注塑模具英文翻译

注塑模具英文翻译
注塑模具英文翻译

Minimizing manufacturing costs for thin injection

molded plastic components

1. Introduction

In most industrial applications, the manufacturing cost of a plastic part is mainly governed by the amount of material used in the molding process.

Thus, current approaches for plastic part design and manufacturing focus primarily on establishing the minimum part thickness to reduce material usage.

The assumption is that designing the mold and molding processes to the minimum thickness requirement should lead to the minimum manufacturing cost. Nowadays, electronic products such as mobile phones and medical devices are becoming ever more complex and their sizes are continually being reduced.

The demand for small and thin plastic components for miniaturization assembly has considerably increased in recent years.

Other factors besides minimal material usage may also become important when manufacturing thin plastic components.

In particular, for thin parts, the injection molding pressure may become significant and has to be considered in the first phase of manufacturing.

Employing current design approaches for plastic parts will fail to produce the true minimum manufacturing cost in these cases.

Thus, tackling thin plastic parts requires a new approach, alongside existing mold design principles and molding techniques.

1.1 Current research

Today, computer-aided simulation software is essential for the design of plastic parts and molds. Such software increases the efficiency of the design process by reducing the design cost and lead time [1].

Major systems, such as Mold Flow and C-Flow, use finite element analysis to simulate the filling phenomena, including flow patterns and filling sequences. Thus, the molding conditions can be predicted and validated, so that early design modifications can be achieved. Although available software is capable of analyzing the flow conditions, and the stress and the temperature distribution conditions of the component under various molding scenarios, they do not yield design parameters with minimum manufacturing cost [2,3].

The output data of the software only give parameter value ranges for reference and leaves the decision making to the component designer. Several attempts have also been made to optimize the parameters in feeding [4–7], cooling [2,8,9], and ejection These attempts were based on maximizing the flow ability of molten material during the molding process by using empirical relation ships between the product and mold design parameters.

Some researchers have made efforts to improve plastic part quality by Reducing the

sink mark [11] and the part deformation after molding [12], analyzing the effects of wall thickness and the flow length of the part [13], and analyzing the internal structure of the plastic part design and filling materials flows of the mold design [14]. Reifschneider [15] has compared three types of mold filling simulation programs, including Part Adviser, Fusion, and Insight, with actual experimental testing. All these approaches have established methods that can save a lot of time and cost. However, they just tackled the design parameters of the plastic part and mold individually during the design stage. In addition, they did not provide the design parameters with minimum manufacturing cost.

Studies applying various artificial intelligence methods and techniques have been found that mainly focus on optimization analysis of injection molding parameters [16,17]. For in-stance He et al. [3] introduced a fuzzy- neuro approach for automatic resetting of molding process parameters. By contrast , Helps et al. [18,19] adopted artificial neural networks to predict the setting of molding conditions and plastic part quality control in molding. Clearly, the development of comprehensive molding process models and computer-aided manufacturing provides a basis for realizing molding parameter optimization [3 , 16,17]. Mok et al. [20] propose a hybrid neural network and genetic algorithm approach incorporating Case-Based Reasoning (CBR) to derive initial settings for molding parameters for parts with similar design features quickly and with acceptable accuracy. Mok’s approach was based on past product processing data, and was limited to designs that are similar to previous product data. However, no real R&D effort has been found that considers minimizing manufacturing costs for thin plastic components.

Generally, the current practical approach for minimizing the manufacturing cost of plastic components is to minimize the thickness and the dimensions of the part at the product design stage, and then to calculate the costs of the mold design and molding process for the part accordingly, as shown in Fig. 1.

The current approach may not be able to obtain the real minimum manufacturing cost when handling thin plastic components.

1.2Manufacturing requirements for a typical thin plastic component As a test example, the typical manufacturing requirements for a thin square plastic part with a center hole, as shown in Fig. 2,are given in Table 1.

Fig.1. The current practical approach

Fig.2. Test example of a small

plastic component

Table1. Customer requirements for the example component

2. The current practical approach

As shown in Fig.1, the current approach consists of three phases: product design, mold design and molding process parameter setting. A main objective in the product design is to establish the physical dimensions of the part such as its thickness, width

and length. The phases of molded sign and molding subsequently treat the established physical dimensions as given inputs to calculate the required details for mold making and molding operations.

When applying the current practical approach for tackling the given example, the key variables are handled by the three phases as follows:

Product design

* Establish the minimum thickness (height) HP, and then calculate the material cost. HP is then treated as a predetermined input for the calculation of the costs of mold design and molding operations. HP

Mold design

* Calculate the cooling time for the determined minimum

thickness HP in order to obtain the number of mold cavities required. The mold making cost is then the sum of the costs to machine the:

–Depth of cutting (thickness) HP

–Number of cavities

–Runner diameter DR

–Gate thickness HG

Molding process

* Determine the injection pressure Pin, and then the cost of power consumption

Determine the cooling time t co, and then the cost of machine operations. The overall molding cost is the sum of the power consumption cost and machine operating cost.

The total manufacturing cost is the sum of the costs of plastic material, mold making and molding operations. Note that, in accordance with typical industry practice, all of the following calculations are in terms of unit costs.

2.1 Product design

This is the first manufacturing phase of the current practical approach. The design minimizes the thickness HP of the plastic component to meet the creep loading deflection constraint , Y (<1.47mmafter1yearofusage),and to minimize plastic material usage cost Cm. Minimizing HP requires [21]:

Figure 3 plots changes in HP through Eqs.1 and 2.The graphs show that the smallest thickness that meets the 1.47mm maximum creep deflection constraint is 0 .75mm,with a plastic material cost of $0.000483558/unit and a batch size of 200000 units.

This thickness will be treated as a given input for the subsequent molded sign and molding process analysis phases.

2.2Mold design

2.2.1 Determination of cooling time

The desired mold temperature is 25 C. The determined thickness is 0.75mm. Figure 4 shows the cooling channels layout following standard industry practices. The cooling channel diameter is chosen to be 3mm for this example.

From [22], the cooling time t co:

And the location factor,

BysolvingEqs.3and4, and substituting HP =0.75mm and the given values of the cooling channel design parameters, the cooling time (3.1s) is obtained.

The cycle time t cycle, given by E q. 5, is proportional to the molding machine operating costs, and consists of injection time (t in), ejection time (t e j), dry cycle time (t d c), and cooling time (t c o).

2.2.2 Determination of the number of mold cavities In general, the cost of mold making depends on the amount of machining work to form the required number of cores/cavities, runners, and gates. The given example calls for a two-plate mold

Fig.3.

Deflection and plastic materials costs versus part thickness Fig.4. Cooling channel layout that does not require undercut machining. Therefore, the ma chining work for cutting the runners and gates is proportional to the work involved in forming the cores/cavities and need not be considered. In the example, mold making cost Cmm is governed by (n, HP).

Generally, the minimum number of cavities, Nmin, is chosen to allow for delivery of the batch of plastic parts on time图3 。

After substitution

which is rounded To n =3,since the mold cannot contain 2.64 cavities. The machine operation capacity and the lead-time of production in the example are given as 21.5h/d and 21d, respectively. Moreover, as mentioned in the previous section, the cycle time is directly proportional to the part thickness HP. A curve of batch size against thickness is plotted in Fig. 5. As shown, at HP =0.75mm, the production capability (batch size) is 242470units.Thus the production capability of n =3 is larger than the required lot size (200000units).

For simplicity, the time taken for machining the depth of a thin component is treated as a given constant and added to the required time t CC for making a cavity insert. The C mm can then be calculated by n as expressed [1]

2.3Molding process

In the molding process, the cycle cost and power consumption cost are used to establish the molding operations cost as described in the following sections.

Fig.5. Mold making cost versus part thickness

2.3.1 Cycle cost

The cycle cost C is defined as the labor cost for molding machine operations. The calculation of cycle cost, given by E q. 8, mainly depends on the cycle time and number of mold cavities

For the example, the value of labor cost per hour, L, is given as $1.19/h. Also, Cp can be calculated, as t cycle =20.1sand n = 3 when HP = 0.75mm, as found earlier. And so Cp =$0.0022147/unit.

2.3.2 Power consumption cost

Typically,within the operating cycle of a molding machine,maximum power is required during injection. Hence, longer injection times and higher injection pressures increase the power consumption cost.

For the purposes of this example, an injection time of tin =0.5sisselectedand applied for the molding process。The required hydraulic power PH, power consumption E i, and cost CPC for injection can be found from the following expressions [23]

In E q. 9, 0.8 is the mechanical advantage of the hydraulic cylinder for power transmission during molding, and the resulting electric power cost of CE = HK$1.0476/kWh is given in E q. 11. To find CPC, the sum of the required injection pressures Pin in the feeding system and cavity during molding need to be found. Required injection pressures. Based on the mold layout design, the volume flow rate Q in the sprue is equal to the overall flow rate, and the volume flow rate in each primary and secondary runner will be divided by the separation number, Ni, according to:

The volume flow rate in a gate and cavity equals to that of the runner connecting to them. Tan [24] derived simplified models

For filling circular and rectangul a r channels that can be employed for the feeding system design in this study

1. Sprue and runner (circular channel)

The pressure drop of sprue and runner is express e d a s:

2. Cavity and gate (rectangular channel)

The pressure drop of cavity and gate is expressed as:

Further, the temperature-dependent power law viscosity model can be defined as:

Based on the values of the volume flow rate and consistency index m (T) for each simple unit, the pressure drop P can be found by using E q s. 12to15. Thus, the

required filling pressure is the sum of pressure drops P in the sprue, primary runner, secondary runner, gate, and cavity:

Required power consumption. Given the shape and dimensions of the part and feeding channel, the pressure drops of the sprue , runner, gate , and cavity are obtained through the calculation froE q s. 12 to 15, and are substituted into E q. 16. The required injection pressure Pin is calculated and substituted into the E q.

https://www.360docs.net/doc/a64271961.html,bining E q s. 10 and 11, the power consumption cost CPC is calculated and depends on the variation of injection pressure, which is indirectly affected by the thickness of product as shown in the following E q .17.

After substitution, this becomes:

Then the molding cost

After calculation, C molding = $0.0022147/unit+$0.003755/unit,when HP =0.75mm, n =3.

2.4Remarks on the current practical approach Based on Esq. 8 to 18 it can be shown that as the part thickness,Hp, increases, the necessary injection pressure

Fig.6. Molding process cost versus thickness consumption cost) decreases but the cycle time (and thus labor cost) increases and so there is a minimum total molding process cost, as shown in Fig.6 for the example in this study. As can be seen the minimum molding process cost is Hp =2.45mm.

If the test example part thickness, Hp, were increased from

0.75 to 2.45mm, the plastic material cost is increased by

230.1%; however, the total molding process cost decreases by

20.6% to $0.004741/unit. Moreover, the total manufacturing cost for the part falls by9.54%, a saving of $0.0001174/unit.

Thus, applying the current practical approach does not give the true minimum manufacturing cost. The current practical approach mainly focuses on minimizing the thickness of the part to reduce the plastic material usage and achieve shorter cooling times. When the part is thin, higher injection pressures are needed during the molding process, which substantially increases the molding process costs and consequently shifts the true minimum manufacturing cost for the part away from the minimum thickness solution.

3 The proposed approach

To overcome the shortcoming of the current practical approach, a concurrent approach is proposed for minimizing the manufacturing cost for plastic parts made by injection molding.

3.1Framework of the proposed approach

Three parallel phases of product design, mold design, and molding process setting are undertaken for the proposed approach showninFig.7. The parallel phases handle individual cost functions for material cost, molding cost, and mold making cost,

Which add to yield the total manufacturing cost . The product shape and dimensions (the possible range of thicknesses) are considered as the main design inputs at the beginning of design phase, as shown in Fig. 7.

The proposed approach will provide a possible solution by considering the three phases simultaneously. The outputs are options for combinations of the thickness of the part , the number of mold cavities , and the minimum manufacturing cost that meet all the given requirements.

Fig.8. Creep deflection and plastic material cost versus thickness

Fig.9. Mold making cost versus part thickness (n =1–8)

3.5 Molding phase

The molding process cost is the sum of cycle cost and power consumption cost. Each number of mold cavities has its own curve of molding cost as shown in Fig. 10. Each curve is inversely proportion to the thickness of the plastic component. The lowest point of the curve is the minimum cost. Usually, when the curve has no sharp turning point and asymptotes, it means that enlarging the thickness cannot reduce molding cost very much.

If the thickness of product is increased, lower injection pressure is required during

molding, thus the power consumption cost is reduced, but the cycle time is lengthened and the cycle cost is increased.

As in Fig. 10, assuming an eight cavity mold, the thickness of the plastic part should be less than 2.81mm, with minimum molding cost lessthan$0.00475676/unit.mold

3.6Determination of manufacturing cost

As discussed, the results obtained in sections 3.3, 3.4, and 3.5 can be combined to yield a total manufacturing cost that is the summation of the part design, mold making, and molding process costs. Eight different curves have beendrawninFig.11, for the different numbers of mold cavities. The minimum manufacturing cost is obtained from the lowest point among the eight curves in this study. From Fig.11, the thickness of the plastic

Fig.10. Molding process cost versus part thickness (n =1–8):

Fig.11. Manufacturing cost versus part thickness (n =1–8)

component is 1.44mm, with minimum manufacturing cost of $0.00843177/unit and n =3.

The lowest manufacturing cost is obtained after inputting all values of thickness and numbers of cavities with in the allowable range, 0.01mm to 6mm and 1 to 8, respectively.

Table2. Comparison of results for the different approaches

3.7 Comparison of the approaches

The results for the current and proposed approaches are summarized in Table 2. When the thickness is increased from 0.75 to 1.44mm, the plastic material cost increases by 92%, but reduces total manufacturing cost by 72.4%. An improvement of 85.9% for the creep deflection is also obtained in the functional design. Further, with the 1.44mm part thickness, 34.5% less electric power is spent.

4 Conclusions

The problems of the current approach to optimize the design parameters for a small plastic part, its mold and the corresponding molding process for the minimization of

the manufacturing costs have been investigated. A new approach to overcome the problems has been proposed and tested. The relationships between power consumption and thickness of small plastic parts for design and molding have been set up. The criteria for the proposed approach to manufacture a small plastic part with minimum manufacturing cost have been discussed and verified by a test example. In conclusion, the proposed approach will ensure that the minimum cost solution can be obtained when manufacturing small plastic parts.

尽量减少生产成本的超薄注塑成型塑料部件

1前言

在多数工业应用中,塑料零件的生产成本,主要集中在材料成型的模具上。

因此,目前使用最多的办法就是降低塑料部件的厚度,以减少材料使用。

假设设计模具及成型过程的最小厚度要求是直接导致制造的最低成本。

如今,电子产品如移动电话和医疗设备正变得越来越复杂,其尺寸正在不断减小。在最近几年小而薄的塑料部件需求已大为增加

除了最低限度的物质使用其他方面也可能成为生产超薄塑料部件的重要因素

特别是对于制造薄件来说,在第一阶段的注塑压力尤为重要。

如果采用目前的设计方法,在这些薄件中,塑料部件将无法制造最低成本。

因此,处理超薄塑料零件,需要一种新的方法,以适应现有的模具设计原则和成型工艺。

1.1目前的研究状况

如今,电脑辅助模拟软件是模具设计必不可少的组成部分。这种软件,增加了设计的效率,减少设计成本和时间[ 1 ] 。主要系统,如模具流和C -流量,使用有限元分析,模拟充填现象,包括流动模式和填补序列。因此,成型条件可以预测和验证,以使早期设计的修改是可以实现的。虽然现有的软件能够分析流量条件下应力和温度分布状况,他们没有产生最低的制造成本的设计参数哦[ 2,3 ] 。输出数据的软件只能提供参数值范围,以供设计师参考和决策。

多次尝试也取得了优化的参数 [ 4-7 ] ,冷却系统[ 2,8,9 ] ,并反馈[ 10 ] 。这些尝试在基础上最大限度地限制了熔融材料在成型过程中使用的经验与船舶之间的产品和模具的设计参数。一些研究人员已作出努力,为了改善塑料零件质量通过减少缩水[ 11 ]和部分变形后成型[ 12 ] ,分析影响壁厚和流动长度的一部分[ 13 ] ,并分析了内部结构的塑料零件的设计和充填材料流动的模具设计[ 14 ] 。 Reifschneider [ 15 ]比较三种类型的充型模拟程序,包括部分顾问,融合,和Insight ,实际实验测试。所有这些已建立的方法,可以节省大量的时间和成本。然而,他们只是解决了设计参数的塑料零件和模具单独在设计阶段。此外,他们还没有提供的设计参数与最低制造成本。

研究人工智能应用各种方法和技术已被发现,主要集中在优化分析的注塑参数[ 16,17 ] 。用于莫乃光等人。 [ 3 ]介绍了模糊神经自动复位的方法成型工艺参数。相比之下,莫乃光等人。 [ 18,19 ]通过人工神经网络预测的设置和塑料成型条件的一部分中的质量控制

成型。显然,制定全面的成型过程模型和电脑辅助制造提供了基础,实现成型参数优化[ 3,16,17 ] 。莫乃光等人 [ 20 ]提出了一种混合神经网络和遗传算法的办法纳入基于案例推理( CBR的)得到初步设定成型参数的部分有类似的设计特点迅速,准确。莫的办法是根据过去的产品处理数据,并仅限于设计,类似以前的产品数据。然而,考虑到尽量减少生产成本的塑料部件,没有真正的被R&D努力研发所发现。

一般来说,目前的切合实际的办法是尽量减少生产成本的塑料部件在产品设计阶段尽量减少厚度和尺寸的部分,然后计算出的费用,模具设计与成型过程的一部分,如图1中显示。

目前的做法在处理塑料部件时可能无法取得实际最低制造成本。

1.2生产要求

一个典型的塑料部分作为测试的例子,典型的生产要求薄平方米塑料零件的中心孔,所显示的图。2 ,载于表1 。

图1 。目前切实可行的办法

图2 。试验的例子,一个小塑料元件

表1 。客户的需求为榜样部分

2目前切实可行的办法

在图1所示,目前的办法包括三个阶段:产品设计,模具设计和成型工艺参数的设置。一个主要目标的产品设计是建立在物理尺寸的一部分,如它的厚度,宽度和长度。各阶段的模塑成型和随后签署和处理建立物理尺寸作为给出的投入来计算所需的详细资料和成型模具制造业务

当申请目前切实可行的办法解决给定的例子,关键的变数是由三个阶段处理如下:

产品设计

●确定的最小厚度(高度),然后计算材料成本。HP则视为预先输入的计算费用的模具

设计和成型业务。

模具设计

*计算冷却时间确定最低厚度HP,以获得一些模具腔需要。模具制造成本是下列参数费用的总和:

–切削深度(厚度)

–模具腔数量

–转轮直径

–G浇注系统厚度

模具生产

* 确定射出压力引脚,和能耗成本

●确定共同的冷却时间t ,和机器的成本运作。整体成型费用的总和,能耗成本和机器的

运行成本。

总制造成本是塑料材料费用的总和,模具制造及成型工艺的总和。请注意,根据典型的行业惯例,以下所有的计算方面的单位成本

2.1 产品设计

这是第一阶段的制造业目前的实际做法。设计最小厚度HP的塑料组件,以满足蠕变载入中挠度约束坐标“(< 1.47mm经过一年的使用),并尽量减少使用塑料材料成本。尽量减少厚度HP需要[ 21 ] :

图3地块的变化,HP通过Eqs.1和图2表明,最小厚度符合一点四七毫米最大蠕变变形的制约因素是0 0.75毫米,以塑料材料费用为$0.000483558/unit和一批规模200000单位。

这厚度将被视为一个特定的投入,随后签署和模压成型过程的分析阶段。

2.2模具设计

2.2.1测定冷却时间

理想的模具温度为25 c.在确定厚度0.75毫米。图4显示了冷却通道布局下列标准行业惯例。冷却通道直径为3毫米作为例子。

从[ 22 ] ,冷却时间t的合作:

和位置的因素

通过求解Eqs.3和4 ,而代以HP= 0.75毫米和提供价值的冷却通道的设计参数,获得冷却时间(3.1s )。通过图9.5得到循环周期的时间t ,是成正比的成型机运营成本,并包括注射时间,浇注时间,干燥周期时间,和冷却时间。

2.2.2一般来说一些模具腔,模具制造费用的数额取决于加工的工作,形成所需数目的核心/腔,横浇道,和浇注系统。给定的例子叫做两板模具

图3 。

挠度及塑胶原料成本与部分厚度

图4。冷却通道的布局,不需要削弱加工。因此,在机器工作的切削加工浇道和浇口所涉及的工作,形成了核心/腔,不必加以考虑。在这个例子中,模具制造成本转换是由(n,HP)给与。

一般而言,最低数量的型腔数,Nmin ,由及时运送的一批塑料零件所选择

再替代,

这是四舍五入到n = 3 ,因为模具不能包含2.64该机器操作能力和准备时间的生产实例为21.5h / d和21d。此外,提到在上一节中,周期时间是成正比的。曲线的批量大小对厚度在图5中绘制。如表所示,在HP= 0.75毫米,年生产能力(批处理大小)是242470units.由于生产能力n=3大于所需的批量(200000units )。

为了简洁明了,所需要的时间用于加工的深度,为了模具腔插入薄薄的部分将被视为某一常数和增加所需的时间tCC为了模具腔插入。在C毫米然后可以计算由N所表达[ 1 ]

2.3成型过程

在成型过程中,周期成本和能耗的费用是用来建立以下各节中所描述的成型工艺成本。图5 。模具制造成本与部分厚度

2.3.1周期成本

该周期成本C是指成型机操作的劳动成本。计算周期成本,因为通过E q。8 ,主要依赖于周期的时间和模具腔数量:

例如,劳动力成本的价值每小时C L, is given as $1.19/h. Also, Cp can be calculated, as t cycle =20.1sand n = 3 when HP = 0.75mm, as found earlier. And so Cp =$0.0022147/unit.

2.3.2能耗费用

通常情况下,营业周期内的成型机,最大功率时需要注射。因此,较长时间和较高的注射液注射压力增加了能耗成本。

就本条而言,例如,注射时间tin = 0.5sisselectedand用于成型过程。所需的液压动力PH 值,耗电量和成本每次注射可从下表[ 23 ] :

在E q.9 ,0.8是机械利用液压缸输电成型,以及由此产生的在Eq.11均衡器上电力成本的CE= HK$1.0476/kWh。若要寻找CPC的总和,需要注射压力Pin的进给系统和腔成型过程中所需要的注射压力。基于模具的布局设计,体积流量Q在浇道等于总流量和流速的数量在每个初级和中级阶段将被离职数量所分割,

通过

工程常用英文缩写翻译

常 用 英 文 缩 写 对 照 表 序号缩写词原词词意备注1A anchor锚、锚定 2ABS absolute绝对地 3AISI American Iron and Steel Institue美国钢铁学会 4AMB ambient周围环境 5ANSI American National Standards Institue美国国家标准学会 6&And和 7API American Petroleum Institute美国石油组织 8APPROX approximate大约,近似的 9ASB Asbestos石棉 10ASME American Socirty of Mechanical Engineers美国机械工程师协会 11ASSY Assembly装配、组装 12ASTM American Socirty of Testing Material美国材料试验协会 13ATM Atmosphere大气压 14AUTO Automatic自动的 15AUX Auxiliary辅助的 16AVG Average平均的 17B Inch(Denoting pipe size with numeral)英寸(用数字表示管子尺寸) 18BB Bolted Bonnet螺栓连接的阀盖 19BB By Buyer买方供货 20B.B Beveled End Beveled End两端为坡口端 21B.C Bolt Circle螺栓圆周 22BC Bolted Cover(Cap)螺栓连接的阀盖(帽) 23BE Beveled End(for welding)坡口端(焊接用)、斜口端 24BE Bell End承口端 25BEP Both Ends Plain两端平 26BET Both Ends Threaded两端带螺纹 27BF Blind Flange法兰盖,盖板,盲法兰

常见职务、职位英文翻译

常见职位、职务英文译名 Accounting Assistant 会计助理 Accounting Clerk 记帐员 Accounting Manager 会计部经理 Accounting Stall 会计部职员 Accounting Supervisor 会计主管 Administration Manager 行政经理 Administration Staff 行政人员 Administrative Assistant 行政助理 Administrative Clerk 行政办事员 Advertising Staff 广告工作人员 Airlines Sales Representative 航空公司定座员 Airlines Staff 航空公司职员 Application Engineer 应用工程师 Assistant Manager 副经理 Bond Analyst 证券分析员 Bond Trader 证券交易员 Business Controller 业务主任 Business Manager 业务经理 Buyer 采购员 Cashier 出纳员 Chemical Engineer 化学工程师 Civil Engineer 土木工程师 Clerk/Receptionist 职员/接待员 Clerk Typist & Secretary 文书打字兼秘书 Computer Data Input Operator 计算机资料输入员 Computer Engineer 计算机工程师 Computer Processing Operator 计算机处理操作员 Computer System Manager 计算机系统部经理 Copywriter 广告文字撰稿人 Deputy General Manager 副总经理 Economic Research Assistant 经济研究助理 Electrical Engineer 电气工程师 Engineering Technician 工程技术员 English Instructor/Teacher 英语教师

常见职务职位英文翻译

常见职务职位英文翻译 希望对你有帮助哦!总公司Head Office分公司Branch Office营业部Business Office人事部Personnel Department(人力资源部)Human Resources Department总务部General Affairs Department财务部General Accounting Department销售部Sales Department促销部Sales Promotion Department国际部International Department出口部Export Department进口部Import Department公共关系Public Relations Department广告部Advertising Department企划部Planning Department产品开发部Product Development Department研发部Research and Development Department(R&D)秘书室Secretarial PoolAccounting Assistant 会计助理Accounting Clerk 记帐员Accounting Manager 会计部经理Accounting Stall 会计部职员Accounting Supervisor 会计主管Administration Manager 行政经理Administration Staff 行政人员Administrative Assistant 行政助理Administrative Clerk 行政办事员Advertising Staff 广告工作人员Airlines Sales Representative 航空公司定座员Airlines Staff 航空公司职员Application Engineer 应用工程师Assistant Manager 副经理Bond Analyst 证券分析员Bond Trader 证券交易员Business Controller 业务主任Business Manager 业务经理Buyer 采购员Cashier 出纳员Chemical Engineer 化学工程师

工厂,车间中英文对照表

生产车间常用名称翻译 仓库:WAREHOUSE 脱包间:REMOVING BAG ROOM 楼梯口:THE STAIRS 原料传递口:RAW MATERIAL TRANSFER PORT 原料间:RAW MATERIAL ROOM 称量间:WEIGHING ROOM 清洗间:WASHING ROOM 一次更衣室:DRESSING ROOM 二次更衣室:DRESSING ROOM 缓冲间:BUFFERING ROOM 2个 洁具间:SANITARY TOOL ROOM 2个 器具存放间:TOOLS STORAGE ROOM 2个 制作间:MIXING ROOM 更衣室:DRESSING ROOM 3个 安全出口:EXIT 3个红色字 传递口:CONNECTING WINDOW 7个灌装间:FILLING ROOM 半成品储存间:SEMI FINISHED PRODUCTS STORAGE 内包材间:INNER PACKAGE MATERIAL ROOM 女更衣室:WOMEN'S DRESSING ROOM 男更衣室:MEN'S DRESSING ROOM 女一更衣室:WOMEN'S DRESSING ROOM NO.1 男一更衣室:MEN'S DRESSING ROOM NO.1 女二更衣室:WOMEN'S DRESSING ROOM NO.2 男二更衣室:MEN'S DRESSING ROOM NO.2 成品组装间:FINISHED PRODUCTS ASSEMBLING ROOM 外包装车间:OUTER PACKAGING ROOM 2个 女洗手间:WOMEN’S WASHROOM 货梯严禁乘坐:PERMITTED UNLESS PRODUCTS INCLUDED. 研发室:RESEARCH AND DEVELOPMENT ROOM 微检室:MICROBIOLOGICAL TEST ROOM 打样间:SAMPLING ROOM 留样间:SAMPLES STORAGE ROOM 总更衣室:MAIN DRESSING ROOM 办公室:OFFICE

常见职位职务英文翻译

常见职位职务英文翻译 Accounting Assistant会计助理 Accounting Clerk记帐员 Accounting Manager会计部经理 Accounting Stall会计部职员 Accounting Supervisor会计主管 Administration Manager行政经理 Administration Staff行政人员 Administrative Assistant行政助理 Administrative Clerk行政办事员 Advertising Staff广告工作人员 Airlines Sales Representative航空公司定座员 Airlines Staff航空公司职员 Application Engineer应用工程师 Assistant Manager副经理 Bond Analyst证券分析员 Bond Trader证券交易员 Business Controller业务主任 Business Manager业务经理 Buyer采购员 Cashier出纳员 Chemical Engineer化学工程师 Civil Engineer土木工程师 Clerk/Receptionist职员/接待员 Clerk Typist&Secretary文书打字兼秘书 Computer Data Input Operator计算机资料输入员Computer Engineer计算机工程师 Computer Processing Operator计算机处理操作员Computer System Manager计算机系统部经理 Copywriter广告文字撰稿人 Deputy General Manager副总经理 Economic Research Assistant经济研究助理 Electrical Engineer电气工程师 Engineering Technician工程技术员 English Instructor/Teacher英语教师 Export Sales Manager外销部经理 Export Sales Staff外销部职员 Financial Controller财务主任 Financial Reporter财务报告人 F.X.(Foreign Exchange)Clerk外汇部职员 F.X.Settlement Clerk外汇部核算员 Fund Manager财务经理 General Auditor审计长 General Manager/President总经理

工厂常用英语翻译

工廠常用英語翻譯(機械、模具) 总经理办公室General manager’s office 模具部Tooling department 项目部Project department品质部Quality department计划 部 Plan department 制造部Manufacture department产品部Keypad departmentIMD 产品部 IMD department五金部 Metal stamping department设计科 Design section冲压车间 Stamping workshop电镀车间 Plating workshop物控科 Production material control section 计划 科 Plan section 仓务科 Warehouse section商务科 Business section品质规划科 quality plan section IQC科 IQC sectionIPQC科 IPQC sectionOQC科 OQC section检测中心 measurement center 项目规划科 Project plan section项目XX科 Project section XX试模科 Mold test section成本科 Cost section 设备科 Facility section采购科 Purchase section综合办 General affairs office 编程科 Programming section 模具工程科 Tooling engineering section模具装配车间Mold assembly workshop文控中心 Document control center (DCC)注塑车间Injection workshop喷涂车间 Spray painting workshop装配车间Assembly workshop 总经理General manager (GM)经理managerXX部门经理Manager of XX department 原料库 Raw material warehouse半成品库 Semi-finished product warehouse成品库 Finished product warehouse科长 section chief 主任 chief 部门主管 department head主管, 线长supervisor组长Foreman, forelady秘书secretary 文员clerk操作员operator助理assistant职员staff 陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock 数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing 投影projection视图view 剖视图profile chart 标准件standard component零件图part drawing 装配图assembly drawing尺寸标注size marking技术要求technical requirements 刚度rigidity内力internal force位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material刚度准则rigidity criterion 垫圈washer 垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint曲柄crank摇杆racker凸轮cams 共轭曲线conjugate curve 范成法generation method 定义域definitional domain 值域range 导数\\微分differential coefficient求导derivation 定积分definite integral不定积分indefinite integral 曲率curvature偏微分partial differential 毛坯rough游标卡尺slide caliper千分尺micrometer calipers 攻丝tap 二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations 概率probability 随机变量random variable排列组合permutation and combination 气体状态方程equation of state of gas 动能kinetic energy 势能potential energy 机械能守恒conservation of mechanical energy 动量momentum 桁架truss轴线axes余子式cofactor

各种职位的英文翻译

各种职位的英文翻译 qa 是英文 quality assurance 的简称,中文含义是质量保证; qc 是英文 quality control 的简称,中文含义是质量控 制。 IPQC 是过程检验工程师 JQE 是品质工程师 DQA 是设计品保工程师 SQE 共货商管理工程师 Administration( 行政部分) 行政主管 File Clerk 档案管理员 行政助理 Office Manager 办公室经理 行政秘书 Receptionist 接待员 办公室文员 Secretary 秘书 Inventory Control Analyst 存货控制分析 Staff Assistant 助理 Mail Room Supervisor 信件中心管理员 Stenographer 速记员 Order Entry Clerk 订单输入文员 Telephone Operator 电话操作 员 Shipping/Receiving Expediter 收发督导员 Ticket Agent 票务代理 Vice-President of Administration 行政副总裁 Typist 打字员 Executive and Managerial( 管理部分 ) Retail Store Manager 零售店经理 Food Service Manager 食品服务经理 Executive Marketing Director 市场行政总监 HMO Administrator 医疗保险管理 Assistant Store Manager 商店经理助理 Operations Manager 操作经理 Assistant Vice-President 副总裁助理 Production Manager 生产经理 Chief Executive Officer(CEO) 首席执行官 Property Manager 房地产经理 Chief Operations Officer(COO) 首席运营官 Branch Manager 部门经理 Controller(International) 国际监管 Claims Examiner 主考官 Director of Operations 运营总监 Controller(General) 管理员 Field Assurance Coordinator 土地担保协调员 General Manager 总经理 Management Consultant 管理顾问 District Manager 市区经理 Hospital Administrator 医院管理 President 总统 Import/Export Manager 进出口经理 Product Manager 产品经理 Insurance Claims Controller 保险认领管理员 Program Manager 程序管理经理 Insurance Coordinator 保险协调员 Project Manager 项目经理 Inventory Control Manager 库存管理经理 Regional Manager 区域经理 Manager(Non-Profit and Charities) 非盈利性慈善机构管理 Service Manager 服务经理 Manufacturing Manager 制造业经理 Vending Manager 售买经理 Telecommunications Manager 电信业经理 Vice-President 副总裁 Transportation Manager 运输经理 Warehouse Manager 仓库经理 Education and Library Science( 教育部分 ) Daycare Worker 保育员 ESL Teacher 第二外语教师 Developmental Educator 发展教育家 Head Teacher 高级教师 Foreign Language Teacher 外语教师 Librarian 图书管理员 Guidance Counselor 指导顾问 Music Teacher 音乐教师 Library Technician 图书管理员 Nanny 保姆 Physical Education Teacher 物理教师 Principal 校长 School Psychologist 心理咨询教师 Teacher 教师 Special Needs Educator 特种教育家 Teacher Aide 助理教师 Art Instructor 艺术教师 Computer Teacher 计算机教师 College Professor 大学教授 Coach 教练员 Assistant Dean of Students 助理训导长 Archivist 案卷保管员 Vocational Counselor 职业顾问 Tutor 家教、辅导教师 Auditor 审计师 Accountant 会计员,会计师 Administration Assistant 行政助理 Administrator 行政主管 Assistant Manager 副经理 Assistant Production Manager 副厂长 Business Manager 业务经理 Cashier 出纳员 Chief Accountant 总会计主任 Chief Engineer 总工程师 Civil Engineer 土木工程师 Clerk 文员(文书) Director 董事 Electrical Engineer 电气工程师 Executive Director 行政董事 Executive Secretary 行政秘书 Financial Controller 财务总监 Foreman 领班,组长 General manager 总经理 Junior clerk 低级文员(低级职员) Manager 经理 Marketing Executive 市场部主任 Marketing Manager 市场部经理 Marketing Officer 市场部办公室主任 Mechanical Engineer 机械工程师 Merchandiser 买手(商人) Messenger 信差(邮递员) Office Assistant 写字楼助理(办事员) Administrative Director Executive Assistant Executive Secretary General Office Clerk

工厂,车间中英文对照表

WORD格式 生产车间常用名称翻译 仓库:WAREHOUSE 脱包间:REMOVINGBAGROOM 楼梯口:THESTAIRS 原料传递口:RAWMATERIALTRANSFERPORT 原料间:RAWMATERIALROOM 称量间:WEIGHINGROOM 清洗间:WASHINGROOM 一次更衣室:DRESSINGROOM 二次更衣室:DRESSINGROOM 缓冲间:BUFFERINGROOM2个 洁具间:SANITARYTOOLROOM2个 器具存放间:TOOLSSTORAGEROOM2个 制作间:MIXINGROOM 更衣室:DRESSINGROOM3个 安全出口:EXIT 3个红色字 传递口:CONNECTINGWINDOW 7个灌装间:FILLINGROOM 半成品储存间:SEMIFINISHEDPRODUCTSSTORAGE 内包材间:INNERPACKAGEMATERIALROOM 女更衣室:WOMEN'SDRESSINGROOM 男更衣室:MEN'SDRESSINGROOM 女一更衣室:WOMEN'SDRESSINGROOMNO.1 男一更衣室:MEN'SDRESSINGROOMNO.1 女二更衣室:WOMEN'SDRESSINGROOMNO.2 男二更衣室:MEN'SDRESSINGROOMNO.2 成品组装间:FINISHEDPRODUCTSASSEMBLINGROOM 外包装车间:OUTERPACKAGINGROOM2个 女洗手间:WOMEN’SWASHROOM 货梯严禁乘坐:PERMITTEDUNLESSPRODUCTSINCLUDED. 研发室:RESEARCHANDDEVELOPMENTROOM 微检室:MICROBIOLOGICALTESTROOM 打样间:SAMPLINGROOM 留样间:SAMPLESSTORAGEROOM 总更衣室:MAINDRESSINGROOM 办公室:OFFICE Z专业资料整理

各种职位的英文翻译

各种职位的英文翻译 qa是英文quality assurance 的简称,中文含义是质量保证;qc是英文quality control的简称,中文含义是质量控制。IP QC是过程检验工程师 JQE是品质工程师 DQA是设计品保工程师 SQE供货商管理工程师 Administration(行政部分) Administrative Director 行政主管File Clerk 档案管理员 E xecutive Assistant 行政助理O ffice Manager 办公室经理 E xecutive Secretary 行政秘书Receptionist 接待员 General Office Clerk 办公室文员Secretary 秘书 Inventory Control Analyst 存货控制分析Staff Assi s tant 助理 Mail Room Supervisor 信件中心管理员Stenographer 速记员 Order E ntry Clerk 订单输入文员Telephone Operator 电话操作员 Shipping/Receiving E xpediter 收发督导员Ticket Agent 票务代理 Vice-P resident of Administration 行政副总裁Typi s t 打字员 E xecutive and Managerial(管理部分) Retail Store Manager 零售店经理Food Service Manager 食品服务经理 E xecutive Marketing Director 市场行政总监HMO Administrator 医疗保险管理 Assi s tant Store Manager 商店经理助理Operations Manager 操作经理 Assi s tant Vice-P resident 副总裁助理P roduction Manager 生产经理 Chief E xecutive O fficer(CE O) 首席执行官P roperty Manager 房地产经理 Chief Operations O fficer(COO) 首席运营官Branch Manager 部门经理 Controller(International) 国际监管Claims E xaminer 主考官 Director of Operations 运营总监Controller(General) 管理员 Field Assurance Coordinator 土地担保协调员General Manager 总经理 Management Consultant 管理顾问District Manager 市区经理 Hospital Administrator 医院管理P resident 总统 Import/E xport Manager 进出口经理P roduct Manager 产品经理 Insurance Claims Controller 保险认领管理员P rogram Manager 程序管理经理 Insurance Coordinator 保险协调员P roject Manager 项目经理 Inventory Control Manager 库存管理经理Regional Manager 区域经理 Manager(Non-P rofit and Charities) 非盈利性慈善机构管理Service Manager 服务经理 Manufacturing Manager 制造业经理Vending Manager 售买经理 Telecommunications Manager 电信业经理 Vice-P resident 副总裁 Transportation Manager 运输经理Warehouse Manager 仓库经理 E ducation and Library S cience(教育部分) Daycare Worker 保育员E SL Teacher 第二外语教师 Developmental E ducator 发展教育家Head Teacher 高级教师 Foreign Language Teacher 外语教师Librarian 图书管理员 Guidance Counselor 指导顾问Music Teacher 音乐教师 Library Technician 图书管理员Nanny 保姆 P hysical E ducation Teacher 物理教师P rincipal 校长 School P sychologist 心理咨询教师Teacher 教师 Special Needs E ducator 特种教育家Teacher Aide 助理教师 Art Instructor 艺术教师Computer Teacher 计算机教师 College P rofessor 大学教授Coach 教练员 Assi s tant Dean of Students 助理训导长Archi v ist 案卷保管员 Vocational Counselor 职业顾问Tutor 家教、辅导教师 Auditor 审计师 Accountant 会计员,会计师 Administration Assistant 行政助理 Administrator 行政主管 Assi s tant Manager 副经理 Assi s tant P roduction Manager 副厂长 Business Manager 业务经理 Cashier 出纳员 Chief Accountant 总会计主任 Chief E ngineer 总工程师 Civil E ngineer 土木工程师 Clerk 文员(文书) Director 董事 E lectrical E ngineer 电气工程师

常见部门及英文翻译

总公司Head Office 分公司Branch Office 营业部Business Office 人事部Personnel Department 人力资源部Human Resources Department 总务部General Affairs Department 财务部General Accounting Department 销售部Sales Department 促销部Sales Promotion Department 国际部International Department 出口部Export Department 进口部Import Department 公共关系Public Relations Department 广告部Advertising Department 企划部Planning Department 产品开发部Product Development Department 研发部Research and Development Department(R&D) 秘书室Secretarial Pool 采购部Purchasing Department 工程部Engineering Department 行政部Admin. Department 人力资源部HR Department 市场部Marketing Department 技术部Technolog Department 客服部Service Department 行政部Administration 财务部Financial Department 总经理室Direcotor, or President 副总经理室Deputy Director, or Vice president 总经办General Deparment 采购部Purchase & Order Department 工程部Engineering Deparment 研发部Research Deparment 生产部Productive Department 销售部Sales Deparment 广东业务部GD Branch Deparment 无线事业部Wireless Industry Department 拓展部Business Expending Department 物供部Supply Department 业务拓展部B&D business and development 市场部Marketing 销售部Sales 人力资源部HR 会计部Account

名片常用职位英文翻译

名片常用职位英文翻译Board chairman 董事长 General Manager/President 总经理 Deputy General Manager 副总经理Executive Director执行总监CEO 首席执行官 Deupty general Manager常务副总General Manager Assistant 总经理助理 CTO 技术总监 CFO 财务总监 Operation Director 运营总监Branding Dirctor 品牌总监Marketing Director营销总监General Manager‘s Secretary 总经理秘书 Vice Minister of Sales Department 销售部副部长 Vice-general manager of Sales 销售副总 Sales director 销售总监General Educating Supervisor教学总监 Vice Manager 副经理 Marketing Manager 市场部经理 Market Supervisor 市场专员Business Manager 业务经理Account Manager 客户经理 Market Analyst 市场分析员Market Development Manager 市场开发部经理 Marketing Manager 市场销售部经理 Marketing Staff 市场销售员Marketing Assistant 销售助理Marketing Executive 销售主管Marketing Representative 销售代表 Marketing Representative Manager 市场调研部经理 Business Controller 业务主任Sales and Planning Staff 销售计

精益生产常用语英文翻译

精益生产常用语英文翻译 精益生产的概念和基本原则The concept and principle of lean production 六西格玛品质论坛精益生产的历史:TPS及其演变The history of lean production: TPS and its changing 精益生产的原则The principle of lean production: 价值和浪费;快速响应客户Value and Muda, quick response 精益生产的思想Lean production thinking 追求完美和持续改善Seek perfect and continuous improvement 七大浪费 7-Muda 精益生产的基础The fundamental of lean production 5S的含义The meaning of 5S:整理、整顿、清扫、清洁、素养SEIRI, SEITON, SEISO, SEIKETSU, and SEITSUKE 5S的推行方法The implement methods for 5S 5S的实务技巧 5S implement skills 5S实施过程的优化 5S implement process optimizing 流线化生产Flow production 流线化生产的八个条件 8-condition for flow production 单元设计Cellular layout 流线化生产的设备选择Equipment selecting for flow production 看板管理Kanban managemento 什么是看板What is Kanban 看板的实施方法The implement methods for Kanban 实施看板管理的限制条件The limited condition of Kanban management implement 快速换线SMED 快速换线的理念 The idea of SMED 内部作业与外部作业的分离Separate the-operation between outside and inside 将内部作业转化为外部作业Turn the inside-operation to outside operation 作业的优化Operation optimizing 精益生产的设备管理Equipment management in lean production TPM TPM的概念和发展The concept and development of TPM TPM的设备基础管理Equipment essential management of TPM 六西格玛品质论坛TPM的八大支柱8 columns of TPM 六西格玛品质论坛TPM实施的十三步骤13 phases for TPM implementing 案例分析Case studyo 工厂5S分析(根据现场拍摄照片)Workshop 5S analysis (depends on photos taken from on-site) 工厂生产线设置分析Production line layout analysis 快速换线案例分析Case study for SMED 内部作业与外部作业的分离Separate the operation between outside and inside 六西格玛品质论坛将内部作业转化为外部作业Turn the inside operation to

名片常用职位英文翻译

名片常用职位英文翻译 Board chairman 董事长 General Manager/President 总经理 Deputy General Manager 副总经理 Executive Director执行总监 CEO 首席执行官 Deupty general Manager常务副总 General Manager Assistant 总经理助理 CTO 技术总监 CFO 财务总监 Operation Director 运营总监 Branding Dirctor 品牌总监 Marketing Director营销总监 General Manager‘s Secretary 总经理秘书 Vice Minister of Sales Department 销售部副部长Vice-general manager of Sales销售副总 Sales director 销售总监 General Educating Supervisor教学总监 Vice Manager 副经理 Marketing Manager 市场部经理 Market Supervisor 市场专员 Business Manager 业务经理 Account Manager 客户经理 Market Analyst 市场分析员 Market Development Manager 市场开发部经理Marketing Manager 市场销售部经理 Marketing Staff 市场销售员 Marketing Assistant 销售助理 Marketing Executive 销售主管 Marketing Representative 销售代表 Marketing Representative Manager 市场调研部经理Business Controller 业务主任 Sales and Planning Staff 销售计划员 Sales Assistant 销售助理 Sales Clerk 店员、售货员 Sales Coordinator 销售协调人 Sales Engineer 销售工程师 Sales Executive 销售主管 Sales Manager 销售部经理 Salesperson 销售员 Project Manager 项目经理 Project Director 项目总监 Technical manager技术主管 President 行长

工厂及办公室常用标识中英文

冲压课Stamping Section 冲压区 Stamping Area 冲压现场办公区 Stamping Section Office 点焊区 Welding Area 拉钉区 Riveting Area 打磨区 Sanding Area 拉钉现场办公区 Riveting Section Office 废弃物存放区 Scrap Area 烤漆课 Coating Section 烤漆区Coating Area 液体/粉体Liquid/Powder 烤漆清洗线 Degreasing Process 烤漆前处理区 Coating Prep Area 超音波清洗区 Ultrasonic Cleaning Process 粉体烤漆线 Powder Coating Line 液体烤漆线 Liquid Painting Line 粉体涂装室 Powder Coating Spraying Room 液体涂装室 Liquid Painting Spraying Room 烤漆课现场办公区 Coating Section Office 集尘室 Dust Collector Room 吹尘室 Dust Blow Off Room 调漆室 Paint Mixing Room 打磨房 Sanding Room 煤气房 Natural Gas Control Room 预脱脂槽 Degreasing Area Stage 1 主脱脂槽 Degreasing Area Stage 2 皮膜槽 Metal Surface Phosphate Treating Area 清水槽 Rinsing Area 沉淀储水池Waste Deposit 小心吊物Warning: Hooks in Operation 小心碰头Warning: Head Injury, Low Shelves 更衣间 Dressing Room 闲人免进Warning: Only Authorized Personnel 警告: 须着防静电衣后才可入内. Warning: Antistatic Clothing is Required 贵宾衣柜/鞋柜 For Visitors Use Only 员工鞋柜Employee Shoes Lockers 杂项物料区 Miscellaneous Items Storage 不合格品区 Non-Conforming Parts Area 废弃物存放区 Scrap Area 烤漆制具保养室 Masking Maintenance 烤漆卸制具制程 De-Masking Process 治具保养室 Fixture/Jig/Gauge Maintenance 组配课 Assembly Section 组配区 Assembly Area

相关文档
最新文档