探究四点共圆的条件--教学设计

探究四点共圆的条件--教学设计
探究四点共圆的条件--教学设计

数学活动探究四点共圆的条件

一、内容和内容解析

1.内容

四点共圆的条件.

2.内容解析

四点共圆的条件是在学生学习了经过一个点的圆、经过两个点的圆、经过不在同一直线的三个点的圆、三角形与圆的关系、圆内接四边形后,对经过任意三点都不在同一直线上的四点共圆的条件的探究.圆内接四边形对角互补,相应地,对角互补的四边形的四个顶点共圆.

在四点共圆的条件的探究过程中,通过对特殊的四边形(平行四边形、矩形、等腰梯形)的四个顶点组成的四边形等四边形的探究,发现一般的规律(过对角互补的四边形的四个顶点能作一个圆),体现了特殊到一般的思想.同时,在研究的过程中,类比将四边形转化成三角形来研究,从三点共圆入手探究四点共圆的条件,体现了转化的思想和方法.另外,学生经历探究四点共圆的条件这一数学活动的全过程,在“做”的过程和“思考”的过程中积淀,有利于数学活动经验的积累.

基于以上分析,确定本节课的教学重点:四点共圆的条件的探究.

二、目标和目标解析

1.目标

(1)理解过某个四边形的四个顶点能作一个圆的条件.

(2)通过四点共圆的条件的探究和猜想的证明,体会由特殊到一般、转化的数学思想,积累数学活动的经验.

2.目标解析

达成目标(1)的标志是:知道对角互补的四边形的四个顶点共圆的结论,会应用反证法证明这一结论,能应用对角互补的四边形四个顶点共圆判断给定的四边形的四个顶点是否可以作一个圆.达成目标(2)的标志是:通过画图、观察、测量、比较、分析平行四边形、矩形、菱形、等腰梯形的四个顶点组成的四边形等特殊的四边形的四个顶点能否共圆,得到对角互补的四边形四个顶点共圆的更一般的结论;将证明四点共圆的问题转化为不共线的三点可以确定的圆与第四个顶点的关系,并应用圆内接四边形对角互补获得证明;在解决问题的过程中,积极思考,勇于质疑,体会发现问题,解决问题、有效地呈现活动结果等过程是数学活动的基本过程.

1

共圆中国梦教学设计

共圆中国梦 一、教材分析 《共圆中国梦》是本教材第四单元第八课的第二框内容。本课从新时代我国取得的辉煌成就入手,真实的展示了我们比历史上任何时期都更接近中华民族伟大复兴的目标。介绍了实现中国梦的路径,即实现中国梦,要坚持党的领导,坚持新发展理念,统筹推进“五位一体”总体布局,协调推进“四个全面”战略布局;实现中国梦,要走中国道路、弘扬中国精神、凝聚中国力量。展现了各行各业中国人的自信,介绍了自信的中国人的形象,引导学生做一个踏实奋斗、勇担责任的自信追梦人。做自信中国人是实现中国梦的主体条件和必然结果。本课对于学生努力奋斗实现中华民族伟大复兴的中国梦,实现个人梦想,积极承担自己所担负的时代责任与历史使命,做自信的中国人有着极为重要的引领作用。并且本课对于培育学生政治认同、科学精神、公共参与的核心素养,提高价值判断和价值选择的能力具有重要的作用。 二、教学目标 1.情感、态度和价值观目标:坚定为实现中华民族伟大复兴而奋斗的信念,懂得青少年所担负的时代责任与历史使命;坚定中国特色社会主义道路自信、理论自信、制度自信、文化自信,做自信的中国人。 2.能力目标:理解中国梦的实现路径,培养信息搜集能力、理论联系实际的能力;能辨别和判断自信的中国人的表现,提高价值判断和价值选择的能力;结合中华民族的伟大复兴,学会规划自己的人生,制订圆梦计划,提高公共参与能力。 3.知识目标:懂得实现中华民族伟大复兴的中国梦,必须坚持党的领导,必须走中国道路,弘扬中国精神,凝聚中国力量;了解中国自信、民族自信的原因,了解自信中国人的表现。 三、教学重难点 教学重点:懂得实现中华民族伟大复兴的中国梦,必须坚持党的领导,必须走中国道路,弘扬中国精神,凝聚中国力量。 教学难点:懂得实现中华民族伟大复兴的中国梦,必须坚持党的领导,必须走中国道路,

《确定圆的条件》教学设计

第三章圆 5.确定圆的条件----教学设计 一、学生知识状况分析 学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。 学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。 二、教学任务分析 本节课的内容是第一节内容的延续,学生已积累了画一个圆的经验。基于以上两点,提出本课的具体学习任务:①经过一点、两点、三点能否作出圆、能作出几个圆。②了解三角形的外接圆、三角形的外心等概念,但本课内容从属于“空间与图形”的教学目标:认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满探索性和创造性,感受证明的必要性及结论的确定性。同时也应力图在学习中逐步达成学生的有关情感态度目标。因此,本节课的教学目标是: 知识与技能 1、了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法;2.了解三角形的外接圆、三角形的外心等概念。 过程与方法 1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。 2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。情感态度与价值观 形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。 教学重点:理解不在同一直线上的三个点确定一个圆 教学难点:理解不在同一直线上的三个点确定一个圆。 三、教学过程分析 本节课设计了六个教学环节:情景引入;旧知回顾;探究新知;达标检测;课堂小结;布置作业。 第一环节:情景引入 活动内容:同学们,你喜欢玩具吗?有一个圆形玩具,被淘气的小孩摔碎了,你能帮我画出这个玩具所在的整圆吗?

数学人教版九年级上册24.探究四点共圆的条件

探究四点共圆 阜阳开发区一初王丽 2017/5/1 一、内容和内容解析 本节内容是探究四点共圆的条件。四点共圆是在学生学习了经过一个点的圆、经过两个点的圆、经过不在同一直线上三个点的圆、三角形与圆的关系、圆内接四边形后,对经过任意三点都不在同一直线上的四点共圆条件的探究。圆内接四边形对角互补,相应地,对角互补的四边形的四个顶点共圆。 在四点共圆条件的探究过程中,通过对特殊的四边形(矩形、等腰梯形)、有公共斜边的两个直角三角形的四个顶点组成的四边形等四边形的探究,发现一般的规律(过对角互补的四边形的四个顶点能做一个圆),体现了特殊到一般的思想。同时在研究过程中类比将四边形转化为三角形来研究,从三点共圆入手探究四点共圆的条件,体现了转化的思想。另外,学生经历探究四点共圆的条件这一思想活动的全过程,在“做”的过程和“思考”的过程中有利于数学活动经验的积累。 二、学情分析 学生在发现问题的阶段可能会受到任意一个三角形的三个顶点做一个圆的影响,去判断第四个顶点是否在这个圆上,解决这一问题的关键是引导学生从特殊的四边形出发,从特殊到一般的探究问题。通过画图、观察、测量分析矩形、等腰梯形、有公共斜边的两个直角三角形的

四个顶点共圆与四边形的边长无关,由此联想圆内接四边形对角互补,获得猜想。另外,猜想的证明要用到反证法,学生可能不知如何入手,而且猜想的证明对学生来说是难点。 三、教学目标: (1)理解过某个四边形的四个顶点能作一个圆的条件。 (2)通过四点共圆的条件的探究和猜想的证明,体会由特殊到一般转化的数学思想,积累数学活动的经验。 四、教学重难点: 重点:四点共圆条件的探究。 难点:对角互补的四边形四个顶点共圆的证明。 五、教学过程: I、创设情境、引入新课 同学们,我们的家乡阜阳是有着悠久历史的地方,如果给我们一天的时间参加阜阳一日游活动,你会选择哪里呢?那么,今天老师就带领大家一起参观阜阳生态园。 问题1:某市公园需要经过A、B、C三个旅游景点建一个圆形快车道,如图,假如我们把A、B、C三个旅游景点抽象成点,你能设计出这个圆形轨道吗? 设计意图:由学生熟知的参观阜阳生态园入手,让学生去设计不在同

放飞梦想 共筑中国梦主题班会教案

《放飞理想,共筑中国梦》主题班会 南华初中三年级 1 班 班主任:续得前 一、活动目标 1.通过交流畅谈,让学生明晰自己的少年梦想。 2.讲述纯美梦想,思考实现梦想需要如何行动? 3.同学们要体会自己的未来也是祖国的未来,个人的梦想与国家的发展息息相关。 二、活动过程 1.开始仪式: 中队长:全体整队,各小队出列 小队长:立正、报数 报告中队长,本小队原有(18)人,实到(18)人,报告完毕。 中队长:接受你的报告。 中队辅导员:接受你的报告,并祝你们中队会圆满成功。 中队长:稍息。出旗,敬礼。 礼毕,唱队歌。 中队长:我宣布,三(1)中队,放飞梦想,共筑中国梦主题班会现在开始。有请主持人。

2.学生活动: 主持人(男):尊敬的老师们! 主持人(女):亲爱的同学们! 主持人(合):大家好! 主持人(男):三(1)班“放飞理想,共筑中国梦”主题班会现在开始。 主持人(女):理想是个诱人的字眼。 主持人(男):理想是灯塔,指引人生前进的方向,照亮人生前进的路程。 主持人(女):一个没有梦想的人,就像鸟儿没有翅膀,就像打桩的没有准备。 主持人(男):没有理想,就没有坚定的方向,没有坚定的方向,就没有生活; 主持人(女):罗勃朗宁曾把他的《索尔》中说过:人类的伟大不在于他们在做什么,而在于他们想做什么。 主持人(男):福尔摩斯也说:世界上最重要的事,不在于我们在何处,而在于我们朝什么方向走。 主持人(女):是啊,"想做什么"、"朝什么方向走\"指的就是我们头上的一颗指路明星--理想。下面请听我们带来的小合唱《七色光之歌》。 主持人(男):真好听。就如歌词中所说,今天我们在阳光下成长,明天我们去创造七彩世界。 主持人(女):是啊,每个人都有一个理想,下面请同学们说说自己的理想。 我的理想是成为一名光荣的人民教师。站在那三尺讲台上,为好些天真的孩子们讲课。望着那一双双渴望得到新知识的大眼睛时,我会为自己是一名教师而感到骄傲。

确定圆的条件(教学设计)

4.2确定圆的条件 〖学习目标〗 1.知识与技能:①理解不在同一直线上的三个点确定一个圆; ②掌握过不在同一直线上的三个点作圆的方法; ③了解三角形的外接圆、三角形的外心等概念,提高应用数学知识解决实际问题的能力。 2.过程与方法:经历不在同一直线上的三个点确定一个圆的探索过程,体会归纳、类比以及 由特殊到一般的数学思想方法。 3.情感态度与价值观:在探索活动中培养学生勇于探究的学习品质,体会解决问题的策略, 学会数学地思考。 〖学习过程〗 (一)创设情境激发兴趣Array问题1:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所 示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎 片应该是哪一块? 问题2:玻璃店里的师傅,要划出一块与原来大小一样的圆形玻璃, 他只要知道圆的什么就可以了?为什么? 问题3:如果店里师傅仅仅知道圆的半径,他可以画出多少个这样 的圆?为什么? (二)操作探究归纳结论 活动一:过定点A是否可以作圆?如果能作?可以作几个? 活动二:过两个定点A、B是否可以作圆?如果能作,可以作几个? 活动三:过三点,是否可以作圆,如果能,可以作几个?(分两种情况讨论) 归纳结论:_______________________________________________________________ (三)例题示范 已知:△ABC,求作⊙O,使它经过A、B、C三点。 (四)知识拓展 经过4个(或4个以上的)点是不是一定能作圆? (五)合作交流

形成概念:三角形的外接圆、三角形的外心、圆的内接三角形。 自主探索:三角形的外心与三角形的位置关系。 (六)学以致用 发展能力 1.直角三角形的两条直角边长分别为6和8,那么这个三角形的外接圆的半径等于 . 2.①破镜重圆:利用所学知识,帮助玻璃店里的师傅找出残缺圆片所在的圆心,并把这个圆画完整. ②实际操作:小明发现,店里师傅先在圆弧上顺次取三点A 、B 、 C.(如图),使AB=BC.并测量得:AB=BC=5dm,AC=8dm,然后师傅计算了 下,就很快划出与原来一样大小的圆形玻璃,你知道他计算的是什 么? (七)回顾反思 交流收获 本节课你学到了什么? (八)达标检测 1.判断题: (1)三点确定一个圆 ( ) (2)任意一个三角形一定有一个外接圆,并且只有一个外接圆 ( ) (3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形( ) (4)三角形的外心是三角形三边中线的交点 ( ) (5)三角形的外心到三角形各顶点距离相等 ( ) 2.已知点O 是△ABC 的外心,∠A=500,则∠BOC 的度数是 ( ) A.500 B. 1000 C.1150 D. 650 (九)作业 习题4.2A组 1、2题 A B C

四点共圆问题-(数学竞赛)

P 四点共圆问题 四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识 (1) 若干个点与某定点的距离相等,则这些点在一个圆上; (2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆; (4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =g g ,则A B C D 、、、四点共圆; (6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =g g ,则A B C D 、、、四点共圆。 四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。 例1、已知PQRS 是圆内接四边形,0 90PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS 例2、给定锐角ABC V ,以AB 为直径的圆与边AB 上的高线' CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线' BB 及其延长线交于点P Q 、。证明:M P N Q 、、、四点共圆。 例3、在等腰ABC V 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点 Q R 、,又点'P 是点P 关于直线QR 的对称点。求证:点'P 在ABC V 分析:

确定圆的条件教学设计

确定圆的条件 (北师大版九年级下册第三章第四节)厦门市金尚中学刘丽丽

课题确定圆的条件 教学过程分析 步骤教师活动学生活动设计意图 (一) 创设 情境, 引入 新课 1.引导学生思考:帮助考古学家复原瓷 器就是要画一个与原瓷器大小一样的 圆。这样将生活实际问题转化为数学问 题。 2.确定圆需要哪些要素呢? 3.在瓷器碎片上很难直接找到圆心和 半径,引导学生寻找隐藏条件。 思考并回答确定圆的两 要素:圆心位置,半径 大小。 进一步明确:找到圆心, 确定半径的大小是问题 的关键。 培养学生将实际生活 中的问题抽象为数学 问题的能力,并使学 生体会到数学来源于 生活。 (二) 回顾 旧知, 激发 探索 回顾在之前的学习中我们是如何确定 直线: 1.过一点可以作几条直线? 2.过几点可确定一条直线? 3.引导学生思考:既然点可以作为确定 直线的条件,那么是否也可以作为确定 圆的条件呢? 1.学生动手画过一点的 直线,可以画无数条这 样的直线。 2.学生动手画过一点的 直线: . . 得出结论: 过两个已知点可以确定 一条直线。 “学生原有的知识和 经验是教学活动的起 点”通过复习确定直 线的方法,启发学生 用类比的方法探索确 定圆的条件。 (三) 合作 交流, 合作 探究 类比确定直线的方法,用点作为确定圆 条件: 1.探索一: (1)经过一个已知点A能确定一个圆 吗? 学生动手画过一点的 圆,并小组讨论交流。让学生动手实践,充 分交流,通过探究、 讨论、交流得到过一 个已知点可以作无数 多个圆 A A A B

过程分析(四) 巩固 新知, 解决 问题 1.现在你知道了怎样要将一个如图所 示的破损的圆盘复原了吗?作法: 1、在圆弧上任取三点 A、B、C。 2、作线段AB、BC的垂 直平分线,其交点O即 为圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。 在学生探究得出确定 圆的方法后,马上解 决实际问题,培养成 功感,同时使学生体 会到数学知识服务于 生活。 2.破镜重圆: 小明不慎把家里的圆形镜子打碎了,其 中四块碎片如图所示,为了配到与原来 大小一样的圆形镜子,小明带到商店去 的一块碎片应该是() A.第①块 B.第②块 C.第③块 D.第④块 利用所学知识思考并选 出正确答案A 进一步巩固所学知 识。 (五) 动手 操作, 再探 新知 介绍几个概念: 1.经过三角形各个顶点的圆叫做三角 形的外接圆。 2.外接圆的圆心叫做三角形的外心.这 个三角形叫做圆的内接三角形。 思考: 1.三角形的外心到三角形各顶点距离 有何关系? 2.如何画三角形的外接圆? 1.根据三角形外接圆的 定义可以回答出三角形 外心到三个顶点的距离 相等。 2.通过画三角形两边的 中垂线的得到交点即为 圆心,进而确定半径画 出外接圆。 培养学生独立思考, 解决问题的能力。 课题确定圆的条件 A B C O ④③ ②①

探究四点共圆的条件--点评

《四点共圆的条件》课堂分析 本节课的主要内容为《四点共圆的条件》,是一节数学活动。认真感受了整个课堂后,我想从以下三个角度谈一下我对本节课的想法。 一、数学思考 首先,问题是思维的源泉,更是思维的主力。本节课在问题的设计上,层次清晰、目标明确。先后四个主要问题:“通过四边形四个顶点作圆的结果如何?”,“怎么判断这四个点共圆或不共圆?”,“如何证明你的猜想?”,“你能用所学知识判断四个点在圆上吗?”,能很好地调动学生思考层次;而且在大问题下的小问题串的设计,与学生的认知水平相持平,这点从学生的回答方式(齐答、举手回答的数量和音量)上体现出来,尤其是老师的提问策略,例如:每次提问的候答时间,和理答方式都为学生思考提供了准确的方向和思考的空间。 其次,在不同的环节设计了不同的思考方式。例如,集中型的思考方式,体现在问题二的讨论中。各种角度,集思广议,最后将问题转化到对角互补的四边形四点共圆;再如,发散型的思考方式,体现在问题情景的设计中。将抽象出的几何图形转化成四边形或者转化成共斜边的两个直角三角形时,可以为学生的多维思考提供一个新的思路,直至,共边三角形的变式问题的出现。 二、课堂参与

整堂课的课堂气氛流畅、民主。从学生角度,学生参与课堂讨论的人数;学生回答问题的数量及人员分布;学生回答问题的语言上都能感受到学生的学习过程是和谐的、勤勉的。从教师角度来看,教师的语速、语态,教师对学生的评价,都为学生的学习提供绝佳的软环境。最后从师生的互动交流来看;彼此的情感认同,情绪都是积极的。 也正是这种民主的课堂,才能使知识的生成不会只发生在表面,才会形成深层次学习的动力。 三、创新之举 创新之一:情景创设人文化、图形呈现动态化 本节课的情境导入是以修建农家乐,铺设圆形石子路为背景的。比较符合当地地区的经济发展趋势,比较贴近于学生们的生活,对学生应用意识的培养是非常有利的。此外,在整个课堂的推进过程中,多次运用到《几何画板》的动态呈现方式,让学生们充分感受数量关系到图形关系的这种衔接,体会到特殊到一般的转化过程,对培养学生直观意识和空间观念起到了积极的作用。 创新之二:课堂讨论多维度、奇思妙想创新意 在对第二大问题的讨论中,生成了多角度的结论。从定义角度;从四边形边的角度;从四边形对角线角度;从四边形角的角度。进而呈现了很多的思维过程,达到差异互补、资源共享的作用,同时为学生创新意识的培养积累了的基础。教师为这些有大胆猜想的学生点赞,更加鼓励了孩子们的新方法的创设。这些就

《确定圆的条件》教学设计新部编版1

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

第三章圆 5.确定圆的条件----教学设计 一、学生知识状况分析 学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。 学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。二、教学任务分析 本节课的内容是第一节内容的延续,学生已积累了画一个圆的经验。基于以上两点,提出本课的具体学习任务:①经过一点、两点、三点能否作出圆、能作出几个圆。②了解三角形的外接圆、三角形的外心等概念,但本课内容从属于“空间与图形”的教学目标:认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满探索性和创造性,感受证明的必要性及结论的确定性。同时也应力图在学习中逐步达成学生的有关情感态度目标。因此,本节课的教学目标是: 知识与技能 1、了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法; 2.了解三角形的外接圆、三角形的外心等概念。 过程与方法 1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。 情感态度与价值观 形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。 教学重点:理解不在同一直线上的三个点确定一个圆 教学难点:理解不在同一直线上的三个点确定一个圆。

初中数学九年级《探究四点共圆的条件》公开课教学设计

第24章活动2 《探究四点共圆的条件》教学设计 班级姓名座号 一、课型:综合活动课 二、活动目标: 1、探究四边形四个顶点共圆的条件。 2、通过观察、比较、分析不同的四边形四个顶点能否共圆,提高学生识图能力,发展学生合情推理和演绎推理的能力。 3、在探究四边形四个顶点能够共圆的问题中,学会运用从特殊到一般的数学思想,能利用转化思想来解决问题,感受解决问题的多样性。 三、重点:通过活动探究四点共圆的条件。 难点:对角互补的四边形四个顶点共圆的证明方法。 四、学情分析:经历《圆》的全章单元学习后,学生对圆的相关知识点还未能透彻贯通,需要加强能力方面的训练。让学生自己结合线索推理发现、得出结论,课堂教学既要重视数学结论的探索过程,又要强化各种技能之间的综合运用。 五、教具:多媒体设备(含几何画板、PPT、投影展台) 六、教学反思:四点共圆研究方法具有多样性和灵活性,理解点和圆的位置关系,实现位置关系和数量关系的相互转化,体现知识的普遍联系和深入发展特性,丰富学生的研究方法。通过观察、实验操作、归纳猜想、验证活动,使不同层次学生思维水平和推理水平有不同的提高。表格式梳理对照,自学复习相关知识点,以数学活动为契机,培养探索精神,调动全章圆的知识的相关储备,串联综合运用的能力猜想并加以验证。

七、课堂过程 活动一、考题片段引入 如图,已知矩形ABCD,,动点E 从点B 沿线段BC 运动到点C 停止,连结AE,以AE 为边作矩形AEFG,使边FG 过点D.直接写出点G 所经过的路径长。 关键:点G 路径是什么样的轨迹? ★(设计意图)从考题片段引入,清晰给出学习目标,引发学生思考。在完成表格二猜想一后再进行展开,结合几何画板演示动态过程,运用新结论,形成基本数学图形模式。 活动二、复习旧知类比迁移 表格一 多边形 任意一个三角形 任意一个四边形 有且只有 个外接圆 外接圆 多边形名称 内接三角形 (根据圆的 定义) 共圆的顶点 要具备的条 件 三个顶点到定点( 心)的 距离都等于定长(即 ) 即:OA=OB=OC 个顶点到定点( 心)的距离都等于定长(即 ) 即:OA=OB=OC=OD 定点(外心)的作法 任意两边 交点 任意两边 交点 提醒:三角形也是任意多边形组成的基本图形单位。 思考:过任意一个四边形的四个顶点也一定可以作一个圆吗?你打算怎样去尝试呢? 如果能共圆,四边形的四个顶点应满足什么条件? ★(设计意图)学生联系对比复习链接的知识定义,为后续探究打下基础,对照巩固原有思维水平。 23,6AB BC ==

确定圆的条件—教学设计

青岛泰山版 第四章对圆的进一步认识 4.2 确定圆的条件教学设计 教学目标 知识与能力目标:了解不在同一条直线上得三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念。 过程与方法目标:经历不在同一直线上得三个点确定一个圆的探索过程,培养学生的探索能力,进一步体会解决数学问题的方法。 情感、态度与价值观目标:形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。 教学重点:掌握不在同一直线上的三个点确定一个圆这个结论,并能过不在同一直线上的三个点作圆的方法。理解三角形外心的性质。 教学难点:过不在同一直线上的三个点作圆的方法。 教学过程: 一、课前知识准备 1、线段垂直平分线的性质 2、尺规作图:作线段AB的垂直平分线MN 3、要确定一个圆,需要确定它的和。 二、创设情境引人新课(谁是小小设计师?) 问题一:浯河中学想要在楼前空地上建一个圆形花坛,如果让你来当设计师,你需要确定什么条件? 问题二:空地上有一棵树,校长想让花坛的边沿经过这棵树,你能设计出几种方案?(过一点能作多少个圆?)【学生自己动手画,教师幻灯片展示多种情况】(板书:过一点可以作无数个圆) 问题三:如果空地上有两棵树,要使花坛边沿经过这两棵树,你有几种方案? (过两点能作多少个圆?)【先提示学生,假设存在这样一个圆,让学生观察圆心的位置,再引导学生动手画圆,幻灯片展示多种情况】(板书:过两点可以作无数个圆) 问题四:如果要经过三棵树呢?你还能设计出来吗?【小组合作探究,可以提示学生关键在

于找到到三个点距离相等的点,也就是圆心。可由小组到黑板展示,学生口述作图过程,最后教师进行总结。学生可能只会想到三点不共线的情况,教师进一步提示,如果三点共线会怎样?幻灯片展示。】(板书:过三点确定一个圆,进一步补充“不在同一直线上”加深学生印象,解释“确定”的含义) 问题五:如果要经过四棵树呢?【可以让学生讨论,发表自己的看法,教师动画展示】 问题六:现在空地上的三棵树分别呈现以下四种位置关系,你能找出经过三棵树的圆形花坛的圆心吗? 【由学生自己完成,小组成员分开作,完成后讨论,发现什么?】(板书:有关概念,外接圆、内接三角形、外心) 思考:两条垂直平分线的交点是不是外心?(学生叙述,教师板书重点。) 同时,总结出外心的性质。 三、练习巩固 练习1 判断题(投影打出) (1)经过三个点一定可以作圆. ( ) (2)任意一个三角形一定有一个外接圆,并且只有一个外接圆. ( ) (3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形. ( ) (4)三角形的外心到三角形各顶点的距离相等. ( ) (经过练习,巩固前边所学的知识) 2、如图(1)所示,⊙0是直角三角形ABC 的外接圆,其中AB=3,BC=4,那么⊙O 的半径是 如果AB=a,BC=b , ⊙O 的半径是 如图(2), ⊙0是等边三角形ABC 的外接圆,三角形的边长是4,那么⊙O 的半径是 如果等边三角形的边长是a ,那么⊙O 的半径是 . A B C C A B ┐ A B C ●O C A B ┐ ●O

九年级数学上册第3章对圆的进一步认识3.2确定圆的条件教案1新版青岛版

九年级数学上册第3章对圆的进一步认识3.2确定圆的 条件教案1新版青岛版 教学目标: 1.理解不在同一直线上的三个点确定一个圆及作圆的方法; 2. 了解三角形的外接圆,三角形的外心,圆的内接三角形的概念,培养应用数学知识解决实际问题的能力。 教学重点:三角形的外接圆,三角形的外心,圆的内接三角形的概念。 教学难点:培养学生动手作图的准确操作的能力。 预习任务: 二、自学课本P76---77完成下列问题: 活动一:过定点A是否可以作几个圆? 画一画: 活动二:过两个定点A.B是否可以作几个圆? 画一画: 活动三:过不在同一直线上的三点,是否可以作几个圆? 画一画: 归纳结论:____________________________________________________ 二、预习诊断: 破镜重圆:利用所学知识,帮助玻璃店里的师傅找出残缺圆片所在的圆心,并把这个圆画完整.实际操作:先在圆弧上顺次取三点A.B.C. (如图),连接AB.BC.AC,然后怎样找到圆心? 你画一画,找到破镜的圆心 2.判断题:A B C 3

3 (1)经过三点一定可以作圆;( ) (2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( ) (3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( ) (4)三角形的外心是三角形三边中线的交点;( ) (5)三角形的外心到三角形各顶点距离相等.( ) 3.直角三角形的外心在三角形( ) (A )内部 (B )斜边中点上 (C )外部 (D )可能在内部也可能在外部 教学过程: 一、创设情境 激发兴趣: 问题:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是哪一块? 二、精讲点拨: 1、过一点A 可以作无数个圆;;过两个点A.B 也可以作无数个圆;经过三点不一定能作圆,不在同一条直线上的三个点确定一个圆。 2、有关概念: 三角形的外接圆;三角形的外心;圆内接三角形 三、拓展延伸: 在Rt △ABC 中,∠C = 90°,AC = 3 cm ,BC = 4 cm , 求它的外心与顶点C 的距离 O A B C C A B

次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论 百年前,着名教材《坐标几何》(Loney 着)中曾提到椭圆上四点共圆的一个必要条件是 这四点的离心角之和为周角的整数倍(椭圆)0,0(122 22>>=+b a b y a x 上任一点A 的坐标可以表示为∈θθθ)(sin ,cos (b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学范例点评》时,才证明了此条件的充分性.[1,2] 2016年高考四川卷文科第20题,2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧): 若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k . 文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”. 文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8): 结论1 抛物线2 2y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 结论 2 圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4. 定理1 若两条二次曲线22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点,则这四个交点共圆. 证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含22,y x 项的系数相等,得a b b a λ''-=-,此时曲线①即

北师大版数学九下《确定圆的条件》word教学设计

第三章圆 4.确定圆的条件 一、学生知识状况分析 学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。 学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。 二、教学任务分析 本节课的内容是第一节内容的延续,学生已积累了画一个圆的经验。基于以上两点,提出本课的具体学习任务:①经过一点、两点、三点能否作出圆、能作出几个圆。②了解三角形的外接圆、三角形的外心等概念,但本课内容从属于“空间与图形”的教学目标:认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满探索性和创造性,感受证明的必要性及结论的确定性。同时也应力图在学习中逐步达成学生的有关情感态度目标。因此,本节课的教学目标是: 知识与技能 1.了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法; 2.了解三角形的外接圆、三角形的外心等概念。 过程与方法 1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。 2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。

情感态度与价值观 形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。 教学重点:确定圆的条件 教学难点:确定圆的条件 三、教学过程分析 本节课设计了六个教学环节:课前准备;情景引入;实践探究;合作学习练习提高;课堂小结;布置作业。 第一环节:课前准备 活动内容:布置学生在课前复习,回答如下的问题: (1)经过一点、两点、三点你能否画出一条直线吗?若能,可以画出几条直线?(2)通过以上问题的回答,你有什么体会? (3)已知线段AB,求作线段AB的中垂线? 活动目的:通过问题(3),希望学生复习线段中垂线的尺规作法,为本课作圆作知识的铺垫。通过问题(1)(2)的复习回答,为本课的探索“经过三点能否确定一个圆”作一个探索策略上的铺垫,进一步培养了学生分类讨论的数学思想。 实际教学效果:在课始的提问中,学生对中垂线的尺规作法、经过一点可以画无数条直线、经过两点可以画一条直线的回答较好,但在回答“经过三点能否画直线”问题上出现分歧,部分回答“不能画出直线”或“可以画一条直线”或“以上两种情况都有可能”等。通过对问题的争论、回答,达到了预期目标,培养了学生学会与人合作,能与他人交流思维的过程和结果。 第二环节:情景引入

数学活动——探究四点共圆的条件

数学活动——探究四点共圆的条件 一内容和内容解析 1.内容:探究四点共圆的条件 2.内容解析:四点共圆的条件是在学生学习了经过一个点的圆、经过不在同一直线上的三个点的圆、三角形与圆的关系、圆内接四边形后,对经过任意三点都不在同一直线上的四点共圆的条件的探究。 在四点共圆的条件的探究过程中,首先学生在已学的圆相关知识基础上,对四点共圆的条件进行合理猜想:圆内接四边形对角互补,相应的,对角互补的四边形的四个顶点共圆;再利用计算机工具,对特殊的四边形(平行四边形、矩形、等腰梯形)、一组对角同时等于九十度的四边形、任意对角互补的四边形以及任意四边形等,在几何画板上进行测量检验,用实验的方法验证猜想的正确性;然后对正方形、矩形、一组对角同时等于九十度的四边形、任意对角互补的四边形四个顶点共圆进行理论推理验证,最终得出结论。学生全程感受并经历了发现并提出问题——猜想——实验验证——理论推理验证——得出结论的活动过程,在“做”的过程和“思考”的过程中,积累数学活动的经验;在验证的过程中体现了特殊到一般的思想,同时,在研究中,类比将四边形转化成三角形来研究,从三点共圆入手探究四点共圆的条件,体现了转化的思想。 基于以上分析,确定本节课的教学重点是:四点共圆的条件的探究。 二目标和目标分析 1.目标 (1)理解过某个四边形的四个顶点能作一个圆的条件。 (2)通过四点共圆的条件的探究和猜想的证明,体会由特殊到一般、转化的数学思想,积累数学活动的经验。 2.目标解析 达成目标(1)的标志是:知道对角互补的四边形的四个顶点共圆的结论,会应用反证法证明这一结论,能应用对角互补的四边形四个顶点共圆判断给定的四边形的四个顶点是否可以做一个圆。 达成目标(2)的标志是:通过猜想,实验验证、理论推理验证得出结论,体会数学活动的完整过程,在过程中积累经验;通过几何画板画图,测量,比较,分析平行四边形、矩形、菱形、等腰梯形、直角梯形、一组对角等于九十度的四边形、一般的对角互补的四边形的四个顶点能否共圆,得到:对角互补的四边形四个顶点共圆的更一般的结论。体会由特殊到一般的研究规律;将证明四点共圆的问题转化为不共线的三点可以确定的圆,与第四个顶点之间的关系,并应用圆内接四边形对角互补的性质获得证明;在解决问题的过程中,积极思考、勇于质疑,体会发现问题、解决问题、有效的呈现活动结果等过程是数学活动的基本过程。 三教学问题诊断分析 学生从一开始发现问题,到后来的猜想,都是在已有知识的基础上,从已学定理:圆内接四边形对角互补出发,研究它的逆命题:对角互补的四边形四个顶点共圆。在探究过程中鼓励学生在已学知识基础上进行合理大胆的猜想。 在验证的过程中,学生可能会联想到任意一个三角形的三个顶点作一个圆的影响,去判断第四个顶点时候在这个圆上,解决这一问题的关键是引导学生从特殊的四边形出发,从特殊到一般的探究问题,通过画图、测量、比较,分析各种四边形的顶点是否共圆。 另外,在进行理论验证的过程中,要用到反证法,学生可能不知如何下手,而且猜想的证明对学生来说是难点。关键是从过任意一个三角形的顶点能作一个圆入手,把四点共圆问

志愿服务-共筑中国梦教案

“志愿服务共筑中国梦”主题班会教案 一、活动目的 为了让学生更加了解志愿服务,同时强化青少年的服务意识和社会责任,开辟德育新途径,并提高学生对志愿服务的认知和参与度。 二、活动重点 让学生体验志愿服务的快乐,树立正确的世界观、人生观以及价值观,感悟“奉献、友爱、互助、进步”的精神。 三、活动形式 通过各种活动,让学生在快乐的氛围下感悟志愿服务的意义。 五、主题班会内容 1、让学生了解我们身边志愿者的一些事迹(如各社区组织的志愿服务活动等) 2、解说志愿服务 (1)志愿者的标志 标志的整体构图为心的造型,同时也是英文“青年”第一个字母Y;图案中央即是手也是鸽子的造型。标志寓意为中国青年志愿者向社会上所有需要帮助的人们奉献一片爱心,伸出友爱之手,面向世界、奔向未来,表现青年志愿者“热心献社会,真情暖人心”的主题。 (2)志愿者精神:奉献、友爱、互助、进步

(3) 志愿者重要节日:国际志愿者日12月5日;中国青年志愿者服务日3月5日;全国助残日5月20日 (4)志愿者能做什么? →大型活动志愿者:大运会、奥运会…… →帮扶弱势群体:支教、助残、敬老(中小学生更多的是进行敬老志愿服务) →社区服务(给主题志愿者,自行开展大型服务活动) 3、成立班里的志愿服务小队(将活动信息填写到《雏鹰假日小队活动手册》) 开展争当侨乐志愿者活动,让学生投入到“人人争当侨乐志愿者”活动中。从设计口号、订立目标、组织架构、活动登记、心得分享……鼓励学生参与、实践志愿服务。在学生中树立榜样,以微笑传递关爱,以主人翁的意识服务他人、利益他人,以文明礼仪为行动准则,形成事事有人管,过错有人劝,团结、文明、和谐、积极、向上的氛围。区分“志愿者”“告状者”“多管闲事者”的不同。 (1) 分组:一个小队约6-10人 (2) 命名:如环保小队、礼仪小队、爱心小队等。 (3)设计口号 (4)订立目标 (5)组织架构 (6)活动内容登记

(甘志国)二次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论 甘志国(该文已发表 数学通讯,2013(7下):40-41) 百年前,著名教材《坐标几何》(Loney 著)中曾提到椭圆上四点共圆的一个必要条件是 这四点的离心角之和为周角的整数倍(椭圆)0,0(122 22>>=+b a b y a x 上任一点A 的坐标可以表示为∈θθ)(sin cos,(b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学范例点评》时,才证明了此条件的充分性.[1,2] 2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧): 若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k . 文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”. 文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8): 结论1 抛物线2 2y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 结论 2 圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4. 定理1 若两条二次曲线22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点,则这四个交点共圆. 证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含2 2,y x 项

确定圆的条件教案

《确定圆的条件》教案 王进 教学目标: 1.经历不在同一条直线上的三个点确定一个圆的探索过程,了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点做圆的方法。了解三角形的外接圆,三角形的外心等概念。 2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。 教学重点: 1.探索平面内确定一个圆的条件 2.掌握经过不在同一直线上三个点作圆的方法。 3.了解三角形的外接圆,三角形外心等概念 教学难点:探索平面内确定一个圆的条件,并能过不在同一直线上的三个点作圆。 教学过程: 一、生活中的学问: 一位考古学家在长沙马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗? 想一想:要确定一个圆必须满足几个条件? 二、知识回顾: 1、过一点可以作几条直线? 2、过几点可确定一条直线? 过几点可以确定一个圆呢? 三、探究新知: A 探索一:经过一个已知点A能确定一个圆吗? 你怎样画这个圆? 探索二:经过两个已知点A、B能确定一个圆吗? 经过两个已知点A、B 所作的圆的圆心在怎样的一条直线上?

探索三:经过三个已知点A ,B ,C 能确定一个圆吗? 假设经过A 、B 、C 三点的⊙O 存在 (1)圆心O 到A 、B 、C 三点距离 (2)连结AB 、AC , O 点应在AB 的 ; 同时也应在AC 的———————————— (3)圆心O 应该是 画一画:已知:不在同一直线上的三点A 、B 、求作: ⊙O 使它经过点A 、B 、C 。 叫做三角形的 ,这个三角形叫做圆的 。 试一试:画出过以下三角形的顶点的圆 观察比较这三个三角形外心的位置,你有何发现? 四、练习巩固: 1.下列命题不正确的是( ) A.过一点有无数个圆. B.过两点有无数个圆. C.弦是圆的一部分. D.过同一直线上三点不能画圆. C A B A B C B A C A B C

相关文档
最新文档