色度学基础

色度学基础
色度学基础

第一节色度学基础

色度学与人类工程学

色度学与物理光学等学科的基础不同, 物理光学可以认为是客观的科学, 是与人类无关的。而色度学却是一种主观的科学, 它以人类的平均感觉为基础, 因此它属于人类工程学范畴, 以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。辐射能量很大的波长很长的红光对人来说却没有辐射能量很小的黄光亮, 人们就认为黄光的强度比红光大。色度学既然是建立在人眼的反应基础上, 对于别的动物就不适用了。好在人类的不同人种之间对光的感受没有太大的区别, 因此色度学是和人种无关的。

绝对亮度( Lv) 的定义是:

( 坎德拉/ 平米)

其中θ 是发光表面法线与给定方向夹角的余弦。由于多数情况下是垂直于发光表面观察的, 所以亮度可理解为单位面积的发光强度( di 为微发光强度, ds 为微发光面元) 。

1 坎德拉的发光强度是频率为540×1012赫兹的光源在每球面度中强度为1/683 瓦的光辐射。由此可见, 亮度与电磁波的辐射强度这个物理量成正比。又由于人眼的感色性的关系, 又与光的波长密切相关。

由于人眼在不同的亮度环境下会自动调节瞳孔的大小, 使进入眼睛的光强总在一个亮度范围之内。因此除了在超出人眼调节范围之外的极暗或极亮的环境之外, 使用相对亮度来表述图像或图片更为方便。例如, 尽管电视屏幕的白场、灯光下的白纸和阳光下的白纸的亮度很不一样, 但都将其定义为100% 的相对亮度。考虑到在电子出版领域的应用, 后面使用亮度这个术语时, 都是表示相对亮度。

亮度和明度

物体的亮度在计算机内都要以整数的方式表示, 例如最亮的为100, 最暗的就是0, 中间还有许多过渡亮度。为了计算方便, 计算机内通常都以 2 的多少次方来表示一个亮度范围。例如0~31、0~63、0~127、0~255。现在最常用的是0~255, 即256 级亮度, 但其他几种方式也常使用; 例如有许多彩色显示卡的32K 色显示方式, 它的亮度等级就是0~31, 共32 级。

由于亮度成了不连续的过渡, 就很有可能使人查觉出亮度的跳跃。32 级亮度就很容易查觉出跳跃, 256 级亮度则很难查觉出跳跃。如果将32 级亮度的灰色块连续显示在屏幕上, 会发现较暗的部分跳跃比较厉害, 较亮的部分则显得连续得多。这个现象很早就被人们发现了。测试人员用一组深浅不同的灰卡, 让被测试者选一张介于最深和最浅之间的灰卡, 结果大多数人选出的灰卡亮度只有18%! 继续这种测试, 在黑色和中间灰之中、中间灰和白色之中……, 直到人们无法区分两种灰卡的深浅为止。将选出的灰卡按由深到浅的顺序排好, 再实测它们的亮度, 发现它的编号(L) 与亮度(Y) 的关系为:

L=116( Y

)1/3 -16 100

其中L=0~100, Y=0~100。此近似关系经CIE( 国际照明工程师协会) 组织规范化为以上的明度公式。明度是一种心理亮度的度量单位, 同样一幅照片, 如果用32 级等差明度来表示质量要比32 级等差亮度好得多。要达到同等表现质量, 用亮度表示要比用明度多用150% 以上的数据量, 即255 级亮度约只相当于100 级的明度, 在实际使用中, 如果用明

度来表示, 则128 级明度就有很高的质量了。如果要求在发光体上小视野情况下也看不出任何亮度差, 可以用256 级明度来表示。

32 级亮度

32 级明度

图8.1 在黑白方式下的亮度和明度

当你看到图8.1 的两种色块序列时, 你可能会对CIE 的明度序列表示怀疑。明度序列的连续性似乎并不比亮度序列的更好。根据我们的研究结果表明, 这个怀疑是对的。较好的序列应是介于这两者之间的一个序列。特别是在彩色空间中。

三基色现象

从中学的物理教科书就可以知道, 颜色是由光的波长决定的, 从红光( 波长635nm) 到蓝光( 波长435nm), 人们大约可分辨出一百多种颜色。这种单波长的色光非常鲜艳, 人们称为纯色。实际看到的色光大多数是由许多种波长的光组成的。例如太阳光就是从红光到蓝光的连续光谱组成的。就算将波长从635nm 到435nm 分成128 等分, 每一种色光也需要2(128×8)=21024那么大的数据范围, 而不是现在常用的224。

在很早以前人们就发现, 人眼是一架不很精确的光学鉴别器, 它常常将不同光谱成分的色光看成同一种色。例如肉眼分不出哪一种白光是由太阳光连续光谱组成的, 哪一种是由红、绿、蓝三种色光组成的, 这叫同色异谱现象。经过反复的试验, 发现了人眼对色光分辨的三维的特性。即任取三个互不能由其他两个表现( 线性无关) 的色光, 都可以组成人眼能分辨的任意色光。这就是三基色现象, 也叫三原色现象。造成这种现象的原因有人认为可能是人眼的视网膜上只有三类感色神经元, 每一类感色神经元只对某一个范围的色光敏感。但当前的研究似乎也只发现了两种感色神经元, 所以三基色的生物学基础目前还不甚了了。

当然“任选三个”是数学上的条件, 它允许色光为负。实际操作中是不可能产生负的光。所以, 绝大多数场合都使用红、绿、蓝作为三基色, 以表现尽可能多的颜色。

用坐标表达颜色

由于颜色是一个三维函数, 所以应该在三维空间来表示, 如图8.2 所示。

图8.2 传统色度学著作常用来表示颜色的锥体

图8.3 按人对颜色分辨能力构造的三维彩色立体

这个锥体表示人们在最暗时和最亮时对颜色的分辨能力较差, 中间亮度时分辨能力最

强。但至少在相对亮度的范围内, 这个结论是错误的。对于某些颜色, 人眼对其分辨能力随亮度而加强, 直到极亮时才急遽减少。用图8.3 这个“大桃”来表示更为准确。

为了更方便地建立色彩的定量概念, 我们暂时用二维的色度空间来表示。

选三原色: 红=700nm(R), 绿=546.1nm(G), 蓝=435nm(B)。r=R/(R+G+B), g=G/(R+G+B), b=B/(R+G+B)。由于R+G+B=1, 所以只用给出R 和G 的值, 就能唯一地确定一种颜色。这样就可将光谱中的所有颜色表示在CIE 1931 RGB 系统色度图中, 如图8.4 所示。

在这个图中, 将光谱轨迹上的任一点联接到白点S E上, 彩色的鲜艳度逐步下降, 也就是色纯度或色饱和度逐渐下降, 但人通常感觉颜色的种类( 也叫色相) 并没有变化。

将图中的紫端和蓝端用一条直线相联。这条线上的色彩虽然不是由单一波长的光谱产生的, 但它也给人们很鲜艳的感觉。所以也认为是色纯度最高的部位。这条线上的颜色叫做绛色。所有的可见色彩都在这个封闭的图形内。

从图中可以看出, 表现色光的区域有很大一部分超出了第一象限, 这意味着要表现这一部分色光时, 红光或绿光必须为负值! 由于发光材料不可能发出负光, 从这里已经可以看出, 用有限的色光光源不能表现全部的色彩。

图8.4 CIE 1931 RGB 系统色度图

将坐标系转换到计算机常用的系统中去

RGB 色度图虽然比较好理解, 使用起来却很不方便。将它做一个变换, 使得亮度只与 Y 轴相关, 而讨论颜色只需在等亮度的 XZ 平面上, 就方便多了。这就是 CIE 1931 XYZ 坐标系, 如图 8.5 所示。

图 8.5 某一亮度平面上的彩色区域

图 8.6 计算机显示器所用 NTSC RGB 彩色域在 XZ 平面上

这个坐标系是一个基准坐标系, 后面介绍的 Luv、Lab、

RGB(NTSC) 和 RGB(PAL) 都与此坐标系有直接变换的关系。

在上图中, D

65

点是参考白, 是黑体在绝对温度 6500K 时发出光的颜色。相当于春秋季节中午时阳光的颜色。是目前日光型彩色胶卷、NTSC、PAL 制

式彩色电视等等的参考白色。它的色度坐标是 X

0=0.3218, Y

=0.3292,

Z

=0.3580。

沿轮廓线 A 点过 D

65对面 B 点成一条直线。从 A 到 D

65

色纯

度( 饱和度) 由 100% 逐渐降低到 0。A 点与 B 点的色光按不同比例混合( 保持总和的亮度不变) 所得的色彩都在 A-B 直线上。由此可见, 彩色色光与白色色光相加色饱和度都将降低。

根据补色的定义: 凡两种色光按适当比例混合, 能得到白色的这两种色光就称为互补色。因此色彩 B 就是 A 的补色。人们在长时间注视一种

颜色时, 突然将视线转到白色上, 就会在白色底子上出现刚才那种颜色的补色。彩色负片的颜色也是照片的补色。

=

96,255,210 159,0,45 255,255,255

220,0,0 0,220,220 200,200,200

图 8.7 左边的两种色光相加成为右边的白色, 所以左边的两种颜色是互补色要注意: 以上所讲的都是色光的混合, 而不是颜料的混合。色光混合产生不同色彩的方法叫做加色法, 颜料混合叫减色法。减色法的问题比加色法要复杂得多, 这一点我们在后面讨论。

加色法最显著的特点是: 色光的混合相当于两个位置矢量的加法。假如

已知颜色 C 和 C 在 XYZ 坐标系内的表达为: C

1(X

1

,Y

1

,Z

1

)、C

2

(X

2

,Y

2

,Z

2

),

则将两种色光混合起来的色光 C

3为: C

3

(X

1

+X

2

,Y

1

+Y

2

,Z

1

+Z

2

)。

计算机在屏幕上表示彩色就是完全的加色法。在用计算机排版时,

最常用的彩色坐标系是 RGB 坐标系。它根据的是美国电影电视工程师学会

( SMPTE) 的 NTSC 制式三色荧光粉的色度标准制定的(新的显示器采用HDTV标准,与NTSC略有差别)。它和 XYZ 坐标系的变换关系是:

R=1.971083856X-0.5494734822Y-0.2974256532Z

G=-0.95343361089X+1.93576812668-0.027********Z

B=0.0638528494559X-0.12964123497Y+0.98295931716Z ( 8-1)

将亮度 Y=32.92 的 D

65

坐标代入, 发现: R=G=B=32.92。任取

不同亮度的 D

65

代入, 都会得到 R、G、B 相等的结果。这说明在操作计算机软件时, 令 R、G、B 相等, 就可以得到色饱和度为 0 的白色( 或灰色) 。

将 NTSC 的三色荧粉所发出的三色光画到坐标系中( 图 8.5), 得到图 8.6。

根据前面所介绍的加法原理, 彩色显示屏上的颜色只能出现在△RGB 之内。除了红段到黄段之外, 色饱和度都达不到 100%。因此所表现的颜色既不如自然界的丰富, 也不如自然界的鲜艳。

为什么不选择发光颜色更纯或干脆选 R=780nm, G=520nm,

B=420nm 波长的纯色荧光粉, 不就可以做出更丰富多彩的画面了吗? 这个主意虽然不错, 但目前还找不到可以发出如此纯和足够亮度的荧光粉, 所以是不可实现的。但人们已经制出可以长时间工作的红光半导体激光器, 也接近制出绿光和蓝光的激光器。在不远的将来, 以半导体激光器做光源的彩色显示器或许将成为高保真色彩再现的主要设备。

由于现在的计算机扫描输入都是使用 NTSC RGB 坐标系, 且不允许R、G、B 为负, 所以无论用什么输出手段都不可能使表现的色彩超出图 8.6 的三角形。

在式 (8-1) 中, Y 的值域为 0~100, R、G、B 的值域也是 0~100, 若要在 R、G、B 值域为 0~255 的情况下使用, 只要将等号的右侧乘 2.55 即可。由于 RGB 的色度空间小于 XYZ 坐标系表示的可见光域, 所以会出现 R 或G 或 B 小于零的情况, 这时要注意归并的方法。应先保证亮度不变, 然后保证色相不变, 最后调整色饱和度使之达到 R 、 G 、 B 分别大于或等于 0 。

色差问题

在计算机上表示色彩会遇到与亮度类似的问题。特别是在电子出版时, 表示颜色要求越逼真越好, 所用数据要求越少越好。一个 10 秒钟的运动画面就需要 600 帧的彩色数据, 如不加压缩, 用现有 3 字节一个像素点的方法就需要 600MB 的存储量, 恰好等于一张光盘的容量。

计算机表达色彩, 也只能用有限的颜色数。例如大多数游戏软件用 256 种颜色; 新出现的有 32768 色(R、G、B 各 32 色) , 65536 色( 为了提高亮度的分辨能力将绿色增加到 64 色) , 和所谓的真彩色 1667 万色(R、G、B 各 256 色) 。究竟多少种颜色是充分而且是必要的呢? 我们再来回顾在第五章出现过的光谱。

255,0,0 0,255,0 0,0,255

255,0,255 255,255,0 0,

255,255

图 8.8 按 RGB 等差变化排列的色谱

从图 8.8 可以看出, 尽管我们在制作这个光谱时令 RGB 的颜色按线性变化, 但这个色条看上去颜色的分布却是不均匀的。有的地方很短距离内颜色变化剧烈, 有的地方却在很长一段距离内都是一样的颜色。这说明人眼对颜色的分辨能力不是与 RGB 成正比的。对此已有许多人进行了研究。最常用的是 CIE 组织推荐的 CIE Luv 1976 和 CIE Lab 1976 标准。这两者都是匀色坐标系。顾名思义就是对人眼辨色率均匀的坐标系。坐标内的等距离意味着等色差。如果在此空间内均匀地选择 65536 个点, 就能极好地代表所有的颜色。

我曾在 17 年前按此原理设计了一个彩色系统, 又在三年前在此空间内反复筛选必需的 64K 色。因为根据 CIE 的这一色差分析, 与 16M 色 RGB 系统色差相当的颜色数, 应只有 65000 个左右。但实践证明, CIE 的这一分析是不正确的。首先在亮度方面我们已经从图 8.1 中看出 CIE 关于明度的不准确性。而 Luv 和 Lab 的 L 都是采用我们在图 8.1 中看到的明度。另外 CIE 大大低估了人们在高相对亮度时对颜色的分辨能力。这一不准确的估计使我们的软件商品化整整延误了两年! 根据我们的实践, 人眼对颜色的分辨能力大致当于图

8.9 的“大桃”。而这个大桃的亮度轴是介于亮度和明度之间的一个函数。在这个大桃内按等距离选择 65000 个点可以非常好地表现彩色图片。

图 8.9 对人眼分辨率均匀的彩色空间

用这样的 65000 种颜色会不会存在肉眼可以分辨的色差? 有, 而且它

的平均色差比现在常用的 RGB 16M 色的略大。其实 16M 色也有肉眼可以分辨的色差。但在目前信息爆炸的时代, 一幅彩色图片能被人看 5 秒钟已经是很赏脸了, 谁也不会再去细细检查它的色差。只是在做非常规矩的大面积渐变色时, 它的色差问题才显得比较刺眼。依然在这个大桃内均匀选点。其中亮度轴选 200 级, 总颜色数为 256000 个, 就可以做到完全没有色差了。这个数只是 16M 色的 65 分之一, 但最大色差反而比它要小。对现代计算机存储技术来说, 64K 和 256K 是一个很小的数, 利用这个色表我们能做非常精确的颜色转换或快速显示。

32 级亮

折衷的亮度序列

32 级明度

图 8.10 三种不同的亮度序列

光和色的基本知识

【课题】 第一章 光和色的基本知识 第一节 光的基本性质 第二节 色度学的基本知识 新授课 【教学目标】 1.知识目标:了解光的特性,明确可见光的概念,了解五种主要标准光源;理解彩色三要素和三基色原理,掌握亮度方程。 2.能力目标:能运用所学知识解答与彩电相关的光学问题,为以后学习彩电原理打下理论基础。 3.情感目标:激发学生浓厚的学习兴趣,培养学生严谨的科学态度。 【教学重点】三基色原理、亮度方程。 【教学难点】对三基色原理的理解。 【教学方法】读书指导法、分析法、演示法、练习法。 【课时安排】2课时(90分钟)。 【教学过程】 〖导入〗(1分钟) 在彩电技术中涉及到许多光学知识,如可见光的颜色、配色实验、三基色原理以及亮度方程等,当我们学好这些光学知识后,就为以后学习彩电原理与维修技术打下了一定的理论基础。 〖新课〗 第一节 光的特性与光源 一、光的特性 光是一种客观存在的物质,兼有波动性和粒子性,并以电磁波的形式传播。电磁波谱如图所示。其中只有人们眼睛可看到的那一小部分叫做光、准确的叫可见光。 二、可见光谱与白光源 不同波长的光波所呈现的颜色各不相同,随着波长的缩短和频率的升高,依次为:红、橙、黄、绿、青、蓝、紫。 只含有单一波长成分的光称为单色光或谱色光。 读书指导法、分析法、演示。

包含有两种或两种以上波长的光称为复合光。 1.白光的分解 白光可以被分解为单色光,称为白光的分解。 在实验室中也可以进行白光的分解(作三棱镜分光演示实验,引导学生观察分解出的红、橙、黄、绿、青、蓝、紫七种不同波长的彩色光,如图所示。)。 在这中间还有许多中间色。 2.标准光源 按国际规定选用如下五种主要标准光源(即标准白光),它们的光谱分布如图所示。 (1)A光源 它相当于钨丝灯在2 800 K时发出的光。其波谱能量分布如图中曲线A所示,它的灯光常带橙红色,不如太阳光白,A光源的相关色温为2 854 K。 (2)B光源 它接近于中午直射的阳光,相关色温为4 800 K,可以用特制的滤色镜从A光源获得。 (3)C光源 它相当于白天的自然光,相关色温为6 800 K,也可以用特制的滤色镜从A光源获得。由图中的曲线C可以看出,其波谱能量在400 ~500 nm处较大,所含蓝光成分多。 (4)D65光源 它相当于白天的平均照明光,相关色温为6 500 K,被作为彩色电视中的标准白光,可以由彩色显像管荧光屏上的三种荧光粉发出的光适当配合而获得,相应光谱分布如图中的虚线D6500所示,它与C光源很接近。 (5)E光源 E),光谱分布为一条直线,即所有波长的光都具有相等它是一种假想的等能白光( 白 辐射功率时所形成的白光,这实际上是不可能的。采用它纯粹是为了进行理论研究和简化色度学的计算。 第二节色度学的基本知识 一、彩色三要素

光学基础之色度——三原色及CIE标准色度系统知识介绍

1.5 色度 色度学中所应用的方法和工具,都是以目视颜色匹配定律和国际上一致采用的标准为基础的。国际照明委员会(CIE ),通过其色度学委员会,推荐了色度学方法和基本的标准。 1.5.2 三原色 三原色:(红R 、绿G 、兰B )或(品红、绿、兰) 三原色不能由其他色混合得到,三原色的波长如下: 红:700nm ,绿:546.1nm ,兰:435.8nm 由RGB 构成白光,得亮度比为L R =L G :L B =1:4.5907:0.0601 Lm/(s r ·m 2 ) 色度坐标和色品坐标 三原色坐标:R ,G ,B ,是三维色度坐标。 色品坐标(归一化坐标):r=R R+G+B , g= G R+G+B ,b= B R+G+B , 并有 r+g+b=1 光谱三刺激值(色匹配函数) )(λr ,)(λg ,)(λb 代表匹配一种颜色,需要R 、G 、B 的比例。即取 )(λc = B b G g R r )()()(λλλ++, 就可以匹配出所要求的)(λc 颜色.并且)(λr ,)(λg ,)(λb 是有表可查的,其规律可参见图1.5-1。 图1.5-1 色匹配函数

(6)色度图及色品图 三原色坐标见图1.5-2a,色品坐标见图1.5-2b,实际色谱的色品则示于图1.5-2c 中。由图1.5-2c 可见,三原色系统的色品图中有很大部分出现负值,使用很不方便,为此,国际照明委员会建立了CIE 标准色度系统,解决了这一问题。 图1.5-2 色度及色品图 1.5.4 CIE 标准色度系统 设立标准光源和标准观察者,建立假想色度坐标 ),,(Z Y X ,归一化坐标),,(z y x 和色匹配函数),,(z y x ,以此来建立CIE 标准色度系统。 1) CIE1931标准色度系统 这一色度系统是在观测视场为2°的情况下制订出来的。 (1)标准色度坐标的变换 CIE1931标准色度系统的变换关系为: []???? ????????????????=????????????????????=??????????B G R B G R Z Y X 5943.50565.000601.05907.40002.11302.17517.17689.299.001.000106.08124.01770.02.03100.04900.06508.5 及

光度学与色度学复习内容

名词解释: 1.同色异谱色:对于特定标准观察者和特定照明体,具有不同光谱分布而有相同 三刺激值的颜色。 2.颜色校正:是把阶调层次偏差的原稿和扫描分色引起颜色偏差的图像校正过 来,使其能得到反映原稿的正确色调、层次和灰平衡。 3.大面积着色原理:假如传送细节的尺寸小于1 mm,那么人眼看到的各个细节部 分只是在亮度方面存在着差别,而在颜色方面没有差别,都表现为灰色。所以,当重现彩色图像时,只有大面积部分需要以三原色显示,其色彩可以丰富图像内容。而对各种颜色的细节部分,彩色图像可不必显示出色度的差别。因为此时,人眼已不能辨认它们的色度区别了,只能感觉到它们之间的亮度的不同,可以用黑白来显示,这称为大面积着色原理。 4.光度学就是根据人类视觉器官的生理特性和某些约定的规范来评价辐射所产生 的视觉效应。 5.分布温度:光源的分布温度是在一定谱段范围内,光源光谱辐射度曲线和黑体 的光谱辐射度曲线成比例或近似成比例时的黑体温度,因而分布温度可描述光源的光谱能量分布特性。 6.照明体同色异谱指数:对于特定参照照明体和观察者具有相同的三刺激值的两 个同色异谱样品,用具有不同相对光谱功率分布的测试照明体所造成的两样品间的色差( E)作为照明体同色异谱指数Mi 7.总光谱辐亮度因数:总光谱辐亮度因数是在多色光照明下,来自荧光物体表面 的反射和发射的辐亮度与在相同照明观测条件下非荧光参考样品的反射辐亮度之比。 8.朗伯定律:di / dx = - K I 式中,K为薄膜的吸收系数,其值通常为正,采用 负号表示强度减小。对整个膜厚度进行积分得:I = Io e -Kx 或Ti = I / Io = e –Kx 此式即为朗伯定律的表达式,其中Ti 称为膜内部的透射率。 9.格拉斯曼色彩混合定律 10.减色原理 填空:

CIE基本色度学分析与计算

高工LED技术中心发布时间:2009-08-04 16:07:39设置字体:大中小 色度学是门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。彩色视觉是人眼的种明视觉。彩色光的基本参数有:明亮度、色调和饱和度。明亮度是光作用于人眼时引起的明亮程度的感觉。一般来说,彩色光能量大则显得亮,反之则暗。色调反映颜色的类别,如红色、绿色、蓝色等。彩色物体的色调决定于在光照明下所反射光的光谱成分。例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。对于透射光,其色调则由透射光的波长分布或光谱所决定。饱和度是指彩色光所呈现颜色的深浅或纯洁程度。对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。因而饱和度是色光纯度的反映。100%饱和度的色光就代表完全没有混入白光阴纯色光。色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。 应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。 基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。黄光既能激励红视锥细胞,又能激励绿视锥细胞。由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。 三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。不同比例的三基色光相加得到彩色称为相加混色,其规律为: 红+绿=黄 红+蓝=紫 蓝+绿=青

颜色基础知识

颜色基础知识 随着涂料行业的发展以及人民生活的提高,颜色问题日益引起市场的重视。颜色感觉与听觉、闻觉、味觉等都是外界刺激人的感觉器官而产生的感觉。光照射物体经反射或透射后刺激人眼,人眼产生了此物体的光亮度和颜色的感觉信息,并将此信息传至大脑中枢,在大脑中将感觉信息进行处理、形成了色知觉。 外界光刺激-色知觉-色感觉是一个复杂的过程,它涉及光学、光化学、视觉生理、视觉心理等方面问题,从这个过程可以看出,颜色和光及人眼的观察生理,心理基础有着密切的联系,目前通过大量实验为基础已建立了一套定性、定量描述颜色的理论,称为色度学。 第一节、光与颜色 一、 可见光波与颜色 光是一种一定频率的电磁辐射。电磁辐射的范围从r射线到无线电波,电磁辐射中仅有一小段能够引起眼睛的兴奋而被感觉,这就是通常所说的可见光谱的范围,可见光谱的波长从380nm到 780nm,这一段波长人眼是可以看见的,不同的波长引起不同的颜色感觉。 光谱颜色波长及范围 颜色 波长(nm) 范围(nm) 红 700 640-780 橙 620 600-640 黄 580 550-600 绿 510 480-550

兰 470 450-480 紫 420 380-450 表中波长的范围只是粗略的,实际上从一种颜色过度到另一种颜色是一种渐变的,并且颜色随波长的变化也是不均匀的。 太阳光是一种强光,人们感觉太阳光是白色的,但事实上我们让一束太阳光通过三棱镜辐射到一幅白幕上,就会展现出一条具有各种颜色(红、橙、黄、绿、青、蓝、紫)的光带,通常进入我们的眼睛的光线很少是纯粹的单色光,只有在实验室中,利用单色仪才能观察到单色光,在日常生活中,一般是各种波长的光线一起进入我们的眼睛的,是一种混合光,混和光随着各种波长光能量的比例不同而呈现不同的颜色,短波的光能量较大时呈现蓝紫 色,长波的光能量较大时呈现红色等。 二、 自然界物体的颜色 1、自然界物体的颜色千变万化,我们所以能看见物体的颜色,是由于发光体的光线照射在物体上,光的辐射能量作用于视觉器官的结果。物体的颜色一般分为表面色和光源色,表面色即不发光物体的颜色。不发光物体的颜色只有受到光线的照射时才被呈现出来,物体的颜色是由光线在物体被反射和吸收的情况决定的,它受光源条件的影响。 绿色物体在日光下看是绿色,是由于将日光中绿色范围的波长反射出来,而光谱的其他成分则被它吸收了,当这个绿色的物体放在红光下看就变成黑色了,这是由于红光中无绿色的成分被它反射。

色度学基础知识

---------------------------------------------------------------------------------------------------------------------------------------- 色度学基础知识 一、 概述 色度学是研究人的颜色视觉规律、颜色测量的理论与技术的科学, 是以物理光学、 视觉生理、视觉心理、心理物理等学科领域为基础的综合性科学。 在现代工业和科学技术发展中, 存在着大量有关色度学的问题, 颜色与人民生活 的衣食住行密切相关。颜色的测量和控制在一些工农业生产中极为重要, 在许多部门颜 色是评定产品质量的重要指标, 如染料、涂料、纺织印染、 塑料建材、医学试剂、食品 饮料、灯光信号、造纸印刷、电影电视、军事伪装等等, 这一切都是由于颜色科学的建 立, 才使色度工作者能以统一的标准, 对颜色作定量的描述和控制。 在纺织印染、染料和涂料等行业天天与颜色打交道, 过去全凭目测评定, 评定结 果无法记述, 储存。 并受观察者的身体状况、情绪、年龄等影响很大。 随着电子技术 和计算机技术的迅速发展, 测色仪器的测色准确性、重演性和自动化程度大大提高。现 在又有在线检测对提高产品质量, 减少不合格品率更为有用。 为此测色技术在各行各业 日益得到广泛应用。 色彩的感觉是一个错综复杂的过程, 单从物理观点来考虑, 色彩的产生有三个 主要因素: 光源,被照射的物体和观察者。 二.、 光和颜色 1、 光源 光由光源体发出, 太阳光是我们最主要的光源。光辐射是一种电磁辐射波, 包括 无线电波、紫外光、红外光、可见光、X 射线和γ射线等。 我们人类所能见到的光只是电磁波中极小的一部分,其波长范围是380--700nm (纳 米)称为可见光谱。 在可见光谱范围内, 不同波长的辐射引起人的不同颜色感觉: 700nm 为红色, 580nm 为黄色, 510nm 为绿色, 470nm 为蓝色。单一波长的光表现为一种颜色, 称为 单色光。 物体在不同光源照射下会呈现不同的颜色, 为此国际照明委员会(CIE )规定了如 下

色度学的基本知识

色度学的基本知识 色度学是研究人的颜色视觉规律,颜色测量理论与技术的科学,是物理光学,视觉生理,视觉心理等科学为基础的综合性科学。彩色电视技术中的色度学是研究自然界景物的颜色,如何在彩色电视系统中分解,传输,并在彩色电视机屏幕上正确的复显出来。名词解释: 同色异谱:也就是说一定的光谱分布表现为一定的颜色,但同一种颜色可以有不同的光谱分布合成。彩色电视机的颜色复显技术正是利用同色异谱概念,在颜色复显过程中,不是重复原来景物的光谱分布,而是利用几种规格化的光源进行配制。以求在色感上得到等效效果。如在彩电的复显中用的是R,G,B三基色光谱(因为R,G,B三基色可以混合出自然界中绝大多数颜色)的合成来复显原来景物的颜色。 绝对黑体:是指在辐射作用下既不反射也不透射,而能把落在它上面的辐射全部吸收的物体。当绝对黑体被加热时,就会发射一定的光谱,这些光谱表现为特定的颜色。 色温:当绝对黑体发射出与某一光源相同特性的光时,绝对黑体所必须保持的温度,便叫某光源的“色温”。 1931CIE-XYZ计色系统 现代色度学采用CIE(国际照明委员会)所规定的一套色测量原理,数据和计算方法,称为CIE标准色度学系统。 白色可分为好多种,有偏红的白色(暖白色),偏蓝的白色(冷白色)等。在彩色电视系统中,为了分解,重现彩色图象,通常也要选择一种白色作为分解,重现颜色的基准白。为了清楚的描述不同的白色,通常把1931CIE-XYZ图中把白色用色度坐标(x,y)来表示,也可以用相关色温和最小分辨的颜色差来表示。图中斜竖线称为布朗克轨迹等色温线,与其垂直的斜线称为最小可分辨的颜色差(Minimum Perceptible Colour Difference,简称MPCD),MPCD为零的斜竖线称为黑体(Black body)轨迹,又称布朗克轨迹。布朗克轨迹上各点呈现的白色代表了绝对黑体在不同绝对温度下呈现的白色

光度学和色度学简介

()λe 光度学和色度学简介 §1 光度学基本概念 一、辐射通量 设光源表面S(图3-1)向所有方向辐射出各种波长的光。此光源表面一个面积元dS 的辐射情况,可以用单位时间内该面积元dS 辐射出来的所有波长的光能量(也就是通过该面积的辐射功率)来表示,这就是面积元dS 的辐射通量。可用ε来表示,单位为瓦特。 于光源上任一面积元的辐射通量,不同波长的光在其中所占的相对数值是不同的。为了表示光源面积元所辐射的不同波长的光的相对辐射通量,我们引入分布函数e(λ)的概念。它就是在单位时间内通过光源面λ积的某一波长附近的单位波长间隔内的光能量。是波长` λ的函数,它又称谱辐射通量密度。 从光源面积元dS 辐射出来的波长在λ到λ+d 间的光辐射通 量为 于是,从面积元dS 发出的各种波长的光的总辐射通量为 二、视见函数 辐射通量ε代表的是光源面积元在单位时间内辐射的总能量的多少,而我们感兴趣的只是其中能够引起视觉的部分,相等的辐射通量,由于波长不同,人眼的感觉也不相同。为了研究客观的辐射通量与它们在人眼所引起的主观感觉强度之间的关系,首先必须了解眼睛对各种不同波长的视觉灵敏度。人眼对黄绿色光最灵敏;对红色和紫色光较差;而对红外光和紫外光,则无视觉反应。在引起强度相等的视觉情况下,若所需的某一单色光的辐射通量愈小,则说明人眼对该单色光的视觉灵敏度愈高。设任一波长为λ的光和波长为5550的光,产生相同亮暗视觉所需的辐射通量分别为Δελ和Δε5550,则比值 称为视见函数。图3-2是明视觉和暗视觉的相对视见函数实验图线,其纵坐标为视见函数。 明视觉以v(λ)表示,暗视觉以v ′(λ)表示。暗视见函数曲线的峰值向短波移动约500 o A ,当不同的单色光辐射通量能够产生相等强度的视觉时,v(λ)与这些单色光的辐射通量成反比。 根据多次对正常眼的测量,当波长为5550时,曲线具有最 0302,+90mm 。85mm ,BP 图3-2大值。通常取这最大值作为单位1。例如对于6000的波长来说,视见函数的相对值是0631,为了使它引起和5550相等强度的视觉,所需的辐射通量是5550的1/0631倍,即16倍左右。也就是说,为产生同等强度的视觉,视见函数v(λ)与所需的辐射通量d ελ成反比。 ()λ λελλλd e d d =+,()λλεd e ?∞ =0()λ εελν??=5550

色度学基本概念

色度學基本概念 5-1色覺的三種屬性(attribute) 光波進入人眼睛到達視網膜上時,引起的色覺具有三種屬性,即「色彩」、「飽和度」及「亮度」。 色彩(hue) 引起視覺的色光,可能是由數種波長的光波混合而成,但正常人眼均能感受出它最接近缸、橙、黃、綠、藍、紫等純光譜色中的那一種,這種屬性稱為「色彩」;而最接近的光譜色,一般也稱之為色光的「色彩」。太陽光譜中各色光的色彩,可以用其波長表示。因此單一波長的光,就稱為「單色光」。黑色與白色都沒有色彩,介於黑與白中間的灰色,也不具有色彩,或者說它們的色彩未定。 飽和度(saturation) 色彩與飽和度合稱為「色品」。「飽和度」指的是顏色偏離灰色、接近純光譜色的程度。黑、白、灰色的飽和度最低(0%),而純光譜色的飽和度最高(100%)。純光譜色與白光混合,可以產生各種混合色光,其中純光譜色所占的百分比,就是該色光的飽和度。 亮度(brightness) 「亮度」指的是光所產生的亮暗感覺。就白、黑、灰色而言,白色最亮,黑色則最不亮,灰色則居中。如果由明而暗,製作一系列代表不同等級亮度(稱為灰階)的灰色方塊(如下圖),則一有色方塊(下圖第二列為黃色)的亮度,可以在同一白光照射下,忽略其色彩與飽和度屬性,藉由視覺比較,找出亮暗感覺相近的灰色方塊,而以該灰色方塊的亮度為其亮度。 5-2色度學(colorimetry) (1)Luminous flux 光通量(與亮度對應) (2)Dominant wave length 主波長(與色彩對應) (3)Purity 純度(與飽和度對應)

(2)+(3)=chromaticity (色度) 一瓦特的任何色光,均可由任意選定的三種不同色彩(如紅、綠〃藍)的色光,以一定比例的光通量(R、G、B)混合,而引發相同的色覺: (R,G,B)3C V(λ)[lm/W/]=R+G+B R,G,B可能為負(負值表示是與待測定的色光混合)。以下為各單色光的R、G、B 值。

色度学的基本知识

色度学 色度学与物理光学等学科的基础不同, 物理光学可以认为是客观的科学, 是与人类无关的。而色度学却是一种主观的科学, 它以人类的平均感觉为基础, 因此它属于人类工程学范畴, 以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。 色度学确切的讲它是研究人眼对颜色感觉规律的一门科学。以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。辐射能量很大的波长很长的红光对人来说却没有辐射能量很小的黄光亮, 人们就认为黄光的强度比红光大。 在人们眼中所反映出的颜色,不单取决于物体本身的特性,而且还与照明光源的光谱成分有着直接的关系。所以说在人们眼中反映出的颜色是物体本身的自然属性与照明条件的综合效果。我们用色度学来评价的结论就是这种综合效果。 色度学是研究人的颜色视觉规律、颜色测量理论与技术的科学,它是一门本世纪发展起来的,以物理光学、视觉生理、视觉心理、心理物理等学科为基础的综合性科学。 每个人的视觉并不是完全一样的。在正常视觉的群体中间,也有一定的差别。目前在色度学上为国际所引用的数据,是由在许多正常视党人群中观测得来的数据而得出的平均结果。就技术应用理论上来说,已具备足够的代表性和可靠的准确性。 国际照明委员会(CIE) 国际照明委员会(Commission Internationale ed I'Eclairage-CIE) 主要研究照明的专业术语、光度学和色度学的国际学术研究机构。设在巴黎。早在1924年前就已从事标准色度学系统的研究,1931年根据莱特(W.D.Wright)在1928-1929年和吉尔德(J. Guild)在1931年研究三原色的角度观察效果,加以平均,规定了CIE 1931标准色度观察者光谱三刺激值,并据以绘制出偏马蹄形曲线的*色度图,称为“1931 CEL-RGB系统色度图”,后经修改被推荐为1931 CIE-XYZ系统,为国际通用色度学系统,称为“CIE标准色度学系统”,所作的图则称“CIE 1931色度图”。1964年又综合斯泰尔斯(W.S. Stiles)和伯奇(J.M.Bruch)以及斯伯林斯卡娅(N.I.Speranskaya)1959年发表的研究结果,制定了CIE1964补充色度学系统以及相应的色度图,为世界各国广泛采用,据以进行色度计算和色差计算。1964年又提出了“均匀颜色空间”的三维空间概念,1976年加以修订,并正式被采用。CIE为此还提出了确定的参照光源,称“CIE 标准光源”。 眼睛的剖视结构 ▲虹膜(Iris):

色度学基础

第一节色度学基础 色度学与人类工程学 色度学与物理光学等学科的基础不同, 物理光学可以认为是客观的科学, 是与人类无关的。而色度学却是一种主观的科学, 它以人类的平均感觉为基础, 因此它属于人类工程学范畴, 以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。辐射能量很大的波长很长的红光对人来说却没有辐射能量很小的黄光亮, 人们就认为黄光的强度比红光大。色度学既然是建立在人眼的反应基础上, 对于别的动物就不适用了。好在人类的不同人种之间对光的感受没有太大的区别, 因此色度学是和人种无关的。 绝对亮度( Lv) 的定义是: ( 坎德拉/ 平米) 其中θ 是发光表面法线与给定方向夹角的余弦。由于多数情况下是垂直于发光表面观察的, 所以亮度可理解为单位面积的发光强度( di 为微发光强度, ds 为微发光面元) 。 1 坎德拉的发光强度是频率为540×1012赫兹的光源在每球面度中强度为1/683 瓦的光辐射。由此可见, 亮度与电磁波的辐射强度这个物理量成正比。又由于人眼的感色性的关系, 又与光的波长密切相关。 由于人眼在不同的亮度环境下会自动调节瞳孔的大小, 使进入眼睛的光强总在一个亮度范围之内。因此除了在超出人眼调节范围之外的极暗或极亮的环境之外, 使用相对亮度来表述图像或图片更为方便。例如, 尽管电视屏幕的白场、灯光下的白纸和阳光下的白纸的亮度很不一样, 但都将其定义为100% 的相对亮度。考虑到在电子出版领域的应用, 后面使用亮度这个术语时, 都是表示相对亮度。 亮度和明度 物体的亮度在计算机内都要以整数的方式表示, 例如最亮的为100, 最暗的就是0, 中间还有许多过渡亮度。为了计算方便, 计算机内通常都以 2 的多少次方来表示一个亮度范围。例如0~31、0~63、0~127、0~255。现在最常用的是0~255, 即256 级亮度, 但其他几种方式也常使用; 例如有许多彩色显示卡的32K 色显示方式, 它的亮度等级就是0~31, 共32 级。 由于亮度成了不连续的过渡, 就很有可能使人查觉出亮度的跳跃。32 级亮度就很容易查觉出跳跃, 256 级亮度则很难查觉出跳跃。如果将32 级亮度的灰色块连续显示在屏幕上, 会发现较暗的部分跳跃比较厉害, 较亮的部分则显得连续得多。这个现象很早就被人们发现了。测试人员用一组深浅不同的灰卡, 让被测试者选一张介于最深和最浅之间的灰卡, 结果大多数人选出的灰卡亮度只有18%! 继续这种测试, 在黑色和中间灰之中、中间灰和白色之中……, 直到人们无法区分两种灰卡的深浅为止。将选出的灰卡按由深到浅的顺序排好, 再实测它们的亮度, 发现它的编号(L) 与亮度(Y) 的关系为: L=116( Y )1/3 -16 100 其中L=0~100, Y=0~100。此近似关系经CIE( 国际照明工程师协会) 组织规范化为以上的明度公式。明度是一种心理亮度的度量单位, 同样一幅照片, 如果用32 级等差明度来表示质量要比32 级等差亮度好得多。要达到同等表现质量, 用亮度表示要比用明度多用150% 以上的数据量, 即255 级亮度约只相当于100 级的明度, 在实际使用中, 如果用明

光与色的基本知识

引言 为了普及和加强整个染色部门理论培训,特编写本教材。 本教材内容包括染色部LAB—DIP 基本程序、纤维知识、光与色的知识、测色仪原理、活性染料染色理论、助剂、工艺、后整、常见中英文对照等。这些内容,从理论与实践两个方面,阐述了现用染料染色工艺,有较强的指导作用。 染色是一个历史悠久的行业,要求每个染色工作者必须具有较高的专业技能,希望各位同事能学习扎实理论知识,付之实践,不断完善。为我部,乃至整个公司,整个染整事业贡献自己的力量。 第一章 LAB—DIP 基本程序 1 .接样:接到客户来样后,了解客户要求、交样时间、样版总数,有困难及时向主管 反映。 2 .选择材料:根据“打样要求单”明确开纱样、布样,或其它种类的织物。 3 .选择光源:根据不同的客户选择不同的标准光源(见《对色光源表》) 4. 选择染料:根据色样选择染料组合时,考虑各方面因素的主次顺序是: 客户色牢度要求→车间生产的难易→同光异谱→价格 4.1 客户色牢度方面:要参照各染料单色的色牢度资料,选择染料,满足客户对日晒、 湿摩擦牢度、水洗牢度的要求。 4.2 同光异谱方面:对使用两个以上光源对色的客户,要选择同光异谱最小的组合, 若有问题要及时通知主管。 4.3 价格方面: 4.3.1若来样面积足够大即超过对色仪最小孔(直径6.6MM),可用电脑对色仪开配方, 参考配方的价格。 4.3.2 若来样面积不够大,要用化验室现有资料和单色色谱开配方,查找“YK

Dyestuffs Price and StockList”上的价格,确保价格经济原则。 4.3.3 以上两种方法开配方均以达到相近质量、价格经济为原则。 4.4 车间生产方面:选择染料参考车间染料组合生产情况,选择上染性能一致染料组合。对于车间工艺还不成熟的染料组合,先送车间技术组确认并从工艺上准备。 5. 开方 5.1 在客户样版上的色号上方做记号“√”表示已开配方。 5.2 填写配方卡: 5.2.1将通过DATACOLOR 或资料选定的配方,以及客户、纱支、布类、色号等资料分别填入“配方卡”。 5.2.2 填入元明粉(Na 2SO 4 )、纯碱(Na 2 CO 3 )用量(按照《化验室工艺文件》)。 5.2.3 配方卡上注明写清用布/纱的类型:正常布/纱或是复漂布/纱,对特殊布需另外注明 。 5.3 填入染色工艺:根据染料组合和染色织物材料,确定染色工艺。 5.3.1 纱样染色工艺: 1#:适用于SUMIFIX SUPRA染料和SUMIFIX/REMAZOL/EVERZOL染料升温工艺4#:适用于科来恩高温染料 5#:适用于SUMIFIX/REMAZOL和EVERCION染料(80o C) 11#:适用于SUMIFIX SUPRA染料和SUMIFIX/REMAZOL/SLS/MEGAFIX染料恒温工艺 (工艺流程曲线见技术文件《化验室小样工艺》)。 5.4 填写浴比:根据不同的染色材料选择浴比。一般纱样和布样的浴比均为1:10。有特 殊要求的需要注明 5.5 填写染色时间:根据所用染料总量的多少选择染色时间。 无论是布样或纱样,染料总量小于2%(OWF)时,均用30分钟。 无论是布样或纱样,染料总量大于2%(OWF)时,用60分钟。 其余纱样、布样均用60分钟染色(可省去不填)。 对于化纤、漂白纱样和布样需特殊注明。 5.6 填写后处理工艺:根据织物类型、颜色、浓度的不同选择不同的后处理工艺。 纱/布样后处理工艺:

基本色度学RGB基本原理白光工程师你必须撑握的基本知识

基本色度学RGB基本原理白光工程师你必须撑握的基本知识! 色度学是—门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。彩色视觉是人眼的—种明视觉。彩色光的基本参数有:明亮度、色调和饱和度。明亮度是光作用于人眼时引起的明亮程度的感觉。一般来说,彩色光能量大则显得亮,反之则暗。色调反映颜色的类别,如红色、绿色、蓝色等。彩色物体的色调决定于在光照明下所反射光的光谱成分。例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。对于透射光,其色调则由透射光的波长分布或光谱所决定。饱和度是指彩色光所呈现颜色的深浅或纯洁程度。对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。因而饱和度是色光纯度的反映。100%饱和度的色光就代表完全没有混入白光阴纯色光。色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。 应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。 基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。黄光既能激励红视锥细胞,又能激励绿视锥细胞。由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。 三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。不同比例的三基色光相加得到彩色称为相加混色,其规律为: 红+绿=黄 红+蓝=紫 蓝+绿=青 红+蓝+绿=白 彩色还可由混合各种比例的绘画颜料或染料来配出,这就是相减混色。因为颜料能吸收入射光光谱中的某些成分,未吸收的部分被反射,从而形成了该颜料特有的彩色。当不同比例的颜料混合在一起的时候,它们吸收光谱的成分也随之改变,从而得到不同的彩色。其规律为: 黄=白-蓝 紫=白-绿 青=白-红 黄+紫=白-蓝-绿=红 黄+青=白-蓝-红=绿 紫+青=白-绿-红=蓝 黄+紫+青=白-蓝-绿-红=黑

颜色基础知识

颜色基础知识 篇一:CIE 1931 色度图 从小到大,我们对色彩都要接触到三基色、三原色的概念,由此可以看出,色彩是一个三维函数,所以应该由三维空间表示。如图1就是传统色度学著作常用来表示颜色的纺锤体,图2是按人对颜色分辨能力构造的三维彩色立体。由于人类思维能力和表现能力的限制,三维的坐标系在实际应用中都暴露出了很大的局限性。 显示器的显示采用的是色光加色法,色光三原色是红、绿、蓝三种色光。国际标准照明委员会(CIE)1931年规定这三种色光的波长是: 红色光(R):700nm 绿色光(G): 蓝色光(B): 自然界中各种原色都能由这三种原色光按一定比例混合而成。 在以上定义的基础上,人们定义这样的一组公式: r=R/(R+G+B) g=G/(R+G+B) b=B/(R+G+B) 由于r+g+b=1, 所以只用给出 r和 g的值, 就能惟一地确定一种颜色。这样就可将光谱中的所有颜色表示在一个二维的平面内。由此便建立了1931 CIE-RGB表色系统

但是,在上面的表示方法中,r和g值会出现负数。由于实际上不存在负的光强,而且这种计算极不方便,不易理解,人们希望找出另外一组原色,用于代替CIE-RGB系统,因此,在1931年CIE组织建立了三种假想的标准原色X(红)、Y(绿)、Z(蓝),以便使我们能够得到的颜色匹配函数的三值都是正值,而x、y、z的表达方式仍类似上面的那组公式。由此衍生出的便是1931 CIE-XYZ系统(如图4),这个系统是色度学的实际应用工具,几乎关于颜色的一切测量、标准以及其他方面的延伸都以此为出发点,因而是颜色视觉研究的有力工具。 是一些典型设备在1931 CIE-XYZ系统中所能表现的色彩范围(色域)。其中,三角形框是显示器的色彩范围,灰色的多边形是彩色打印机的表现范围。 从色域图上可以看到,沿着x轴正方向红色越来越纯,绿色则沿y轴正方向变得更纯,最纯的蓝色位于靠近坐标原点的位置。所以,当显示器显示纯红色时,颜色值中的x值最大;类似地,显示绿色时y值最大;根据系统的定义,在显示蓝色时则是1-x-y的结果最大。值得一提的是,x、y值是小数,应该表示为的形式,但是,为了表达方便和节约空间,我们的文章中会省略掉“0.”,而使x、y值看起来像一组三位数。 CIE 目录 CIE(国际发光照明委员会):原文为Commission Internationale

相关文档
最新文档