电动机保护器电路图

电动机保护器电路图
电动机保护器电路图

首页日志相册音乐收藏博友关于我

日志

电动机保护器电路原理分析和维修

2011-05-24 20:34:31| 分类: 电气技术

|举报

|订阅

原帖 ——HBHQ-0-1和JD6型电子式多功能电动机保护器

由三相交流电动机所构成的电力拖动系统,形成了工业现代化的基础性支撑,对三相交流电动机(以下简称电动机)的保护,是一个历久弥新的的话题。

上世纪八十年代之前,电子技术的应用尚处于初级阶段,对电动机的保护任务多由热继电器承担,国内型号为为JR20-XX 系列、JR36-XX 系列等。其保护机理如下:热继电器由发热元件、双金属片、触点及一套传动和调整机构组成。发热元件是一段阻值不

大的电阻丝,串接在被保护电动机的主电路中。双金属片由两种不同热膨胀系数的金属片辗压而成。当电动机过载时,通过发热元件的电流超过整定电流,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制(常闭)触点断开,进而控制主电路接触器因线圈失电而释放,断开主电路,实现电动机的过载保护。

热继电器以其体积小,结构简单、成本低等优点得到了广泛应用。但同时存在不易克服的下述缺点:双金属片受热弯曲过程中,热量的传递需要较长的时间,因此,热继电器不能用作短路保护,而只能用作过载保护。对电动机的短路保护,通常采用在电源回路中串接熔断器的方法来实施;热继电器依赖于机械结构所形成的机械动作来实现停机保护,当动作结构产生机械疲劳(老化)、机型形变时,会使动作阀值偏离设定值,造成误动作或保护失效;普通的热继电器,不具备断相保护功能。

用热继电器对电动机进行保护的典型电路见下图:

图1、用热继电器组成的电动机过载保护电路

热继电器FR1串接于主电路中,FR1的常闭触点串接于控制回路,过载故障发生时,FR1控制触点断开,交流接触器KM1线

圈失电,KM1开断,起到过载停机保护作用。

1、电动机在起动和运行过程中可能发生的故障和保护特点: 1)电动机的过载

电动机的一个重要工作参数即额定工作电流,在定额电流以内运行,为安全工作区。机械负载或供电电压变化,都会引起工作电流的变化,出现异常情况时使电动机过载,转速下降,电动机绕组中的电流增大,超过额定工作电流,绕组温度升高。过载运行,会导致电动机绕组绝缘老化、缩短电机使用寿命,严重时使绕组绝缘击穿造成短路,绕组起火烧毁

等故障。电动机的过载运

字号钟点工的博客

牡丹-乐队欢迎各位朋友的来访

行,指转差率增大由过流引起绕组异常温升,所以又称为过流运行。

电动机的过电流大小与过电流时间之间的关系称为过载特性。在实际运行中,电机短时过载和较低程度的过载,是难以避免的,也是可以允许的,过电流大小和过电流允许时间呈反比,称为反时限保护特性,见下图。

图2 电动机过载保护反限保护特性曲线

过载保护运行阀值的整定点在电动机额定电流的0.95~1.05左右,即运行电流在额定电流的1.1倍以下时,电动机能长期运行不应该产生保护停机动作;过载程度继续加大时,保护动作时间应随过流程度而缩短。一般认为,电动机的起动电流为额定电流的4~7倍,保护动作应该既能避开正常的起动电流,又能在过载时,实施有效的停机保护。比如在4倍额定电流时,延时10s产生保护动作,在7倍额定电流时,延时2s即应产生保护动作。对运行中的短时过载,有一定的时间延时处理,不会产生误保护动作,对长时间过载,则能作出有效的反应。

2)电动机的短路

短路保护是过载保护的一个极限情况。三相交流电动机的短路故障,有单相接地短路故障、相间短路故障等,当电缆短路时,更直接造成对三相电源的短路。电机内部短路大都是电机绝缘损坏引起的,表现为线圈匝间短路、层间短路、相间短路和对地(电机外壳、转子)短路等。单相对地短路,一般不会烧毁电机,据外壳接地电阻的不同,形成大小不同的接地电流;(两相或三相)相间短路时,会形成较大的短路电流,通常会使电机严重烧毁。

一般,将大于电动机8倍额定电流,视为短路电流。对电动机的短路保护,要求实施速断保护,时间常数越小越好(动作越快越好)。

另外,当电动机在运行中因机械原因出现堵转时,其堵转电流有可能达到额定电流的5~8倍,在运行中出现5倍以上额定电流时,视为电动机堵转故障,也应实施相应的反时限保护。

3)电机机的断相

电动机的断相运行,可分为以下几种情况:

a、供电电源缺相。在电动机起动前断相,会造成起动困难或无法起动,起动声音异常,无保护时电机因堵转极易烧毁;在运行中断相,轻载时尚能运转,但运行电流严重不平衡,可能出现过流运行。重载时易发生堵转、严重过载而损坏。

b、电动机绕组断路故障。供电电源正常,因电动机绕组断路故障出现断相运行,运转无力,电动机振动大,故障现象同a;

c、电动机电缆断路故障。故障现象同供电电源缺相。

电子式电动机保护器的出现,为完善地实施电动机的过载、短路和断相保护提供了可能,一定程度上取代了热继电器,提升了控制功能和保护效果。本章内容的重点是对各种电子式电动机保护器电路的原理分析和故障维修指导,对电子式电动机保护器以下简称为电动机保护器。

2、电动机保护器对故障信号的采样方法:

1)对过载、短路故障信号的采样。电动机起动运行中的过载和短路故障,体现在流经电动机绕组的异常增大的电流值上,一般电动机保护器电路是采用3只电流互感器采样运行电流信号,将采样信号与电流基准信号相比较,判断是否处于过载或短路故障状态,故障时输出停机信号。电路采集处理的为模拟电压信号——电流互感器输出的电流信号经负载电阻转变为信号电压,送入电压比较器电路,得到故障信号输出。

当产生单相对地短路故障信号的采样,可通过零序电流互感器取得,原理同漏电保安器。或采样电机外壳电压,取得漏电信号。

2)对断相故障信号的采样。如上所述,电动机的断相故障表现为电源缺相、电动机电缆断路、电动机绕组断路等不同故障内

容,若采用对三相电源电压进行采样的方法,仅能对电源缺相故障进行保护,无法完成对后两种缺相故障的检测,是不究竟的一个方法。根本的方法,是采用对三相电流进行采样来判断缺相故障的方法,对三种缺相故障都能做出准确反应,采取相应的技术措施,还能对三相电流不平衡作出判断。

一般对缺相运行的判断,不是着眼于电流信号幅度的大小,而是着重于三相电流信号的有无,比较三相电流信号的有无,得到断相故障信号。因而通常是将电流检测信号处理为数字信号,经逻辑运算,得到断相故障保护信号。

3、电动机的保护器的典型电路结构:

图3 电动机保护电路的典型结构

从上图可以看到,3只电流互感器L H1~L H3,将电动机的三相运行电流信号取出,分别送入后级过载、短路信号采样处理电路和断相信号采样处理电路,处理成开关量信号再送入信号输出电路和故障信号指示电路,输出电路的形式也有多种,一般为继电器接点信号输出,或晶闸管器件开关信号输出,或晶体管开路集电极信号输出等。

需要说明的是:部分电动机保护器,采用微控制器处理电流采样和电压采样信号(但电流信号采样电路的前级电路同本章所述电路相似),可从操作显示面板设置故障动作电流值,并可以监看运行电流值、电压电压值等,其功能更为强大,智能化程度更高,但应用面不够广泛。另外有的产品,如变频器,软起动器等产品,其过载、短路及断相保护电路作为控制电路的一个有机组成部分。本章所述电动机保护器,系全部采用模拟或数字电路硬件电路的,作为一个独立部件被应用的保护装置(产品)。

本节内容将这两种型号的保护器电路放在一起,一是因为其电路结构与原理近似,二是多家低压电器生产厂家生产此类产品,其它型号如JD-5、JDB-80,电路结构也与本文电路相似或相同,这类保护器在电动机起动柜的生产和组装中得到了广泛的应用。但缺点是该类产品的控制接线稍嫌复杂。在停机状态,显示断相故障,处于断相保护中。输出控制接点为常闭型触点,过载或断相故障发生时动作,触点开断,送出停机信号。

从各个工控网站众多网友的发帖中,可以得知,不少人对这类电动机保护器的接线和控制原理不甚了解,故据手头所绘(实物)电路图,对其电路原理和控制特点,做一个较为深入的分析,希望能对大家提供一点有益的参考。

1、保护器的控制接线

图4保护器的控制接线图

保护器控制接线见上图,保护器有4个控制接线端子,1、2端子为保护器电源输入(同时也是主电路接触器线圈的电源控制端),可据要求选用380V或220V供电级别(上图保护器采用380V控制电源),3、4为端子内部常闭接点,输出故障动作信号。上图的控制接线,JD6保护器与接触器线圈是一同得电的(保护器先于接触器线圈得电时,报断相故障控制接点动作!),而且3、4端子内部常闭点串接于KM1的自锁回路,当故障发生时,KM1的自锁被“破坏”,接触器KM1与保护器JD6一同失电。保护器的端子内部电路请参见下图6、图7。

2、时基电路NE555的电路原理简析

以上所述几个型号的电子式电动机保护器,电路的核心器件多采用时基电路NE555。本节保护器电路,采用NE555、NE556电路,故分析整机电路之前,先将NE555的性能与原理做一个简要介绍。

NE555为原创产品型号,以后有众多仿制产品问世,如LM555、μA555、CA555、C B555等,统称为555,一般为8脚双列封装,都可以代换使用。少数产品如RV6555D C、L B8555、M52051等,采用16脚双列封装,代换时需予注意引脚功能的不同。NE555电路芯片应用灵活,经常用来组成单稳态电路、双稳态电路及无稳态电路三种电路形式,在工业(电子)控制领域得到广泛应用用555芯片构成的电路与时间控制有关,所以又称为时间电路或时基电路。

图5 时基电路NE555等效功能框图

NE556内含又时基电路,为双列14脚封装,相当于集成了两片NE555电路。上述555电路内部集成电路为双极型晶体管器件,适应电源电压范围5~15V。

而I CM7555、I CM7556器件,其电路结构与NE555、NE556相同,但内部集成器件为CM OS场效应器件,同类器件型号有:555CM S、556CM S、μP D5555、μP D5556、LMC555、LMC556、T LC555、T LC556和5G7555、5G7556等,适用电源电压范围为2~18V,器件功率损耗更低,适用供电范围更宽。

若供电条件满足,一般情况下(不考虑工作电流的差异时),双极型器件和CM OS器件的555、556也可以互换。

上图5为555时基电路的等效功能框图,555器件是模拟电路和数字电路的“混成”电路,内含两组比较放大器A1、A2,两路与非门电路1、2、反相驱动器N1和放电晶体管Q1。A1、A2比较器的输出分别作为与非门1、2的复位(R)置位(S)信号,以控制由门1、门2构成的R-S触发器的状态。R-S触发器的输出,直接控制放电晶体管T1的通断,又经反相驱动器,提供信号输出。

555电路芯片和各脚功能:8脚、1脚为供电脚;4脚为主复位控制端,又称为优先复位端,当4脚为强制0电平时,不管A1、A2的输入/输出状态如何,3脚输出V o=0;3脚为输出端;5脚为控制端,增加外电路时,可改变芯片内部固定分压值,从而改变输入触发信号和门限信号的电压阀值;7脚为放电端,与3脚输出状态相反,通常用于对2、6脚外接电容进行放电控制,完成定时控制和电路状态的转换;2脚为触发信号输入端,6脚为门限电压输入端,两引脚输入信号决定着输出状态。555芯片作为触发器来应用时,2脚又称为置位(S)端(下降沿信号输入有效),6脚又称为复位(R)端(上升沿信号输入有效)。

555电路芯片的工作原理:

A1比较器的同相端和A2比较器的反相端分别为3只5k电阻分压设定为2/3Vcc和1/3Vcc,当主复位控制端4脚为“1”高电平时,2、6脚输入的触发和门限电压信号既可以是数字信号,也可以是模拟电压信号,而且通过5脚外加电路的调整,可以改变2、6脚输入信号的动作阀值。

在5脚空置的情况下,和4脚为高电平时,电路依据2、6脚输入电压信号幅度与1/3Vcc和2/3Vcc阀值电压的比较,决定输出状态。当2脚输入电压值<1/3Vcc和6脚输入电压值<2/3Vcc时,电路处于输出置位状态,V o=1;当2脚输入电压值>1/3Vcc和6脚输入电压值>2/3Vcc时,电路处于输出复位状态,V o=0;当2脚输入电压值<1/3Vcc和6脚输入电压值>2/3Vcc,为不允许输入状态。

3、HBHQ-0-1电动机断相过载保护器

HBHQ-0-1电动机断相过载保护器整机电路,由控制电源、断相保护电路和过载保护电路组成。

图6 HBHQ-0-1电动机断相过载保护器整机电路

〔电源电路〕由电源变压器降压取得交流12V电压,经简单整流滤波,得到直流控制电压,LE D1用作电源指示,但实际标注为“运行”指示,这时因为控制接线原因,使保护器和主回路接触器一同得到电源,故障停机时一同失掉电源的缘故。

〔断相保护电路〕L H1~L H3电流互感器感应电流信号经整流滤波,变为直流电压信号,提供Q1~Q3晶体管的基极偏流,3只晶体管串联成一体。当电动机正常运行时,Q1~Q3均处于饱和导通状态,Q1的集电极电压基本上为电源的地电平,二极管D3反偏截止,U2电路无高平信号输入,也不产生保护停机信号输出。

当发生断相故障时,如L H1电流互感器因断相感应信号为零时,Q2失去偏流由饱和导通变为截止,Q1集电极上升为高电平,二极管D3正向导通,将断相故障信号输入U2触发器电路,U2输出停机保护信号。

〔过载保护电路〕U1(NE555)电路与R2、C2等元件组成了“变形多谐振荡器(无稳态)电路”,担负着输出过载保护信号的任务。保护器上电瞬间,因C2电容两端电压不能突变的缘故,U1的2、6脚输入电压信号低于1/3VCC,电路处于置位状态,3脚输出高电平,“过载”指示灯无电流流通而熄灭,晶体管Q4饱和导通,二极管D2反偏截止,U2无高电平过载保护信号输入;

正常运行情况下,电动机的运行电流值在1.1倍额定电流以内,从电流互感器L H4感应的运行电流信号经D1、C1整流滤波后的直流电压值低于2/3VCC,U1维持原输出状态不变。半可变电位器R P1作为L H1的负载电阻,起到将感应电流信号转化为电压信号的作用,同时R P1用于过载保护动作阀值的整定——对应电动机额定电流的大小进行整定。此时放电端7脚内部晶体管处于截止(高阻)状态,对外电路没有影响。

过载情况下(或上电起动时随着起动电流的上升),D1、C1整流滤波得到的电流信号电压上升,当U1的2、6脚所接电容C2充电电压超过2/3Vcc时,电路进入复位状态,输出脚变为地电平,过载指示灯点亮,晶体管Q4失去基极偏压而截止,二极管D2的正端获得高电平电压由截止转为正向导通,将过载保护信号送入U2停机信号输出电路。同时U1的7脚内部放电管对地导通,一方面将经过R1输入的过电流信号短接到地,一方面经R2提供C2的放电通路。当C2上电压下降为1/3VCC电压值时,U1输出状态产生翻转,晶体管Q4又再度导通,U1向U2的电动机过载信号的传输通道被暂时切断。同时,U1的7脚内部放电管又再度截止,C2放电结束。显然,当电动机过载的发生为短时或瞬时信号时,U1只有一个短时的向U2发送过载信号的时间(取决于R2、C2电路的时间常数),当运行中过载时间变长,或起动过程中产生过载时,D1、C1整流所得电流信号电压,再度为C2充电,使C2上电压上升为2/3Vcc时,U1输出状态翻转,重新接通向U2传输过载信号的通道。在过载较长时间发生的过程中,过载指示灯反复几次出现熄灭和点亮,说明U1产生了数次“振荡输出”。

〔停机信号输出电路〕R P4、C4、U2等电路组成停机信号输出电路。其中R P4、C4为过载延时电路,一是提供一定的延时,避过电动机起动时间产生的过载信号,二是在运行中发生过载时,按反时限保护特性要求,延时输出过载保护信号。D2、D3为隔离二极管,在U1输入过载信号时,经R5、R P2、R6提供C4的充电电流,U1状态翻转时,D2反偏截止,“截断”C4的放电电流回路,从而在U1的“振荡输出”信号作用下,C4上信号电压能“逐渐累加并升高”,当过载达到一定的时间后,使过载信号生效,U2输出停机保护

信号。

U1与R7、R8等元件一起,组成“变形触发器电路”。R8、C3积分电路提供保护器上电瞬间的延时作用,使U2的2脚电压有一个由零上升至Vcc电源电压的过程,使之在上电瞬间产生一个置位信号,使U3的3脚保持高电平输出,继电器KA1处于失电状态,不会受上电冲击产生误动作,随后2脚变为上拉高电平。在过载、断相信号未作用期间,即D2、D3处于反偏截止时,U2维持原电路状态不变,当过载和断相信号生效时,6脚输出高于2/3Vcc以上的信号电压,相当于输入了一个上升沿复位信号,U2的输出脚3脚变为地电位,继电器KA1得电动作,常闭触点开断,控制电路的自锁条件不成立,接触器KM1失电(见图4),实施了故障发生时对电动机的停机保护。

4、JD6型全电子式多功能电动机保护器

JD6型全电子式多功能电动机保护器的整机电路见下图7,电路结构与HBHQ-0-1电动机断相过载保护器非常相近,但工作方式稍有区别,而且工作性能有所提升。

〔过载保护电路〕由电流互感器L H4、U1的第一组时基电路所组成。在Vc控制端3脚外加一只稳压二极管,将控制端电压稳压于2/3Vcc电源电压以下,提高了过载保护的动作精度。图1-11的过载保护电路,过载信号电压是与2/3Vcc电源电压相比较,以产生信号输出,由于电源电压的变化(无稳压措施),使信号比较的基准点(2/3Vcc电源电压)产生随机性变化,过载保护动作阀值也会有相应变化,动作精度较低。图7电路,过载信号电压与D12负端的稳压基准电压相比较,则动作阀值的精度能得以保证。电路也以“振荡方式”输出过载保护信号。

图7 JD6型全电子式多功能电动机保护器

〔过载反时限控制电路、断相保护电路与末级停机信号输出电压〕断相保护电路和过载反时限控制电路因共用一个元件C2,而构成一个密不可分的整体。U1内部第2组时基电路组成停机信号停机电路。为保护动作流程分析的方便,故将这3部分电路放于一处进行分析。

当电动机运行于正常状态,L H1~L H3电流互感器三相电流信号正常产生,Q1、Q2、Q3晶体管均处于饱和导通状态,电容C2的正、负极之间的电位差为0,U1内部第2组时基电路的触发端电压和门限电压输入端的电压约为电源电压Vcc(即8脚输入电压>1/3Vcc,12脚输入电压>2/3Vcc),U1内部满足复位条件,输出端9脚V o=0,继电器KA1不动作。这里对第2组时基电路的应用方式,将触发输入脚2与门限电压控制脚12短接于一起,可等效为一个两端信号电路,若同时将1/3Vcc看作低电平,将2/3Vcc看作是高电平的话,电路的输入/输出信号逻辑关系构成反相关系,可将其等效为“反相器电路”。电路输出状态的翻转,是输入信号与1/3Vcc、2/3Vcc两个基准电压相比较的结果,这样一来,电路的实际效果又相当于“迟滞电压比较器”了。

当断相故障出现时,Q1~Q3的串联电路被“切断”,由此形成经电源Vcc、C2、D9、R10、电源地的对C2的充电电流回路,充电的结果使C2负端电位向地电平变化,相当于为U1的8、12脚输入了一个负向脉冲,U1内部反相器电路受低电平信号触发产生翻转,输出

评论

玩LOFTER ,免费冲印20张照片,人人有奖! 我要抢>

关闭

端9脚变为高电平,继电器KA 1得电动作,控制线路主接触器失电,电动机停机。

回头再看过载反时限控制电路的动作过程。当过载信号发生时,U 1的5脚变为地电平电压,形成经电源Vcc 、C2、D10、R P 2、U 1的5脚内部电路到电源地的,对C2的充电电流回路,此回路因串接有R P 2原因,时间常数较大,故能将电动机起动期间的过载信号避过去,对运行中产生的过载信号,则具有反时限保护特性。调整R P 2的阻值,可改变过载延时动作时间。C2充电的结果,使C 1负端也即U 1的6、12脚逐渐降低到1/3Vcc 电压值以下时,继电器KA 1得电动作,电动机停止运行,实现了过载停机保护。

电路中的C2是个关键元件,具有“双重身份”,断相与过载信号发生时,都依赖其产生停机保护触发信号。在很多电路中,我们往往只看出某元件的“第一身份”,不能看出元件的“第二——隐蔽身份”,对电路原理的深入分析也因此“卡壳”,这是需要注意的地方。D 9、D10为隔离二极管,以避免断相、过载信号发生时C2的两个充、放电回路产生互相影响。当过载信号发生时引起形成C2的充电回路时,D 9处于反偏截止状态,隔断Q 3射极高电位对C2负端电压的影响;当断相信号发生(过载信号尚未发生)时,D10反偏截止,隔断了U 1的5脚高电位对C2负端电压的影响。

5、JD6等相似电动机保护器的故障检修要点(以图6、图7实际电路为例)

1)“生成电流检测信号”。检修中,当为保护器1、2电源端子供入AC380V 电源后,因无电流信号产生,断相检测电路报出断相故障信号,电路处于故障动作状态中。这说明断相保护电路及末级停机信号产生电路,基本上是正常的。但由此一来,对过载及反时限控制电路的检修,则造成不便。

将Q 3的集电极与Q1的发射极用导线进行“暂时性的”短接,则相当于人为生成了三相电流检测信号,屏蔽了断相故障信号。 对过载保护电路的检测。用D C 12V (应高于保护器Vcc 电源的2/3)电压施加于电容C3两端,“人工生成”过载检测信号,调整R P 1,可使“电流信号”发生变化,即对过载程度的“深浅”进行调节,可检验电路是否能正常输出过载信号,及电路的反时限保护特性是否符合要求。当过载倍数为1.2倍左右时,延时动作时间约为5min 以下,过载倍达3~7倍时,延时动作时间应为几十秒~几秒。

2)根据电路特点进行检修。电动机保护器的核心部件是NE555(NE556),检修之前,须对NE555的各脚功能、电路原理进行必要的了解,做到对各脚的电压状态心中有数。再进一步结合具体电路,找到改变输入信号、使输出状态发生变化的检修方法,则检修能力与检修效率都会有所提高,反过来,又强化了电路故障分析能力。

图7电路中,对故障停机信号产生(末级)电路的检修,如果对电路形式有所了解,则自然能得出高效的检测方法。将本级电路作为反相器来看,当8、12脚与电源地瞬时短接时,输出脚9脚应变为高电平,KA 1得电吸合;当8、12脚与电源正端瞬时短接时,输出脚9脚应变为低电平,KA 1失电释放。通过两个简易的“短接手法”,则能快速判别U 1电路的好坏。

6、电动机保护器故障维修实例

〔故障故障实实例1〕一只JD6型电动机保护器(见图7),起动期间,过载指示灯亮,即输出停机信号,无反时限过载保护功能,电动不能正常起动。保护器的反时限电路,由R P 2、C2等元件组成,由于过载指示灯能正常点亮,说明U 1的5脚输出信号正常,前级电路也是好的。检测R P 2等电阻元件,都是好的,拆下C2检测其容量,发现其电容量严重下降,造成电路的延时时间过短,不能避过起动电流。更换C2后,故障排除。

〔故障故障实实例2〕一台电动机保护器(电路构成见图6),按下控制线路起动按钮后,接触器不吸合,随即报断相故障信号,电动机不能起动。

单独为保护器引入控制电源,随即断相指示灯点亮,继电器发出得电吸合声,说明电路动作正常。停电,测保护器3、4脚电阻值为无穷大,故障原因为继电器KA 1触点接触不良,使主电路接触器不能得电吸合。更换继电器KA 1,故障排除。

〔故障故障实实例3〕JD6电动机保护器,上电,继电器即吸合,常闭触点断开,主电路接触器不能得电吸合。单独为保护器上电,先屏蔽断相故障信号,断相指示亮不再点亮,但继电器KA 1仍处于吸合状态,测U 1的8、12脚为高电平电压,便输出脚9脚也为高电平电压,判断U 1内部输出级电路损坏,更换U 1后,故障排除。

阅读(2989)| 评论(0)|

喜欢

推荐转载

登录并添加博主为博友、通过对方确认后可以发表评论,请先登录。登录>>

公司简介-联系方法-招聘信息-客户服务-隐私政策-博客风格-手机博客-VIP博客-订阅此博客

网易公司版权所有 ?1997-2014

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/a66044217.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

种电动机电气控制电路接线图 (1)

54种电动机电气控制电路接线图

将电流互感器上的S1和S2端子引出两跟线,和配电柜上的电流表的两个接线柱I1、I2分别接上。再将S2同时接地进行保护。防止开路后出现高电动势造成触电事故。 三相四线制有功电度表电流互感器接线图 通过电流互感器接线的三相四线有功电度表,电压线与电流线共用接线方式,在农电计量中为数不少。这种方法省去三根电压引线,将电流互感器K1与电源L1相连,通过电流二次线,将电度表电压桩头与电流桩头连片连接接入这种接法旨在减少二次接线根数。 但是,这种按法非常危险: 第一,电流互感器二次回路不得接地,否则,引起短路,烧坏电度表。然而规程规定:互感器二次回路必须有一点接地。 第二,因电度表的电压、电流接线端子和互感器二次回路均带380/220V电压,在带电工作中、要时刻注意不能误碰。第三,接到电度表的零线不能与其它任何一根搞错或调换,否则电度表电流线卷因短路而烧坏,同时电流互感器因二次回路接入电度表电压线卷,使回路阻抗无限增大而趋于开路状态,这些都是很危险的。 一、找线圈首末端,本质是找同名端,异步电动机的三相定子绕组有六个出线端,也就有三个首端和三相末端。一般情况下,首端会标以A、B、C,而末端会标以X、Y、Z,同一个绕组电流流入和流出产生的磁场大小是一样的,但其方向有了差别,对三相的合成磁场就有了增强和减弱之分,这直接导致电机的力矩变化,从而影响运转困难,而且增强或者削弱磁场磁通,影响电机寿命。在接线时候如果没有按照首和末端的标记来接,在电动机起动时候磁势和电流就会不平衡,从而引起绕组发热和振动以及有噪音,甚至造成电动机不能起动因过热而烧毁。由于某些原因定子绕组六个出线端标记无法辨认,可以通过的实验方法来判

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

电机正反转控制电路及实际接线图(个人学习用)

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。 在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可

以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用电子式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

解析国标图集10D303《常用电机控制电路图——专业技术要求

解析国标图集10D303《常用电机控制电路图——专业技术 要求 【图集解析】 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 从第7.6.4条可以看出,针对10D303中的消防风机(消防排烟风机、加压送风机等)和消防水泵(消火栓用消防泵、自动喷洒用消防泵和消防稳压泵),过负荷保护应作用于信号而不应作用于切断电路。 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图 (10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

电动机正反转控制电路图及其原理分析

如对您有帮助,请购买打赏,谢谢您! 正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示 图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

解析国标图集10D303《常用电机控制电路图——专业技术要求

【图集解析】 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 从第7.6.4条可以看出,针对10D303中的消防风机(消防排烟风机、加压送风机等)和消防水泵(消火栓用消防泵、自动喷洒用消防泵和消防稳压泵),过负荷保护应作用于信号而不应作用于切断电路。 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图(10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY 点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。 2 消防水泵过负荷保护只报警不跳闸的实现 一般工程设计中消防风机无备用风机,而消防水泵一般是一台工作一台备用(或两用一备)。GB 50055-93《通用用电设备配电设计规范》第2.4.6条的条文说明中有这么一句话:“一、过载是导致电动机损坏的主要原因。……在为编制原规范而进行的调查中,收集到国内……以至美国

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

控制电路和主电路都不能接通。所以在电源恢复供电时,电动机就不能自行启动运转,保证了人身和设备的安全。 控制原理:当按下启动按钮SB2后,电源U1相通过热继电器FR动断接点、停止按钮SB1的动断接点、启动按钮SB2动合接点及交流接触器KM的线圈接通电源V1相,使交流接触器线圈带电而动作,其主触头闭合使电动机转动。同时,交流接触器KM的常开辅助触头短接了启动按钮SB2的动合接点,保持交流接触器线圈始终处于带电状态,这就是所谓的自锁(自保)。与启动按钮SB2并联起自锁作用的常开辅助触头称为自锁触头(或自保触头)。 3.三相异步电动机的正反转控制 三相异步电动机接触器联锁的正反转控制的电气原理图如图3-4所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。 控制原理:当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行。反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相(即改变电源相序),从而达到反转目的。 互锁原理:接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁(或互锁)。实现联锁作用的常闭触头称为联锁触头(或互锁触头)。

电动机控制电路图全集

电动机控制电路图全集一.双速电动机用三个接触器的变速控制电路图 二.三相电动机制动装置

· [图文] 汽车热限制器的烙铁 Auto Heat Limiter for Soldering Iron · [图文] 简单的直流电机PWM调速电路 Simple DC motor PWM speed control · 步进电机和交流伺服电机性能比较 · [图文] 直流电动机可逆电路--DC Motor Reversing Circuit · [图文] 直流电动机控制电路-DC Motor Control Circuit · [组图] 单极性步进电机控制器电路--Unipolar Stepper Motor Controller · [图文] 直流无刷电动机工作原理与控制方法 · [图文] 电动机缺相保护器电路原理 · [组图] 微型电机驱动电路原理分析及实验 · [图文] 双向调速直流电机驱动电路设计方案 · [组图] 直流电机无级调速电路的制作原理 · [图文] 电动自行车控制器电路原理分析 · [组图] 音频功率放大器 · 起动机的工作原理 · 自控电机起动方式原理分析 · [图文] 起动电机电阻控制原理图 · [图文] 串级型直流电源的结构电路图 · [图文] 用晶体管做成的H电桥电路图 · [图文] 实际的控制电路图 · [图文] 设计的电动机控制电路图 · [图文] 电动机正转逆转驱动电路图

· [图文] 电动机正反转控制电路 · [图文] 转轴转动状况检测电路 · [图文] 压电泵驱动电路 · [图文] 伺服电机转速控制电路 · [图文] LM324的直流电动机调速器 · [图文] 三相交流电焊机空载自停控制电路 · [图文] 三相电动机制动装置 · [图文] 交流电焊机的节电线路 · [图文] 交流电动机的简易能耗制动 · [图文] 电动机过热保护电路 · [图文] 电动机断相自动保护装置 · [图文] 双速电机控制电路图 · [组图] 双速电机控制原理图 · [图文] 自动夜光灯电路图 · [图文] 与50kHz调频发射机配用的接收机电路图 · [图文] 利用中断光束的脉冲发生器电路图 · [图文] 可调光检测开关电路图 · [图文] 精密光二极管比较器电路图 · [图文] 精密光电二极管光强检测器电路图 · [图文] 交流电源控制用光电池记忆开关电路图 · [图文] 光线中断检测器电路图 · [图文] 光通信系统电路图 · [图文] 光束控制的通-断继电器电路图 · [图文] 光施密特触发器电路图 · [图文] 光亮度敏感器电路图 · [图文] 光接收器电路图 · [图文] 光隔离的固体功率继电器电路图 · [图文] 光发射机电路图 · [图文] 对数特性光敏感器电路图 · [图文] 调频光发送器电路图 · [图文] 4象限光导检测放大器电路图 · [图文] 4位马达开关电路图 · [图文] 两只单相电压互感器组成的V-V形接线图 · [图文] 三只单相电压互感器组成星形接线图 · [图文] 钻床主轴电动机和液压电动机的联锁控制电路图 · [图文] 自动循环控制电路 · [图文] 直流电动机正反转控制电路图 · [图文] 直流电动机使用变阻器起动控制电路图 · [图文] 由三个接触器组成的正反转控制电路图 · [图文] 用电流继电器控制机械扳手 · [图文] 用电弧联锁继电器延长转换时间的正反控制 · [图文] 用倒顺开关的正反转控制

电动机可逆带限位控制电路实物接线图

电动机知识 收录时间:2013年10月22日01:15:05 来源:wanghuixiang 作者:匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员, 它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中

间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。 电磁制动器从通电到断电(或从断电到通电) 需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。 防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频

解析国标图集D精编《常用电机控制电路图专业技术要求

【图集解析】? 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图(10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。

2 消防水泵过负荷保护只报警不跳闸的实现

所以说当有两台及以上消防泵时,工作泵过负荷切断主回路,以便备用泵延时自动投入,备用泵工作期间过负荷不应再切断主回路。两台水泵过负荷均声光报警,并可解除声响报警。 3 消防风机和消防水泵主回路断路器的选择 上面已提到消防风机和消防水泵过负荷只作用于信号而不作用于切断电路。当采用低压断路器作为消防风机和消防水泵主回路中的隔离电器和保护电器时,由于已采用热继电器作过负荷保护,所以应取消低压断路器中的长延时脱扣器,只设瞬动短路保护。 4 消防水泵工作中水源水池水位过低是否自动停泵 《全国民用建筑工程设计技术措施给水排水》(2009)7. 4. 3条第6款第6)项消防泵的控制①消防主泵d中有这么一句话:“……消防水池最低水位报警,但不得自动停泵;任何消防主泵不宜设置自动停泵的控制。”从给水排水专业技术措施的这一规定可以看出,无论是消火栓用消防泵还是自动喷洒用消防泵当水源水池水位过低时,应只报警不切断主电路。也就是说消防水池水位过低,不应自动停泵。 图9(a)中水源水池水位过低时液位器BL闭合,中间继电器KA3带电,但KA3的触点并没有接

电动机基本控制线路图的绘制及线路安装步骤

课题一电动机基本控制线路图的绘制及线路安装步骤 一、绘制、识读电气控制线路图的原则 生产机械电气控制线路常用电路图、接线图和布置图来表示。 1.电路图 电路图是根据生产机械运动形式对电气控制系统的要求,采用国家统一规定的电气图形符号和文字符号,按照电气设备和电器的工作顺序,详细表示电路、设备或成套装置的全部基本组成和连接关系,而不考虑其实际位置的一种简图。 电路图能充分表达电气设备和电器的用途、作用和工作原理,是电气线路安装、调试和维修的理论依据。 绘制、识读电路图时应遵循以下原则: (1)电路图一般分电源电路、主电路和辅助电路三 部分绘制。 1)电源电路画成水平线,三相交流电源相序L1、L2、L3自上而下依次画出,中线N和保护地线PE依次画在相线之下。直流电源的“+”端画在上边,“-”端在下边画出。电源开关要水平画出。 2)主电路是指受电的动力装置及控制、保护电器的支路等,它是由主熔断器、接触器的主触头、热继电器的热元件以及电动机等组成。主电路通过电流是电动机的工作电流,电流较大。主电路图要画在电路图的左侧并垂直电源电路。 3)辅助电路一般包括控制主电路工作状态的控制电路;显示主电路工作状态的控制电路;显示主电路工作状态的指示电路;提供机床设备局部照明电路等。

它是由主令电器的触头、接触器线圈及辅助触头、继电器线圈及触头、指示灯和照明灯等组成。辅助电路通过电流的较小,一般不超过5A。画辅助电路图时,辅助电路要跨接在两相电源线之间,一般按照控制电路、指示电路和照明电路的顺序依次垂直画在主电路图的右侧,且电路中与下边电源线相连的耗能元件(如接触器和继电器的线圈、指示灯、照明灯等)要画在电路图的下方,而电器的触头要画在耗能元件与上边电源线之间。为读图方便,一般应按照自左至右、自上而下的排列来表示操作顺序。 (2)电路图中,各电路的触头位置都按电路未通过或电器未受外力作用时的常态位置画出。分析原理时,应从触头的常态位置出发。 (3)电路图中,不画各电器元件实际的外形图,而采用国家统一规定的电气图形符号画出。 (4)电路图中,同一电器的各元件不按它们的实际位置画在一起,而是按其在线路中所起的作用分画在不同电路中,但它们的动作却是相互关联的,因此,必须标注相同的文字符合。若图中相同的电器较多时,需要在电器文字符合后面加注不同的的数字,以示区别,如KM1、KM2等。 (5)画电路图时,应尽可能减少线条喝避免线条交叉。对有直接电联系的交叉导线连接点,要用小黑圆点表示;无直接电联系的交叉导线则不画小黑圆点。 (6)电路图采用电路编号法,即对电路中的各个接点用字母或数字编号。 1)主电路在电源开关的出线端按相序依次编号为U11、V11、W12;U1 3、V13、W13……。单台三相交流电动机(或设备)的三根引出线按相序依次

相关文档
最新文档