一元函数积分学及其应用

一元函数积分学及其应用
一元函数积分学及其应用

《高等数学》课程学习指导与讨论题

第三章一元函数积分学及其应用(24学时)

微分(导数)与积分是本书中两个最重要的基本概念,它们分别反映了从局部和整体两个侧面来研究非均匀变化的数学方法,两者之间有着密切的联系,也有着共同的思想方法,一元函数的积分学包含积分与不定积分两部分,定积分实质上是处理均匀量的乘法在处理非均匀分布的整体量方面的推广。粗糙地讲,定积分就是微分的无限积累;而不定积分则是微分(导数)的逆运算,它为定积分的计算工辟了途径。同学们应该仔细地去领会定积分概念中所包含的处理问题的思想方法和步骤,并在定积分应用一节中通过实例和习题来消化和灵活运用;应熟练地使用换元法和分部积分法来计算不定积分,并能熟练地求解简单的微分方程。

本章教学实施方案

讲课16学时

1.定积分的定义及其性质(3学时);2.微积分基本公式与基本定理(2学时);3.换元法(2学时);4.分部积分法(2学时);5.定积分应用(2学时);6.几类简单的微分方程(3学时);7.反常积分(2学时)。

讨论课2学时,

积分概念与基本定理(2学时);

习题课6学时

1.微积分基本公式与基本定理(2学时);

2. 积分法及定积分的应用(2学时);

2.反常积分与简单的微分方程(2学时)。

第一节定积分的概念及其性质

一、教学内容

定积分问题举例。定积分定义及其几何意义,定积分的存在条件,定积分的

性质,重点:定积分定义。

二、教学要求

1.通过问题举例和定义,深入领会用定积分研究非均匀分布量的整体性态的思想方法和步骤。

2.理解“有界是可积的必要条件”,“连续是可积的充分条件”。

3.会使用定积分的性质。性质中关于可积性的证明不作要求。

4.正确理解定积分的几何意义,并能利用几何意义与定积分性质来对某些简单定积分的值进行估计。

5.正确理解积分中值定理及其几何意义,了解中值定理在平均值方面的应用。

三、预习内容

1. 微积分基本公式;

2. 微积分基本定理;

3. 不定积分的概念与性质。

四 思考题

1. 将区间n b a ],[等分,则k k n k n a b x ξ,,2,1, =-=

?取子区间],[1k k x x -的左端点,则)(11a b n

k a x k k --+==-ξ,相应积分和式的极限为 ∑=∞→-??? ?

?--+n

k n n a b a b n k a f 1)(1lim 若该极限存在,它是否等于)(x f 在],[b a 上的定积分?b a x x f d )(?两者相等需什么条件?

2. )(x f 为连续的周期函数,且为奇函数,则0d )(=?+T

a a x x f ,其中a 为任意实

数,T 为的周期,用几何意义说明这个结论是否成立?

3. 若在区间??b a ,上0)(≥x f 且0)(≡/x f ,则0d )(≥?b

a x x f ,问等号有可能成立吗?试举例说明.

第二节 微积分基本公式与基本定理

一、教学内容及重点

微积分基本公式,微积分基本定理,不定积分的概念与性质,重点:Newton-Leibniz 公式,微积分第一基本定理及其应用。

二、教学要求

1.理解原函数与不定积分的概念

2.牢记Newton-Leibniz 公式并会运用,了解它们反映的物理意义,理解它将定积分计算问题转化为求被积函数的原函数问题。

3.正确理解变上限积分与微积分第一基本定理的涵义及其分析证明,并能熟练地应用第一基本定理求变限积分的导数。

4.了解微积分第二基本定理,会计算分段连续函数的定积分。

5.熟记P186的基本积分表,并能利用此表和不定积分的性质计算简单的不定积分。

三、预习内容

1.两类换元法;

2.分部积分法。

四 思考题

1. 若)(x f 在区间],[b a 上除c 点外处处连续,c 为)(x f 的一个第一类间断点,则Newton-Leibniz 公式能否成立?应怎样修改?

2. 求下列积分的导数:

① ?+203d 1d d x t t t x ② ?+13d 1d d x t t t x ③ ?+-x t t t x x 02

d 1)(d d 并研究一般情况?)(d )(d d x a t t f x ?,?)()(d )(d d x x t t f x ψ?,?)()(d ),(d d x x t t x f x

ψ?求导的方法,其中f 连续,ψ?,可导.

3. 分段函数的定积分与不定积分怎样计算?

第三节 两种基本积分法

一、教学内容 换元法与分部积分法。

二、教学要求

1.能熟练地利用两种换元法求不定积分。

2.能熟练地利用分部积分法求不定积分。

3.会正确利用定积分的换元法与分部积分法直接计算定积分。

4.了解初等函数的积分问题,并知道查用积分表。

三、预习内容

建立积分表达式的微元法。

四 思考题

1. 计算?x x d cos 2与?x x d cos 3,其计算过程有什么不同?并考虑下列积分计算过程与那一个类似.

① ?x x x d cos sin 22 ② ?x x x d cos sin 34

③ ?x x x d cos sin 22 ④ ?x x x n m d cos sin (其中m 、n 至少有一个是奇数)

2. 计算积分?+)

1(d 2x x x ,进一步用类似方法计算?++)1)(1(d 2x x x x ,并讨论更一般的有理函数积分的方法.

3. 第二换元法常用的有哪几种代换,分别适用于那种积分?

4. 利用分部积分法计算积分

① ?x x x d sin ② ?x x x d arcsin ③ ?x xe x d ④ ?x x x d ln 比较它们计算方法上的区别,并小结分部积分法适用哪种类型的积分.

第四节 定积分的应用

一 教学内容

建立积分表达式的微元法,定积分在几何中的应用举例,定积分在物理中的应用举例。

二、教学要求

1.深入领会微元法;

2.通过几何与物理实例能灵活地运用微元法解决一些简单的有关定积分的实际问题,包括正确确定积分微元,确定积分上下限。

3.不提倡记忆几何或物理应用中的积分公式,要求用微元法的思想和步骤去做应用题。

三、预习内容

无穷区间上的积分及无界函数的积分的概念。

第五节 反常积分

一、教学内容

无穷区间上的积分,无界函数的积分,两类反常积分的审敛准则,Γ函数。

二、教学要求

1.理解两类反常积分收敛与发散的概念。

2.了解两反常积分审敛法则。

3.能运用定义和审敛法判定一些简单反常积分的敛散性,并用定义计算简单收敛反常积分的值。

4.了解Γ函数。

三、预习内容

微分方程的基本概念,可分离变量的方程,一阶齐次方程,一阶线性方程,可降阶的高阶方程。

四 思考题

1. 按定积分的定义与存在定理,积分区间],[b a 必须有限,)(x f 在],[b a 上必须有界.否则积分不存在.而我们现在又讨论无限区间和无界函数的积分.这两者是否矛盾?

2. 积分?+∞

∞-x x f d )(能否用下面极限来定义:

??

-+∞→+∞∞-=a a a x x f x x f d )(lim d )(

3. 积分?+∞

∞-x x f d )(定义为两个极限的和

???+∞→-∞→+∞∞

-+=b c b c a a x x f x x f x x f d )(lim d )(lim d )( 若这两个极限有一个不存在,则该积分发散;若这两个极限都不存在,积分?

+∞∞-dx x f )(是否可能收敛?为什么?

第六节 几类简单的微分方程

一、教学内容及重点

微分方程的基本概念,可分离变量的方程,一阶齐次方程,一阶线性方程,可降阶的高阶方程,应用举例。

二、教学要求

1.正确理解常微分方程的有关基本概念,包括:常微分方程的阶数,解、初始条件,通解与特解。

2.正确识别微分方程的各种类型并熟练地运用各种类型的解法去求通解和特解。

3.能把一些较为简单的方程通过变量替换化成已知类型的方程,从而求得其解。

4.能对一些较为简单的实际问题建立微分方程并求解。

三、预习内容

常数项级数的概念与性质,Caychy 收敛原理,正项级数的审敛准则。

四 思考题

1. 验证c x y +=2ln 与2e x c y =都是微分方程

xy x y 2d d =的通解.这两个通解中哪一个更好一些,为什么?

2. 微分方程的通解是否是它所有解的表达式?

3. Bernoulli 方程

αy x Q y x P x

y )()(d d =+中,为什么要求1,0≠α? 4. ),(y y f y '=''型方程中作变量代换P y =',x P y d d =''为什么不能直接带入原方

第五次讨论题

1.设)(x f 是连续函数,)(x F 是)(x f 的原函数,则

(A ) )(x f 是奇函数 ? )(x F 必是偶函数;

(B ) )(x f 是偶函数 ? )(x F 必是奇函数;

(C ) )(x f 是周期函数 ? )(x F 必是周期函数;

(D ) )(x f 是单调增函数 ? )(x F 必是单调增函数.

2.设)(x f 连续,)()(x f x F =',C 为任意常数,说明下列等式是否成立,为什么?

①C dx x f dx x f x a +=??)()( ②??-=b

x dx x f C dx x f )()( ③??=b a b a du u f dt t f )()( ④)()(x F dx x F x

a ='? ⑤??=dx x f dx

d dt t f dx d x a )()( ⑥)()(x F dx x F ?=' 4.若???>≤+=001)(x x x

e x

f x ,则??????>++≤+=.0,2

1,0,)(2x C x x x C e dx x f x 以上结论是否正确?为什么?

5.设函数)(x f y =在区间]3,1[-上的图形为:

则函数?=x

dt t f x F 0)()(在]3,1[-上的图形为( )

(A ) (B )

(C ) (D)

6.)(x f 在[a,b]上可积与)(x f 在[a,b]上存在原函数是否是一回事?考察下列两个例子,说明这个问题。 ①设,0

001sin )(22?????=≠=x x x x x F 证明)(x F 处处可导。若令),()(x f x F ='试问)(x f 在区间]1,1[-上可积吗?

②若,sgn )(x x f =则)(x f 在]1,1[-上是否可积?原函数是否存在?

7.下列方法正确吗?如果不正确,试给出正确方法。

若???≤>=.1,1,)(32

x x x x x f 则?????≤>=.1,4

1,1,31)(43x x x x x F 为)(x f 的原函数,故.3

8)0()2()(20=-=?F F dx x f 8.设)(x f 连续,A x x f x =→)(lim 0(常数),dt xt f x ?=10)()(?,试问)(x ?是否可导? )(x ?'是否连续?

9.计算?+x dt t dx d 0

41,?+0421x dt t dx d , ?+241x x

dt t dx d ,?-x a dt t f t x dx d )()((其中)(x f 连续),dt t x dx d x ?-02)sin(并小结变上限积分的求导法。

10.设)(x f 在[a, b]上可积,且0)(≥x f

①若0)(≡x f ,则?>b

a dx x f 0)(是否成立?

②若?=b

a dx x f 0)(,则0)(≡x f 是否成立? ③若)(x f ,)(x g 都在[a, b]上可积,)()(x g x f ≥,且)()(x g x f ≡,则??>b

a b

a dx x g dx x f )()(是否成立? ④若)(x f ,)(x g 在[a, b]上可积,且在[a, b]的任一个子区间],[βα上??=βαβ

αdx x g dx x f )()(,那么)()(x g x f ≡是否成立? ⑤若)(x f ,)(x g 都在[a, b]上连续,则上面四个结论是否成立?若成立,试证明之。

第三章 一元函数积分学

第三章 一元函数积分学 一.不定积分 例1:设2 ln )1(22 2 -=-x x x f ,且x x f ln )]([=?,求?dx x )(?(答案: C x x +-+1ln 2) 例2:已知 x x sin 是)(x f 的一个原函数,求?dx x f x )('3(答案: C x x x x x +--cos 6sin 4cos 2) 例3:设???>≤=0 ,sin ,)(2x x x x x f ,求?dx x f )( 例4:设)(x F 是)(x f 的一个原函数,π4 2 )1(= F ,若当0>x 时,有) 1(arctan )()(x x x x F x f += ,求)(x f 。(答案:) 1(21)(x x x f += ) 例5:求? dx x x )1,,max(23 例6:求?dx e e x x 2arctan 二.定积分 例1:求极限?? ? ??+++++∞→n n n n 212111lim 例 2:设)(x f 在]1,0[上连续,且 )(1 =?dx x f ,试证明存在 0)1()()1,0(=-+∈ξξξf f 使。 例3:已知)0()1ln()(1 >+= ?x dt t t x f x ,求??? ??+x f x f 1)((答案:x 2ln 21)

例4:设函数)(x f 连续,且,arctan 21)2(2 0x dt t x tf x =-?已知1)1(=f ,求?2 1 )(dx x f 的 值。(答案: 4 3 ) 例5:已知22110,1,ln ,sin )(>≤<≤≤?? ? ??=x x x x x x x f 求?=x dt t f x I 0)()( 例6:求积分?≥-= x x dt t x g t f x I 0 )0()()()(,其中当0≥x 时x x f =)(,而 ?? ?? ? ≥ <≤=220,0,sin )(π πx x x x g 例7:设)(x f 在],[b a 上连续,且0)(>x f ,证明 ? b a dx x f )(2)() (1 a b dx x f b a -≥? 例8:设)('x f 在]1,0[上连续,求证 ? ??? ?? ? ??≤1 1 010)(,)('max )(dx x f dx x f dx x f 例9:设)(x f 在]1,0[上连续,且0)(≥x f ,0)1(=f ,求证: 存在?= ∈ξ ξξ0 )()()1,0(dx x f f 使 例10:设)(x f 是在),(+∞-∞内的周期函数,周期为T ,并满足 )),,(,()()()1(为常数其中L y x y x L y f x f +∞-∞∈?-≤-; 0)()2(0 =?T dx x f 求证:LT x f T x 2 1 )(max ] ,0[≤ ∈ 例11:设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得 )('')(24 12)()(3 ξf a b b a f a b dx x f b a -+??? ??+-=?

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

高等数学教案--一元函数微分学的应用

高等数学教案—一元函数微分学的应用 课 时 授 课 计 划 第一课时 教学过程及授课内容 教学过程 一、柯西中值定理 定理1(柯西中值定理)如果函数)(x f 与 )(x F 满足下列条件:(1)闭区间 ],[b a 上连续; (2)在开区间),(b a 内可导; (3))('x F 在),(b a 内的每一点均不为零,那么,在),(b a 内至少有一点ξ,使得 二、洛必达法则 把两个无穷小量之比或两个无穷大量之比的极限称为00型或 ∞ ∞ 型不定式(也称为 0型或∞∞ 型未定型)的极限,洛必达法则就是以导数为工具求不定式的 极限方法. 定理2 (洛必达法则)若(1)0)(lim 0 =→x f x x ,0)(lim 0 =→x g x x ; (2))(x f 与)(x g 在0x 的某邻域内(点0x 可除外)可导,且0)('≠x g ; (3)A x g x f x x =''→) () (lim 0(A 为有限数,也可为∞+或∞-),则 A x g x f x g x f x x x x =''=→→) () (lim )()(lim 00 证 由于我们要讨论的是函数在点0x 的极限,而极限与函数在点0x 的值无关,所以我们可补充)(x f 与)(x g 在0x 的定义,而对问题的讨论不会发生任何影响。令0)()(00==x g x f ,则)(x f 与)(x g 在点0x 就连续了.在0x 附近任取一点x ,并应用柯西中值定理,得 .f(b)f(a)f ( )F(b)F(a)F () ξξ'-='-

) () ()()()()()()(00ξξg f x g x g x f x f x g x f ''=--= (ξ在x 与0x 之间) . 由于0x x →时,0x ξ→,所以,对上式取极限便得要证的结果,证毕. 注:上述定理对∞→x 时的0 未定型同样适用,对于0x x →或∞→x 时的未定型 ∞ ∞ ,也有相应的法则. 例1 求1 2 3lim 2331+--+-→x x x x x x . 解 123lim 2331+--+-→x x x x x x =12333lim 221---→x x x x =266lim 1-→x x x =46=2 3. 例2求x x x tan cos 1lim π+→. 解 x x x tan cos 1lim π+→=x x x 2πcos 1sin lim -→=0. 例3 求 x x x 1arctan 2 lim -+∞ →π 解 x x x 1arctan 2 lim -+∞ →π =221 11 lim x x x -+- +∞ →=22 1lim x x x ++∞→=1. 除未定型 00与∞ ∞ 之外,还有00,1,0,,0∞∞-∞∞?∞等未定型,这里不一一介绍,有兴趣的同学可参阅相应的书籍,下面就∞-∞未定型再举一例. 例5 求??? ? ?--→x x x x ln 11lim 1. 解 这是∞-∞未定型,通过“通分”将其化为 未定型. x x x x x x x x x x ln )1()1(ln lim ln 11lim 11---=??? ??--→→x x x x x x x 1ln 1 ln 1 lim 1-+ -+=→

专升本-一元函数积分学

第四章 一元函数积分学 不定积分部分 一.原函数的概念 例1.下列等式成立色是( ) ()()().;A f x dx f x '=? ()()().;B df x dx f x =? ()()(). ;d C f x dx f x dx =? ()()()..D d f x dx f x =? 例2.下列写法是否有误,为什么? ()1 .ln c dx e e x x +=?(c 为任意正常数) ()2 ).0(1 3 3 2 ≠+=?c c dx x x ()3 .arccos arcsin 12 c x c x dx dx x +-=+=-? 例3.下列积分结果正确吗? ()211sin .cos sin ;2x xdx x C =+?√ ()21 2sin .cos cos ;2x xdx x C =-+?√ ()1 3sin .cos cos 2.2 x xdx x C =-+?√ 例3说明不定积分的结果具有形式上的多样性。 二.直接积分法 利用不定积分的性质及基本积分表,我们就可以计算较简单的函数的积分,这种方法称做直接积分法. 例4.求().arctan 3 1111113 2 2 24 2 4 c x x dx dx dx dx x x x x x x x ++-= + +-= ++-= +???? 例5.求.sin 21 2cos 212cos 12sin 2 c x x xdx dx dx x dx x +-=-=-=???? 例6.求.tan 44422csc sin cos sin 2 222c x c xdx x dx x x dx +-===??? 例7.已知某个函数的导数是x x cos sin +,又知当2 π=x 时,这函数值为2,求 此函数. 解:因为() .sin cos cos sin c x x dx x x ++-=+?, 所以,可设().sin cos c x x x f ++-=

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

电子科技大学 一元函数积分学检测题(三)

1 2006级 微积分《一元函数积分学》检测题(三) 班级__________________ 学号______ 姓名_____________ 成绩________ (3,15) 1.()()arcsin _________________________________. 一、填空题每小题分共分设则f x f x xdx '==? 2._____________________________.= 4 1 3.____________________.-=? 740 4.sin 2__________________.xdx π =? ()2 05. sin ____________________.x d x t dt dx -=? ()()()()()()()()()()( )()()()()15sin 000 (3,15) sin 1.,1,0,. ;; ; 2.(),(),. ; ;; 二、选择题每小题分共分设则当时是的高阶无穷小低阶无穷小同阶但不等价的无穷小等价无穷小. 设连续则下列结论中正确的是是和的函数是的函数是的函数是常数. x x t s t t x dt x t dt x x x t A B C D f x I t f tx dx A I s t B I s C I t D I αβαβ==+→=??? ( )( )()()()5 226 0023.. cos ;0;11111 (2)();()22下列运算正确的是. x A xdx B dx x C f x dx f x C D d C x x x π π +∞ -∞ ==+'=+=+????? 884 4444 444 tan 4.(),sin ln(,1(tan cos cos ),,,( ).() () () ()设则的大小关系是x x x M x dx N x x dx x P x e x e x dx M N P A M N P B N M P C P M N D M P N π π πππ π----??=+=++??+=+->>>>>>>>??? 2sin 5.()sin ,() ( ). () () () ()设则为正常数;为负常数;恒为零;不为常数. x t x F x e tdt F x A B C D π +=?

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 (2011年试题,一)设则I,J,K的大小关系是( ). (A)I0,f'(x)''>0.令 ,则( ). (A)S123 (B)S213 (C)S312 (D)S231 3 (2012年试题,一)设,则有( )? (A)I123 (B)I321 (C)I231

(D)I213 4 (2008年试题,1)设函数则f'(x)的零点个数是( ).(A)0 (B)1 (C)2 (D)3 5 (1998年试题,二)设f(x)连续,则tf(x2一t2)dt=( ). (A)xf(x2) (B)一xf(x2) (C)2xf(x2) (D)一2xf(x2) 6 (1997年试题,二)设则F(x)( ). (A)为正常数 (B)为负常数 (C)恒为零 (D)不为常数

7 (2010年试题,一)设m,n为正整数,则反常积分的收敛性( ). (A)仅与m有关 (B)仅于n有关 (C)与m,n都有关 (D)与m,n都无关 8 (2009年试题,3)设函数y=f(x)在区间[一1,3]上的图形如图1一3—3所示,则函数435的图形为( ).436 (A)

(B) (C) (D) 9 (2007年试题,一)如图1一3—4,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直 径为2的上、下半圆周,设则下列结沦正确的是( )。 (A)

第三章-一元函数积分学

第三章 一元函数积分学 §3-1 不定积分 不定积分是计算定积分、重积分、线面积分和解微分方程的基础,要求在掌握基本积分法的基础上,更要注重和提高计算的技巧。 一、基本概念与公式 1. 原函数与不定积分的概念 2. 不定积分与微分的关系(互为逆运算) 3. 不定积分的性质 4.基本积分表 2222 22 312 22 3 2max{1}d .,1 max{1,}1,11, , 111max{1,}d d 3 11max{1,}d 1d 11 max{1,}d d . 3x x x x x x x x x x x x x x C x x x x x C x x x x x x C ?<-? =-≤≤??>?<-==+-≤≤==+>==+???????1求,因 当时 ;当时 ; 当时 例解 ()()3111321 11232 31lim lim 3,1lim lim 323 ,232 133 max{1,}d 1 1.2 1 33 x x x x x C x C x C x C C C C C x C x x x x C x x C x -+ - +→-→-→→??? +=+ ????? ? ???+=+ ?????? =-+??? ?=+?? ?-+<-???=+-≤≤???++>?? ? 由原函数的连续性,有 得 故 ,,,

二、不定积分的基本方法 1. 第一类换元法(凑微分法) ()d ()[()]d []d [].f u u F u C f x x x f x x F x C ?????=+'()=()()=()+???若,则 2. 第二类换元法 ()10[]()()d []d ()[]. x t t x x t t f t t G t f x x f t t t G t C G x C ?????????-1=() =-''=()()≠()()'()()=+()+? ? 令代回 若是单调可导函数,且,又具有原函数,则有换元公式 3. 分部积分法 ()()d ()()()()d d d . u x v x x u x v x u x v x x u v uv v u ''=-=-????或 4. 有理函数的积分法 化有理真分式为部分分式. 5. 三角函数有理式的积分 (sin cos )d ()tan 2 R x x x R u v u v x t =?对于,(其中,表示关于,的有理函数),可用“万能代换”化为有理函数的积分. 三、题解示例

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

一元函数积分学在经济中的应用(1)

一元函数积分学在经济中的应用 一、导数在经济分析中的应用 (一)边际成本 总成本函数的导数称为边际成本。 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数,用以判断增减产量在经济上是否合算。它是在管理会计和经营决策中常用的名词。当产量未达到一定限度时,边际成本随产量的扩大而递减,但当产量超越一定限度时,就转而递增。因此,当增加一个单位产量所增加的收入高于边际成本时,是合算的;反之,是不合算的。因此计算边际成本等于边际收入时,为企业获得其最大利润的产量。通过确定边际成本来提供经营决策所需资料的成本决策,称为边际成本计算。在实际工作中,边际成本计算常只按变动成本计算。 (二)边际收益 总收益函数的导数称为边际收益。 它表示销售一个单位产品后,再销售一个单位的产品所增加的收益。它可以是正值或负值。边际收益是厂商分析中的重要概念。利润最大化的一个必要条件是边际收益等于边际成本。在完全竞争条件下,任何厂商的产量变化都不会影响价格水平,需求弹性对个别厂商来说是无限的,总收益随销售量增加同比例增加,边际收益等于平均收益,等于价格。在非完全竞争)条件下,厂商的销售量同价格成反比。如果需求弹性大于1,即售量的增加的百分比,快于价格降低的百分比,总收益随销售量增加而增加,尽管不是同比例增加,平均收益下降,边际收益为零;如果需求弹性小于1,这时总收益随销售量增加而减少,平均收益更快下降,边际收益为负数。 (三)边际利润 总利润函数的导数称为边际利润。它表示:若已经生产了x个单位的产品,再生产多一个单位的产品总利润的增加量。 边际利润是反映增加产品的销售量能为企业增加的收益。销售单价扣除边际成本即为边际利润,边际利润是指增加单位产量所增加的利润。企业的经营收益减去会计成本,所得到的就是会计利润。按照我国的财会制度,有销售利润、利润总额及税后利润等概念。销售利润是销售收入扣除成本、费用和各种流转税及附加费后的余额;利润总额是企业在一定时期内实现盈亏的总额;税后利润是企业利润总额扣除应缴所得税后的利润。 一般情况下,总利润函数等于总收益函数与总成本函数之差,则边际利润是边际收益与边际成本之差。 二、函数在经济学中的应用。 需求函数。在经济管理中,需求函数是用来表示一种商品的需求数量和影响该需求数量的各种因素之间的相互关系的。也就是说,影响需求数量的各种因素是自变量,需求数量是因变量。需求函数是单调减少函数。 供给函数。供给函数表示一种商品的供给量和该商品的价格之间存在着一一对应的关系。 均衡价格。均衡价格是指一种商品的需求价格和供给价格相一致时的价格,也就是这种商品的市场需求曲线与市场供给曲线相交时的价格。

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

第三章一元函数积分学(下)

1 分析:如果构造函数 F(x) =xf(x) - % f(t)dt ,想用零点定理证明该结论,由于只能得到 F(0)F(1)冬0,无法证明F(x)在区间的端点处函数值异号,故应选择用罗尔定理证明?利 i i 用罗尔定理证明困难在于找辅助函数,只要注意到 x f (t )dt -Xf (X )二[X x f (t)dt 「,辅助 函数便可以得到了. i 证明:令 F(x) =x f (t)dt ,贝V F(x)在区间[0,1]上连续,在区间(0, 1)内可导,且F(0) = F(1) = 0,所以根据罗尔定 1 理可得:至少存在一点 x^ (0,1),使得F'(X 0)= 0,艮卩x 0f(x °) = f f (t)dt ? 所以存在x^ (0,1),使得在[0,沧]上以f(x 。)为高的矩形面积,等于在区间 [x °,1] 上 以y = f (x)为曲边的曲边梯形的面积. IV 已知被积函数有高阶导数,且最高阶导数连续的积分等式的证明 此种类型的积分等式一般用泰勒公式证明?解题一般思路:①对变上限定积分 F(x)二 x .f (t)dt 在适当的点(由已知条件或所证结论的形式来确定)泰勒展开;②令展开式中的 a 变量分别取积分等式中的积分的上下限, 得到两个关系式;③对上述关系式进行适当的运算 推出所证结论. [例3232]设f(x)在[a,b ]上具有连续的二阶导数, 试证在(a,b)内存在一点 ,使得 a + b 1 3 u f(x)dx = (b-a)f(_2b) 24(b-a)3f (). x 分析:由于被积函数具有连续的二阶导数, 所以F(x) f(t)dt 在[a,b ]上具有三阶导数, a 于是将F(x)展开成二阶泰勒公式,根据结论的特点,应将 x a + b 证明:将函数 F( xr a f(t)dt 在点 1 处展开为二阶泰勒公式,则 F (x)在 X 。二

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷6.doc

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷 6 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 函数F(x)=∫x x+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(x) (A)为正数. (B)为负数. (C)恒为零. (D)不是常数. 2 设常数α>0,,则 (A)I1>I2. (B)I1<I2. (C)I1=I2. (D)I1与I2的大小与α的取值有关. 二、填空题 3 若f(x)的导函数是sinx,则f(x)的原函数是________. 4 =________. 5 =________.

6 设y=f(x)满足△y=△x+o(△x),且f(0)=0,则∫01f(x)dx=________. 7 =________. 三、解答题 解答应写出文字说明、证明过程或演算步骤。 8 n为自然数,证明: 9 求下列不定积分: 10 求I n=sin n xdx和J n=cos n xdx,n=0,1,2,3,…. 11 求下列定积分:(Ⅰ) I=(Ⅱ) J=sin2xarctane x dx. 12 已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆 相切,有相同的曲率半径和凹凸性,求常数a,b,c. 13 在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a 处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).

14 计算下列不定积分: 15 假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞f(x-)dx=∫-∞+∞f(x)dx. (*) 16 设f(x)=∫0x dt,求f'(x). 17 求曲线r=的全长. 18 求由曲线F:x=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕Ox轴旋转所成立体的体积. 19 求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图 3.34). 20 设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0x f(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然 数,则当nT≤x<(n+1)T时,有n∫0T f(x)dx≤∫0x f(t)dt<(n+1)∫0T f(x)dx. 21 求

一元函数积分学部分综合练习及解答

一元函数积分学部分综合练习及解答 (一)单项选择题 1.下列函数中,( )是2cos x x 的原函数. A .21sin x 2 B .2 sin x 2 C .-2 sin x 2 D .-2 1 sin x 2 答案:A 2.下列等式不成立的是( ). A .A .x x x 1d d ln = B .21d d 1x x x -= C .x x x sin d d cos = D .x x x 1d d 12= 答案:C 3. 设c x x x x f +=?ln d )(,则)(x f =( ). A .x ln ln B . x x ln C .2ln 1x x - D .x 2ln 答案:C 4. 若 c x x f x x +-=?11e d e )(,则 f (x ) =( ). A .x 1 B .-x 1 C .21x D .-21x 答案:C 5.下列定积分中积分值为0的是( ). A .x x x d 2e e 1 1?--- B .x x x d 2e e 11?--+ C .x x x d )cos (3?-+ππ D .x x x d )sin (2?-+ππ 答案:A 6.?+∞1-d e 2x x x =( ) . A .e B . e 21 C .e 21- D .∞+ 答案:B (二)填空题 1.若c x x x f ++=?2)1(d )(,则=)(x f . 填写:)1(2+x

2.若c x F x x f +=?)(d )(,则x f x x )d e (e --?= . 填写:c F x +--)e ( 3.=-? -112d )2sin (x x x . 填写:-4 4. x x d e 02?∞- .. 填写:2 1 5. 微分方程2e +='-x y 的通解是 . 填写:c x y x ++-=-2e (三)计算题 ⒈ ?+x x x x x )d ln sin ( 解 ?+x x x x x )d ln sin (=?+4774)d(ln ln sin x x x c x x ++-=477 4ln cos 2.? +x x x d 1)ln ( 解 ?+x x x d 1)l n (=?+-+x x x x x d 1)(21ln 1)(2122 =c x x x x x +--+4 )ln 2(212 2 3.x x x d ) e 1(e 1 02?+ 解 x x x d ) e 1(e 1 02?+)e d(1)e 1(1102x x ++=? e 1121)e 1(11 0+-=+-=x

相关文档
最新文档