2019-2020年人教版物理选修3-5课时分层作业1+动量和动量定理+Word版含解析

2019-2020年人教版物理选修3-5课时分层作业1+动量和动量定理+Word版含解析
2019-2020年人教版物理选修3-5课时分层作业1+动量和动量定理+Word版含解析

课时分层作业(一)

(时间:40分钟分值:100分)

[基础达标练]

一、选择题(本题共6小题,每小题6分)

1.(多选)下列关于动量的说法正确的是()

A.质量大的物体,动量一定大

B.质量和速率都相等的物体,动量一定相同

C.质量一定的物体的速率改变,它的动量一定改变

D.质量一定的物体的运动状态改变,它的动量一定改变

[解析]根据动量的定义,它是质量和速度的乘积,因此它由质量和速度共同决定,选项A错误;又因为动量是矢量,它的方向与速度的方向相同,而质量和速率都相等的物体,其动量大小一定相等,但方向不一定相同,选项B错误;质量一定的物体的速率改变,则它的动量大小就一定改变,选项C正确;质量一定的物体的运动状态改变,它的速度就一定改变,它的动量也就改变,选项D正确.[答案]CD

2.(多选)下面关于物体动量和冲量的说法正确的是()

A.物体所受合外力冲量越大,它的动量也越大

B.物体所受合外力冲量不为零,它的动量一定要改变

C.物体动量增量的方向,就是它所受冲量的方向

D.物体所受合外力越大,它的动量变化就越快

[解析]由Ft=Δp知,Ft≠0,Δp≠0,即动量一定变化,Ft越大,Δp越大,但动量不一定大,它还与初态的动量有关,故A错误,B正确;冲量不仅与Δp大小相等,而且方向相同,所以C正确;由F=Δp

知,物体所受合外力越大,动量

Δt

越大,即动量变化越快,D正确.

的变化率Δp

Δt

[答案]BCD

3.(多选)在任何相等时间内,物体动量的变化量总是相等的运动可能是() A.匀速圆周运动B.匀变速直线运动

C.自由落体运动D.平抛运动

[解析]物体做匀变速直线运动、自由落体运动、平抛运动所受的合外力恒定不变.由动量定理可知,它们在任何相等时间内的动量变化量总相等,而物体做匀速圆周运动合外力是变力,故B、C、D均正确,A错误.

[答案]BCD

4.(多选)如图所示,铁块压着一张纸条放在水平桌面上,第一次以速度v抽出纸条后,铁块落在水平地面上的P点,第二次以速度2v抽出纸条,则()

A.铁块落地点在P点左边

B.铁块落地点在P点右边

C.第二次纸条与铁块的作用时间比第一次短

D.第二次纸条与铁块的作用时间比第一次长

[解析]以不同的速度抽出纸条时,铁块所受摩擦力相同,抽出纸条的速度越大,铁块与纸条相互作用的时间越短,铁块受到合力的冲量越小,故铁块获得的速度越小,铁块平抛的水平位移越小,所以选项A、C正确.

[答案]AC

5.(多选)对于一个质量不变的物体,下列说法正确的是()

A.物体的动量发生变化,其动能一定变化

B.物体的动量发生变化,其动能不一定变化

C.物体的动能发生变化,其动量一定变化

D.物体的动能发生变化,其动量不一定变化

[解析]当质量不变的物体的动量发生变化时,可以是速度的大小发生变化,也可以是速度的方向发生变化,还可以是速度的大小和方向都发生变化.当物体

的速度方向发生变化而速度的大小不变时,物体的动量(矢量)发生变化,但动能(标量)并不发生变化,选项A错误、B正确.当质量不变的物体的动能发生变化时,必定是其速度的大小发生了变化,而无论其速度方向是否变化,物体的动量必定发生变化,选项C正确、D错误.

[答案]BC

6.(多选)关于冲量,下列说法正确的是()

A.冲量是物体动量变化的原因

B.作用在静止的物体上的力的冲量一定为零

C.动量越大的物体受到的冲量越大

D.冲量的方向与力的方向相同

[解析]力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,选项A正确.只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,选项B错误.物体所受冲量I=Ft与物体动量的大小p=m v无关,选项C不正确.冲量是矢量,其方向与力的方向相同,D正确.[答案]AD

二、非选择题(共14分)

7.将质量为m=1 kg的小球,从距水平地面高h=5 m处,以v0=10 m/s的水平速度抛出,不计空气阻力,g取10 m/s2.求:

(1)抛出后0.4 s内重力对小球的冲量;

(2)平抛运动过程中小球动量的增量Δp;

(3)小球落地时的动量p′.

[解析](1)重力是恒力,0.4 s内重力对小球的冲量I=mgt=1×10×0.4 N·s =4 N·s

方向竖直向下.

(2)由于平抛运动的竖直分运动为自由落体运动,故h=1

2gt

2

落地时间t=2h

g

=1 s

小球飞行过程中只受重力作用,所以合外力的冲量为I=mgt=1×10×1 N·s =10 N·s

方向竖直向下

由动量定理得Δp=I=10 N·s,方向竖直向下.

(3)小球落地时竖直分速度为v y=gt=10 m/s.由速度合成知,落地速度v=v20+v2y=102+102m/s=10 2 m/s

所以小球落地时的动量大小为p′=m v=102kg·m/s

方向与水平方向的夹角为45°.

[答案](1)4 N·s方向竖直向下

(2)10 N·s方向竖直向下

(3)10 2 kg·m/s方向与水平方向的夹角为45°

[能力提升练]

一、选择题(本题共4小题,每小题6分)

1.(多选)对于质量一定的物体,下列说法正确的是()

A.如果物体运动的速度大小不变,物体的动量也保持不变

B.运动物体在任一时刻的动量方向,一定是该时刻的速度方向

C.物体的动量发生改变,则合外力一定对物体做了功

D.物体的动能发生改变,其动量一定发生改变

[解析]动量是矢量,只要速度方向变化,动量也发生变化,A错误;动量具有瞬时性,任一时刻物体动量的方向,即为该时刻物体的速度方向,B正确;物体

的动量发生变化,可能是速度的大小、方向中有一个量或两个量发生了变化,物体肯定受到了力的作用,但此力不一定做功,C错误;物体的动能发生改变,则其速度大小一定改变,其动量一定改变,D正确.

[答案]BD

2.(多选)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()

A.绳对人的冲量始终向上,人的动量先增大后减小

B.绳对人的拉力始终做负功,人的动能先增大后减小

C.绳恰好伸直时,绳的弹性势能为零,人的动能最大

D.人在最低点时,绳对人的拉力大于人所受的重力

[解析]从绳恰好伸直到人第一次下降至最低点的过程中,人先做加速度减小的加速运动,后做加速度增大的减速运动,加速度等于零时,速度最大,故人的动量和动能都是先增大后减小,加速度等于零时(即绳对人的拉力等于人所受的重力时)速度最大,动量和动能最大,在最低点时人具有向上的加速度,绳对人的拉力大于人所受的重力.绳的拉力方向始终向上与运动方向相反,故绳对人的冲量方向始终向上,绳对人的拉力始终做负功.故选项A、B、D正确,选项C错误.[答案]ABD

3.(多选)如图所示,放在水平地面上的物体受到的合外力随时间变化的关系,若物体开始时是静止的,则前3 s内()

A.物体的位移为0

B.物体的动量改变量为0

C.物体的动能变化量为0

D.物体的机械能改变量为0

[解析]第1 s内F=20 N,第2、3 s内F=-10 N,物体先加速、后减速,在第3 s末速度为零,物体的位移不为零,A错误;根据动量定理I=Δp,前3 s 内,动量的变化量为零,B正确;由于初速度和末速度都为零,因此动能变化量也为零,C正确;但物体的重力势能是否改变不能判断,因此物体的机械能是否改变不能确定,D错误.

[答案]BC

4.(多选)如图所示,用承受极限为14 N且长为l=1 m的轻绳拴接一质量为m=1 kg的小球,轻绳的另一端固定在天花板上,如果给小球一水平的冲量的瞬间轻绳断裂,重力加速度g=10 m/s2,则冲量的可能值为()

A.2 N·s B.3 N·s

C.1 N·s D.1.5 N·s

[解析]要使轻绳断裂,则轻绳的拉力至少要达到最大值F=14 N,此时恰好

由绳子的最大拉力和重力的合力提供向心力,根据牛顿第二定律有F-mg=m v 2

l

,代入数据得v=2 m/s,由动量定理得I=Δp=m v-0=1×2 N·s=2 N·s,所以作用在小球上的水平冲量至少应为2 N·s,AB正确.

[答案]AB

二、非选择题(本题共2小题,共26分)

5.(13分)如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B 粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:

(1)A 开始运动时加速度a 的大小;

(2)A 、B 碰撞后瞬间的共同速度v 的大小.

[解析] (1)以A 为研究对象,由牛顿第二定律有

F =m A a

代入数据解得

a =2.5 m/s 2.

② (2)对A 、B 碰撞后共同运动t =0.6 s 的过程,由动量定理得

Ft =(m A +m B )v t -(m A +m B )v

③ 代入数据解得

v =1 m/s.

④ [答案] (1)2.5 m/s 2 (2)1 m/s

6.(13分)一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示,物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2.

(1)求物块与地面间的动摩擦因数μ;

(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;

(3)求物块在反向运动过程中克服摩擦力所做的功W .

[解析] (1)由动能定理,有-μmgs =12m v 2-12m v 20

可得μ=0.32.

(2)由动量定理:有F Δt =m v ′-m v

可得F =130 N.

(3)由动能定理-W=0-1

2m v′

2

可得W=9 J.

[答案](1)0.32(2)130 N(3)9 J

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高中物理动量定理动量守恒定律习题带答案

动量练习 ;类型一:弹簧问题 1、一轻质弹簧,两端连接两滑块A和B,已知m A=0.99kg ,m B=3kg,放在光滑水平桌面上,开始时弹簧处于原长。现滑块A被水平飞来的质量为m c=10g,速度为400m/s的子弹击中,且没有穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 类型二:板块问题 2. (18分) 如图所示,质量为20kg的平板小车的左端 放有质量为10kg的小铁块,它与车之间的动摩擦因数 为0.5。开始时,车以速度6m/s向左在光滑的水平面上运动,铁块以速度6m/s向右运动,小车足够长。(g=10m/s2)求: (1) 小车与铁块共同运动的速度大小和方向。 (2)系统产生的内能是多少? (3)小铁块在小车上滑动的时间 3矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑 的水平面上,如图所示,质量为m的子弹以速度v水平射向滑块.若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个儿刚好嵌入滑块,由上述两种情况相比较()A A.子弹嵌入两滑块的过程中对滑块的冲量一样多 B.子弹嵌入上层滑块的过程中对滑块做的功较多 C.子弹嵌入下层滑块的过程中对滑块做的功较多 D.子弹嵌入上层滑块的过程中系统产生的热量较多 类型三:圆周运动 4.(18分)质量为m的A球和质量为3m的B球分别用长为L的细线a和b悬挂在天花板下方,两球恰好相互接触,.用细线c水平拉起A,使a偏离竖直方向θ= 60°,静止在如图8所示的位置.b能承受的最大拉力F m=3.5mg,剪断c,让A自由摆动下落,重力加速度为g. ①求A与B发生碰撞前瞬间的速度大小. ②若A与B发生弹性碰撞,求碰后瞬间B的速度大小. ③A与B发生弹性碰撞后,分析判断b是否会被拉断? 5、半径为R的圆桶固定在小车上,有一光滑小球静止在圆桶的最 低点,如图38所示,小车以速度v向右匀速运动,当小车遇到障 碍物突然停止时,小球在圆桶中上升的高度可能是()ACD A.等于v2/2g B.大于 B A b a c h θ 图8

高一物理动能、动能定理练习题

高一物理动能、动能定 理练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A 、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B 、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C 、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D 、物体所受的合外力越大,其动能就越大 2、一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A 、0 B 、8J C 、16J D 、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A 、质量大的物体滑行距离小 B 、它们滑行的距离一样大 C 、质量大的物体滑行时间短 D 、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min 速度达到10m/s.那么该列车在这段时间内行的距离( ) A 、一定大于600m B 、一定小于600m C 、一定等于600m D 、可能等于1200m 5、质量为1.0kg 的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s 2 )( ) A 、物体与水平面间的动摩擦因数为0.30 B 、物体与水平面间的动摩擦因数为0.25 C 、物体滑行的总时间是2.0s D 、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( ) A 、返回斜面底端的动能为E B 、返回斜面底端时的动能为3E/2 C 、返回斜面底端的速度大小为2υ D 、返回斜面底端的速度大小为 2υ 7、以初速度v 0急速竖直上抛一个质量为m 的小球,小球运动过程中所受阻力f 大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功( ) A. 12 02mv B. mgh C. 12 02 mv mgh + D. mgh fh + 8、如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. ()1-μmgR 9、 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E 2,则: A 、E 2=E 1 B 、E 2=2E 1 C 、E 2>2E 1 D 、 E 1<E 2<2E 1 10.质量为m ,速度为V 的子弹射入木块,能进入S 米。若要射进3S 深,子弹的初速度应为原来的 (设子弹在木块中的阻力不变) ( ) A .3倍 B . 3 倍 C .9倍 D .2 3 倍 11.质量为m 的物体A 由静止开始下滑至B 而停止,A 、B 离水平地面的高度分别为h 及2 h ,如图所 示。若用平行于接触面的力把它沿原路径从B 拉回到A 处,则拉力的功至少应为 ( ) h / 2 h 图 5 - 17 h B V 0

高中物理动量定理解题技巧(超强)及练习题(含答案)

高中物理动量定理解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量定理 1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22220110122111()()222 m gL m m v m m v m v μ= +-+- 联立并代入数值得L =5.5m ; 点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度. 2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小; (2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。 【答案】(1)6.0m/s 2(2)18J (3)20N· s ,方向竖直向下。 【解析】 【详解】

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

高一物理动能定理经典题型汇总(全)

高一物理动能定理经典题型汇总(全)

————————————————————————————————作者:————————————————————————————————日期:

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵 S L V V

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案) 一、高考物理精讲专题动量定理 1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。 (1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量; (3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】 (1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得: sin θF T BIl =+ cos θT mg = 解得: tan θ 1.50.5F mg BIl I =+=+ 由图乙可知: 1.50.2F t =+ 则有: 0.4I t = cd 棒上的电流为:

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理动量定理和动量守恒

暑期生活第六篇:动量定理和动量守恒 复习目标 1.进一步深化对动量、冲量、动量变化、动量变化率等概念的理解。 2.能灵活熟练地应用动量定理解决有关问题。 3.能灵活熟练地应用动量守恒定律解决碰撞、反冲和各种相互作用的问题。 专题训练 1、两辆质量相同的小车A和B,置于光滑水平面上,一人站在A车上,两车均静止。若这个人从A车跳到B 车,接着又跳回A车,仍与A车保持相对静止,则此时A车的速率() A、等于零 B、小于B车的速率 C、大于B车的速率 D、等于B车的速率 2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力, 经过t秒(设小球均未落地)() A.做上抛运动的小球动量变化最大 B.做下抛运动的小球动量变化最小 C.三个小球动量变化大小相等 D.做平抛运动的小球动量变化最小 3、质量相同的两木块从同一高度同时开始自由下落,至某一位置时A被水平飞来的子弹击中(未穿出),则 A、B两木块的落地时间t A、t B相比较,下列现象可能的是() A.t A= t B B.t A >t B C.t A< t B D.无法判断 4、放在光滑水平面上的A、B两小车中间夹了一压缩轻质弹簧,用两手分别控制小车处于静止状态,下面说 法中正确的是() A.两手同时放开后,两车的总动量为零 B.先放开右手,后放开左手,两车的总动量向右 C.先放开左手,后放开右手,两车的总动量向右 D.两手同时放开,两车总动量守恒;两手放开有先后,两车总动量不守恒 5、某物体沿粗糙斜面上滑,达到最高点后又返回原处,下列分析正确的是() A.上滑、下滑两过程中摩擦力的冲量大小相等 B.上滑、下滑两过程中合外力的冲量相等 C.上滑、下滑两过程中动量变化的方向相同 D.整个运动过程中动量变化的方向沿斜面向下 6、水平推力F1和F2分别作用于水平面上的同一物体,分别作用一段时间后撤去,使物体都从静止开始运动 到最后停下,如果物体在两种情况下的总位移相等,且F1>F2,则() A、F2的冲量大 B、F1的冲量大 C、F1和F2的冲量相等 D、无法比较F1和F2的冲量大小 7、质量为1kg的炮弹,以800J的动能沿水平方向飞行时,突然爆炸分裂为质量相等的两块,前一块仍沿水 平方向飞行,动能为625J,则后一块的动能为() A.175J B.225J C.125J A.275J 8、两小船静止在水面,一人在甲船的船头用绳水平拉乙船,则在两船靠拢的过程中,它们一定相同的物理量是() A、动量的大小 B、动量变化率的大小 C、动能 D、位移的大小 9、质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿 着完全相同步枪和子弹的射击手。左侧射手首先开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2,如图所示。设子弹均未射穿木块,且两颗子弹与木块之间

高一物理 动能定理练习题

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 2.下列说法正确的是( ) A .某过程中外力的总功等于各力做功的代数之和; B .外力对物体做的总功等于物体动能的变化; C .在物体动能不变的过程中,动能定理不适用; D .动能定理只适用于物体受恒力作用而做加速运动的过程。 3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 C .两物块速度变化相等 D .水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( ) A .与它通过的位移s 成正比 B .与它通过的位移s 的平方成正比 C .与它运动的时间t 成正比 D .与它运动的时间的平方成正比 5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D .0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J

最新高考物理动量定理解题技巧及练习题

最新高考物理动量定理解题技巧及练习题 一、高考物理精讲专题动量定理 1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。求: (1)C的质量m C; (2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I; (3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。 【答案】(1)2kg ;(2)27J,36N·S;(3)9J 【解析】 【详解】 (1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒 m C v1=(m A+m C)v2 解得C的质量m C=2kg。 (2)t=8s时弹簧具有的弹性势能 E p1=1 2 (m A+m C)v22=27J 取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小 I=(m A+m C)v3-(m A+m C)(-v2)=36N·S (3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大 (m A+m C)v3=(m A+m B+m C)v4 1 2(m A+m C)2 3 v= 1 2 (m A+m B+m C)2 4 v+E p2 解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。 2.如图所示,足够长的木板A和物块C置于同一光滑水平轨道上,物块B置于A的左端,A、B、C的质量分别为m、2m和3m,已知A、B一起以v0的速度向右运动,滑块C 向左运动,A、C碰后连成一体,最终A、B、C都静止,求:

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理之动量和动量定理知识点

高中物理之动量和动量定理知识点 动量、冲量 动量变化量和动量变化率 (1)物体末态动量和初态动量的矢量差叫物体的动量变化量。△P=mv'-mv,其方向与速度变化量的方向相同。 (2)物体的动量变化率等于它所受的合力。 动量定理 (1)物体在一个过程中的动量变化量等于它在这个过程中的所受理的合冲量。 (2)△P=I合或mv'-mv=F合t 应用动量定理解题的一般步骤 (1)选定研究对象,明确运动过程

(2)受力分析和运动的初、末状态分析 (3)选正方向,根据动量定理列方程求解 应用 动量定理揭示了冲量和动量变化量之间的关系. 1.应用动量定理的两类简单问题 (1)应用I=ΔP求变力的冲量和平均作用力. 物体受到变力作用,不能直接用I=Ft求变力的冲量。(2)应用ΔP=Ft求恒力作用下的曲线运动中物体动量的变化。 曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量。 2.动量定理使用的注意事项 (1)用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便。 (2)动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。 3.动量定理在电磁感应现象中的应用 在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量。

习题演练 1. 关于动量和冲量,下列说法中正确的是() A 动量和冲量都是标量 B 动量和冲量都是过程量 C 动量和冲量都是过程量 D 动量和冲量都是矢量 2. 某物体受到一个-6N*s的冲量作用,则下列说法正确的是() A 物体的动量一定减小 B 物体的末动量一定是负值 C 物体动量增量的方向一定与规定的正方向相反 D 物体原来动量的方向一定与这个冲量的方向相反 习题解析 1. D 动量是状态量,冲量是过程量。 2. B 冲量和动量都是方向,矢量的正负号仅表示方向。

高中物理专题汇编物理动能与动能定理(一)

高中物理专题汇编物理动能与动能定理(一) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

高考物理动量定理基础练习题及解析

高考物理动量定理基础练习题及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122 E m v m v = + 其中 121 4m m = 12m m m =+

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动能定理的运用归纳及总结

一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运 动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 【解析】对物块整个过程用动能定理得: ()0 00=+-s s umg Fs 解得:s=10m 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少? 【解析】对车头,脱钩后的全过程用动能定理得: 201)(2 1 )(V m M gS m M k FL --=-- 对车尾,脱钩后用动能定理得: 2022 1 mV kmgS -=- 而21S S S -=?,由于原来列车是匀速前进的, 所以F=kMg 由以上方程解得m M ML S -=?。 (二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度 v 将一个质量为m 的物体竖直向上抛出,上升的最大高度 为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( ) A. 2021mv B. fh mgh - C. fh mgh mv -+2021 D. fh mgh + S 2 S 1 L V 0 V 0

相关文档
最新文档