制结构。对工程、纳米规模的光学设计及纳米平板印刷术是纳米光子学最相关的方面。 纳米光子学结合许多主要技术,如激光,光子学,光电子学,纳米技术和生物技术。这些技术每年能创造上万万美元的收入。纳米技术对各种学科也提供了许多机会,如 化学和化学工程 新奇的综合路线和纳米材料处理;分子纳米结构的新类型和超分子和纳米建筑体系的结合;表面修正产生纳米模板化学。 物理 量子电动力学在纳米腔中研究新奇的光现象;但光子源的量子信息处理;纳米规模的非线性光处理;电子之间、光子和光子间的相互作用的纳米控制。 设计工程 纳米平板印刷术用于发射器、探测器和连接器的纳米制作;发射器、传输系统、信号处理、和探测器,加上功率发生器的纳米规模的结合;光子晶体电路和基于显微腔的设计;光子晶体和细胞基因学的结合促进各种线性和非线性光学函数;激光器量子点和量子丝。 生物 对于光子学生物材料的基因操纵;生物原理指导光子材料的发展;对光子结构的新颖的生物胶体和生物模

相关文档
最新文档