UCSC Genome Browser 介绍和应用举例 生物信息学

UCSC Genome Browser 介绍和应用举例 生物信息学
UCSC Genome Browser 介绍和应用举例 生物信息学

课程考核作业

内容UCSC Genome Browser 介绍

学院生物学院

课程名称生物信息学

学生姓名周思倩

学号S6

任课教师谭钟扬

完成日期: 2016 年1月15日

UCSC Genome Browser简介:

UCSC Genome Browser是由University of California Santa Cruz (UCSC) 创立和维护的,该站点包含有人类、小鼠和大鼠等多个物种的基因组草图,并提供一系列的网页分析工具。站点用户可以通过它可靠和迅速地浏览基因组的任何一部分,并且同时可以得到与该部分有关的基因组注释信息,如已知基因,预测基因,表达序列标签,信使RNA,CpG岛,克隆组装间隙和重叠,染色体带型,小鼠同源性等。用户也可以因为教育或科研目的加上他们自己的注释信息。UCSC Genome Browser目前应用相当广泛,比如Ensembl 就是使用它的人类基因组序列草图为基础的。约有一半的注释信息来自通过公开的数据计算得出,另外一半来自世界各地的科研工作者,支持数据库检索和序列相似性检索,Genome Browser本身不下任何结论,只是收集各种信息供用户参考。

UCSC 主要界面介绍:

下图是UCSC的主页,左边的功能菜单栏显示了UCSC的主要几个工具,包括Genome Browser、BLAT、Table Browser、Gene Sorter、In Silico PCR、VisiGene、Genome Graphs、等。总体介绍部分注释了UCSC的基本概念信息,新闻栏部分定期更新UCSC在技术和功能上面的改进和数据上的更新。

下图是Genome Browser的主界面,搜索基因名PPP1R1B得到以下基因组草图。简单的调整功能和每个区域所代表的含义如图标识。外显子是由代表内含子的横线连接的条形块部分。内含子是指连接条形外显子的细线部分。5’和3’非翻译区显示为前面和后面相对比较细的条形块部分。基因内含子内箭头表示转录的方向。在没有内含子可见的情况下,箭头显示在外显子条形块部分。

Bioinformatics 2016Default tracks for the human hg38 assembly at the PPP1R1B gene locus.

Navigate along

the genome Zoom

Search box

Click for track

description

Assembly organism

and date

Browser graphic

Chromosome ideogram

下图是路径的显示设置界面,包括多种特性的路径图。可以通过你的研究需要来选定所需要的显示选项。每个路径都可以通过点击蓝色的字体链接到注释界面。 下面是路径的5中显示模式介绍:

? Hide 路径不显示,这种模式有助于限制显示,只显示那些感兴趣的路径,

方便查看。

? Dense 显示所有功能压缩成一行。当你只是想要一个注释的总体视图,这

种模式有助于减少空间。

? Squish 每个注释特性的路径图单独显示,但只有full 模式50%的高度。这种

模式有助于减少路径图空间使用的,适用于当你想看大量的个体特性和得到一个注释的整体视图时,特别适合在染色体特定区域显示大量的路径图特性。

? Pack 分别显示的跟踪显示每个注释功能和标记,但不一定是显示在一个单

独的行。当您想要查看大量的个体特性时,这种模式有助于减少空间使用,但需要提供的标签和显示尺寸完整模式。

? full 每个注释特性的跟踪显示在单独的行中。建议您使用这个选项的路径

不要设置太多。

?

Track Groups

Visibility Controls

Click here for track

description Reverses the display for viewing annotations on

the negative strand

UCSC中基因组版本与其它数据库版本对应关系:

因为各数据库对基因组有一套自己的命名法则,往往说的名称不一样,但基因组序列相同,如UCSC的hg19和NCBI的GRCh37就是同一基因组,现将UCSC 中基因组版本与其它数据库版本的对应关系列出,方便大家查找。下面为部分截图,全部内容访问:

下面介绍UCSC 两个典型的应用:

(1)利用UCSC找序列的上下游基因

如果有一段序列,想找到其上下游基因,方法很多,用UCSC直观明了。以一段人源序列为例,首先打开UCSC 的,选择基因组为“Human”,版本选择最新的,其它的采用默认的,在文本域中拷入下面的序列,点击文本域下的“submit”提交就可以了。在接下来的页面选择第一个100%匹配的结果,如果你的序列有多个100%匹配的结果,那么说明此序列在基因组中多个位置存在。点击“browser”的链接就进入了浏览器模式,如果你想知道序列的详细情况可以点击旁边的“detail”。

在浏览器模式下,首先设置显示的内容,默认的太多了,没法看,如果只想找基因的话,只需要下图标出的两个就可以了,其它的都设为“hiden”,设置好一组后就点上面的“refresh”,马上就可以看到上面图形的变化。

下图显示了一些主要区域的说明,通过“zoom in”和“zoom out”放大缩小基因组的显示范围,通过左边”move”调整你的序列在图形在的位置,一个基因显示多排说明此基因有多个编码方式及对应多个accession num。

通过不断缩小就可找到你的序列上下游基因如下图。

(2)利用UCSC对序列进行定位

如果你有一段序列,想知道在基因组的位置,或者想进行基因定位,一般都是用NCBI的在线Blast,但Blast不仅速度慢,而且结果较多,很难找到想要的东西。如果你的序列是脊柱动物的,那么用UCSC的Blat会非常方便。首先打开其页面,在第一个下拉框中选择对应的物种,目前UCSC包含大部已测序的脊柱动物,线虫,微生物的注释信息,然后在第二个下拉框中选择对应的注释版本,如对于Human,NCBI37对应hg19,如果你想比较你的序列定位信息,要特别留意这个版本号。其它的不需要改,在下面文本框中填入你的序列后,点击下面的”submit”就可以了,序列长度要大于30bp,序列有空格,分行符,数字,大小写不统一,是不是Fast格式都没关系,系统会忽略掉的。

在接下来的结果页面,第一结果往往就是最好的结果,看一下IDENTITY 那列是不是100%,SPAN列是不是你序列的长度,如果第二结果或者第三个结果和第一个结果一样都是100%,SPAN长度也和你的序列长度一样,那说明你的序列不具有特异性,存在于多个位置。如果IDENTITY没有100%,但有98%以上,且SPAN长度和你序列差不多,那么你的序列和标准序列有高同源性,基因位置也基本一样。点击ACTIONS列下的detail链接就可以看到序列的详细信息。browser链接图形显示序列在整个基因组的位置,点击那些条条就可看到相关信息。在图形下面那些众多的下拉框中,你想显示哪个就将hide 改成dense或者pack然后点上面的refresh,就可在上面的图形中找到对应的东东了。图形界面的“<”和“>”可以放大和缩小基因组范围。

生物信息学软件及使用概述

生物信息学软件及使 刘吉平 liujiping@https://www.360docs.net/doc/a710303395.html, 用概述 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学是一门新兴的交叉学生物信息学的概念: 科,它将数学和计算机知识应用于生物学,以获取、加工、存储、分类、检索与分析生物大分子的信息,从而理解这些信息的生物学意义。 生 物秀-专心做生物! w w w .b b i o o .c o m

分析和处理实验数据和公共数据,生物信息学软件主要功能 1.2.提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验 3.实验数据的自动化管理 4.寻找、预测新基因及其结构、功能 5.蛋白质高级结构及功能预测(三维建模,目前研究的焦点和难点) 生 物秀-专心做生物! w w w .b b i o o .c o m

功能1. 分析和处理实验数据和公共数据,加快研究进度,缩短科研时间 ?核酸:序列同源性比较,分子进化树构建,结构信息分析,包括基元(Motif)、酶切点、重复片断、碱基组成和分布、开放阅读框(ORF ),蛋白编码区(CDS )及外显子预测、RNA 二级结构预测、DNA 片段的拼接; ?蛋白:序列同源性比较,结构信息分析(包括Motif ,限制酶切点,内部重复序列的查找,氨基酸残基组成及其亲水性及疏水性分析),等电点及二级结构预测等等; ?本地序列与公共序列的联接,成果扩大。 生 物秀-专心做生物! w w w .b b i o o .c o m

Antheprot 5.0 Dot Plot 点阵图 Dot plot 点阵图能够揭示多个局部相似性的复杂关系 生 物秀-专心做生物! w w w .b b i o o .c o m

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学分析实践

水稻瘤矮病毒(RGDV)外层衣壳蛋白 P8的同源模建 高芳銮(Raindy) 同源模建(homology modeling) ,也叫比较模建(Compatative modeling),其前提是一个或多个同源蛋白质的结构已知,当两个蛋白质的序列同源性高于35%,一般情况下认为它们的三维结构基本相同;序列同源性低于30%的蛋白质难以得到理想的结构模型。同源模建是目前最为成功且实用的蛋白质结构预测方法, SWISS-MODEL 是由SwissProt 提供的目前最著名的蛋白质三级结构预测服务器,创建于1993年,面向全世界的生物化学与分子生物学研究工作者提供免费的自动模建服务。SWISS-MODEL 服务器提供的同源模建有两种工作模式:首选模式(First Approach mode)和 项目模式(Project mode)。 本实例以RGDV P8蛋白为研究对象采用首选模式进行同源模建。 图1 SWISS-MODEL 的主界面 操作流程如下: 1.选择模式 单击左侧的“MENU ”菜单下方的“First Approach mode ”,右侧窗口自动SWISS-MODEL 工作窗口,在相应文本框中分别输入的E-mail 、项目标题、待模建的蛋白质序列,SWISS-MODEL 支持以FASTA 格式直接输入或提交UniProt 的登录号,如图2所示。 《生物信息学分析实践》样 稿

图2 SWISS-MODEL 的序列提交页面 2.参数设置 当前版本只有一个选项可设置,如果用户需要使用指定的模板,可在“Use a specific template ”后的输入框填入ExPDB 晶体图像数据库中的模板代码,其格式为“PDBCODE+ChainID ”,如“1uf2P ”。本例不使用指定模板,默认留空。完毕,点击“Submit Modeling Request ”提交模建请求,服务器返回提交成功的提示,如图3所示: 图3 成功提交 SWISS-MODEL WORKSPACEW 页面会自动刷新,直至模建完成,如图4所示,同时模建结果也会发送到指定的邮箱。 3结果解读 点击下图右上方的“Print/Save this page as ”后的图标,可以将整个结果以PDF 文档格式保存到本地计算机中。模建结果给出了五个部分的信息:模建详情(Model Details)、比对信息(Alignment)、模建评价 (Anolea/Gromos/Verify3D)、模建日志(Modelling log)、模板选择日志(Template Selection Log)。 《生物信息学分析实践》样稿

生物信息学简介范文

1、简介 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的? 生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。 生物信息学的主要研究方向:基因组学- 蛋白质组学- 系统生物学- 比较基因组学,1989年在美国举办生物化学系统论与生物数学的计算机模型国际会议,生物信息学发展到了计算生物学、计算系统生物学的时代。 姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。 2、发展简介 生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解。研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在,1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

生物信息学分析

生物信息学分析 生物信息学难吗? 经常有人向我问这个问题,这有什么疑问吗?如果不难学,根本就不用问我这个问题。也无需投入那么多时间精力就能掌握,更无需花费三四千元参加线下的培训班,也不会月薪过万。所以,答案很肯定,道理很简单:生物信息比较难学。 为什么难学? 我总结里几点原因。首先,这是一个交叉学科,要求你既要有生物学的基础,又要有很强的计算机操作技能。这个就有点困难了。因为只是一个生物学就包括多个门类,有很多东西需要去学习,还需要学习计算机知识。很多人一门内容还没学明白,现在还得在加一门,这就属于祸不单行,雪上加霜,屋漏偏逢连夜雨。因此,这种既懂生物学,又懂计算机的复合型人才就比较短缺。而且,生物信息本质上属于数据挖掘,除了生物,计算机,到后面还需要极强的统计学知识才能做好数据分析,所以,还得加上统计学,也就是生物信息学=生物学+计算机科学+统计学三门学科的知识,这也就是为什么生物信息学比较难学。 第二个原因,生物信息本身就包括很多内容,比如DNA的分析,RNA的分析,甲基化的分析,蛋白质的分析等方面,每一

门类又完全不同,从物种方面来分,动物,植物,微生物,医学等有差别很大,很难有一劳永逸,放之四海而皆准的分析方法。 第三个原因就是生物信息是一门快速发展的学习,会出现很多新的测序方法,比如sanger测序,illumina,BGIseq,PacBio,IonTorrent,Nanopore等,每一个平台技术原理完全不同,因此数据特点也完全不同,这就需要针对每一个平台的数据做专门的学习,而且每个平台又在不断的推陈出现,可能今天你刚开发好的方法,产品升级了,都得推倒重来。还有很多新的技术,例如现在比较火的单细胞测序,Hi-C测序,Bionano测序等等内容,以后还出现更多新技术新方法,足够让你活到老,学到老。当然,你先要能活到老,吾生也有涯,而知也无涯。以有涯随无涯,殆已! 高风险才有高收益 当然啦,虽然你已经看到学习生物信息肯定是不容易了,门槛很高,但是呢,门槛高也有很多好处,就是挡住了一部分人,当你学会了,迈过门槛,你的身价就提高了。如果人人都很容易掌握了,那么也就不值钱了。所以,生物信息,前途是光明的,道路是曲折的。

生物信息学名词解释

1.计算生物信息学(Computational Bioinformatics)是生命科学与计算机科学、数理科学、化学等领域相互交叉而形成的一门新兴学科,以生物数据作为研究对象,研究理论模型和计算方法,开发分析工具,进而达到揭示这些数据蕴含的生物学意义的目的。 2.油包水PCR (Emulsion PCR) : 1) DNA片段和捕获磁珠混合; 2) 矿物油和水相的剧烈震荡产生油包水环境; 3) DNA片段在油包水环境中扩增;4) 破油并富集有效扩增磁珠。 3.双碱基编码技术:在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能。代表测序方法:solid 测序。 4.焦磷酸测序法:焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应,适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。焦磷酸测序技术不需要凝胶电泳,也不需要对DNA样品进行任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。在单核苷酸多态性、病原微生物快速鉴定、病因学和法医鉴定研究等方面有着越来越广泛的应用。例如:454测序仪 :用蛋白质序列查找核苷酸序列。 :STS是序列标记位点(sequence-tagged site)的缩写,是指染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,一般长200bp -500bp。它可用PCR方法加以验证。将不同的STS依照它们在染色体上的位置依次排列构建的图为STS图。在基因组作图和测序研究时,当各个实验室发表其DNA测序数据或构建成的物理图时,可用STS来加以鉴定和验证,并确定这些测序的DNA片段在染色体上的位置;还有利于汇集分析各实验室发表的数据和资料,保证作图和测序的准确性。 :表达序列标签技术(EST,Expressed Sequence Tags)EST技术直接起源于人类基因组计划。 :生物信息学数据库。UniGene试图通过计算机程序对GeneBank中的序列数据进行适当处理,剔除冗余部分,将同一基因的序列,包括EST序列片段搜集到一起,以便研究基因的转录图谱。UniGene除了包括人的基因外,也包括小鼠、大鼠等其它模式生物的基因。 :开放阅读框(ORF,open reading frame )是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。编码一个蛋白质的外显子连接成为一个连续的ORF。 10.分子钟检验:只有分子钟的,没听过分子钟检验。一种关于分子进化的假说,认为两个物种的同源基因之间的差异程度与它们的共同祖先的存在时间(即两者的分歧时间)有一定的数量关系

启动子生物信息学分析软件

https://www.360docs.net/doc/a710303395.html,/seq_tools/promoter.html 2. PlantCARE(plant cis-acting regulatory elements), a database of plant cis-acting regulatory elements http://bioinformatics.psb.ugent.be/webtoo ls/plantcare/html/ 3. promoter 2.0 prediction server http://www.cbs.dtu.dk/services/Promoter/ 4. 启动子分析网址: 1 https://www.360docs.net/doc/a710303395.html,/seq_tools/promoter.html 2 http://alggen.lsi.upc.es/recerca/menu_recerca.html 3 http://www.cbs.dtu.dk/services/Promoter/ 4 https://www.360docs.net/doc/a710303395.html,/~molb470/ ... s/solorz/index.html 5 https://www.360docs.net/doc/a710303395.html,/molbio/proscan/ http://bip.weizmann.ac.il/toolbo ... ters.html#databases https://www.360docs.net/doc/a710303395.html,/seq_tools/promoter.html https://www.360docs.net/doc/a710303395.html,.sg/promoter/CGrich1_0/CGRICH.htm https://www.360docs.net/doc/a710303395.html,/pub/programs.html#pmatch https://www.360docs.net/doc/a710303395.html,.hk/~b400559/arraysoft_pathway.html#Promoter http://www.dna.affrc.go.jp/PLACE/signalup.html http://intra.psb.ugent.be:8080/PlantCARE/ http://www.cbs.dtu.dk/services/Promoter/ https://www.360docs.net/doc/a710303395.html,/molbio/proscan/ https://www.360docs.net/doc/a710303395.html,/molbio/signal/ https://www.360docs.net/doc/a710303395.html,/thread-41571-1-1.htm 常用启动子分析网址: http://bip.weizmann.ac.il/toolbox/seq_analysis/promoters.html#databas es

生物信息学分析方法

核酸和蛋白质序列分析 蛋白质, 核酸, 序列 关键词:核酸序列蛋白质序列分析软 件 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站(https://www.360docs.net/doc/a710303395.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质,是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch 算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外,我们还推荐使用EMBOSS软件包中的Needle软件(http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST (https://www.360docs.net/doc/a710303395.html,/BLAST/)。以上介绍的这些双序列比对工具的使用都比较简单,一般输入所比较的序列即可。 (1)BLAST和FASTA FASTA(https://www.360docs.net/doc/a710303395.html,/fasta33/)和BLAST (https://www.360docs.net/doc/a710303395.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。这两

生物信息学基础知识

分子生物学基础知识太仓生命信息研究所 2011-7

前言 本文仅适用于对非生物专业的员工进行基础知识普及。如有深入学习的要求,请选用正规权威教材。 本教材以蛋白质、DNA、RNA、复制、转录和翻译为主要讲解内容,目的是帮助员工理解在工作中会遇到的常见生物学概念及术语 目录 前言 (2) 目录 (2) 蛋白质 (3) 1. 什么是蛋白质 (3) 2. 蛋白质的3D结构 (5) DNA (7) 1. DNA的组成—4种碱基 (7) 2. DNA的复制 (8) 3. DNA转录为RNA (9) 4. mRNA翻译成氨基酸序列 (11)

蛋白质 1.什么是蛋白质 蛋白质是由20中基本氨基酸链接而成的,生物体的大部分是有蛋白质构成的。每种氨基酸由4部分组成:碳原子C,羧基coo-,氨基H3N和R group。 20中氨基酸按照不同的排列和不同的长度,就形成了蛋白质。不同的R group把氨基酸分为5类: 无极性脂肪类R Group:

芳香类R Group 有极性,无电荷R Group

正电荷R Group 负电荷R Group 2.蛋白质的3D结构 氨基酸链在三维空间里呈现出一定的结构。各个氨基酸分子于相邻的氨基酸之间有氢键连接。 一级结构:氨基酸的排列顺序,可以用氨基酸的缩写在书面上表达。 氨基和羧基之间的氢键使得单个的氨基酸分子能够链接起来。

二级结构:单条氨基酸链所形成的2D形态。常见的有Alpha helix Beta sheet。 Alpha helix:氨基酸分子按顺时针或逆时针的方向螺旋上升。 Beta sheet:多条氨基酸分子链并列在一起。 三级结构:氨基酸链在各个方向的形态综合在一起。

生物信息学常用工具

常用DNA和蛋白质序列数据分析工具: ●序列比对工具: a)BLAST: ●网络比对,包括基础的Blast比对、参数、特殊Blast如PSI-Blast、Blast2 等; ●本地比对,包括程序下载、安装、数据库的下载及格式化、Blast程序的 运行等。 b)多序列比对ClustalX(Windows系统) 包括程序下载、安装、及程序的运行、结果的输入输出等。 ●真核生物基因结构的预测: a)基因可读框的识别: Genescan; CpG岛、转录终止信号和启动子区域预测; CpGPlot; POLYAH; PromoterScan; b)基因密码子偏好性: CodonW; c)采用mRNA序列预测基因: Spidey; d)ASTD数据库 ●分子进化遗传分析工具 ●MEGA;

●Phylip; ●蛋白质结构和功能预测 a)一级结构 ProtParam蛋白质序列理化参数检索; ProtScale蛋白质疏水性分析; COILS卷曲螺旋预测; b)二级结构 PredictProtein蛋白质结构预测; PSIPRED不同蛋白质结构预测方法; c)InterProScan: 模式和序列谱研究 Prosite:蛋白质结构域、家族和功能为点数据库; Pfam:蛋白质家族比对和HMM数据库; BLOCK:模块搜索数据库; SMART:简单模块架构搜索工具; TMHMM:跨膜结构预测工具; d)三级结构 Swiss-Model Workspace: 同源建模的网络综合服务器; Phyre:线串法预测蛋白质折叠; HMMSTR/Rosetta:从头预测蛋白质结构; Swiss-PdbViewer:分子建模和可视化工具; 序列模体的识别和解析; MEME程序包; ●蛋白质谱数据分析

常用生物信息学软件

常用生物信息学软件 一、基因芯片 1、基因芯片综合分析软件。 ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。 phoretix? Array Nonlinear Dynamics公司的基因片综合分析软件。 J-express 挪威Bergen大学编写,是一个用JA V A语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JA V A运行环境JRE1.2后(5.1M)后,才能运行。 2、基因芯片阅读图像分析软件 ScanAlyze 2.44 ,斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。 4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。 FreeView 是基于JA V A语言的系统树生成软件,接收Cluster生成的数据,比Treeview 增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具 三、序列综合分析 V ector NTI Suite 8.0 不喜欢装备各种专业性强的软件,而希望用一个综合性的软件代替的同志可以选择本软件。本阶段的大部分功能它都有。该软件具体特有良好的数据库管理(增加、修改、查找),对要操作的数据放在一个界面相同的数据库中统一管理。软件中的大部分分析可以通过在数据库中进行选定(数据)->分析->结果(显示、保存和入库)三步完成。在分析主界面,软件可以对核酸蛋白分子进行限制酶分析、结构域查找等多种分析和操作,生成重组分子策略和实验方法,进行限制酶片段的虚拟电泳,新建输入各种格式的分子数据、

生物信息学基本分析

核酸序列的基本分析 运用DNAMAN软件分析核酸序列的分子质量、碱基组成和碱基分布。同时运用BioEdit(版本7.0.5.3)软件对基因做酶切谱分析。 碱基同源性分析 运用NCBI信息库的BLAST程序对基因进行碱基同源性分析(Translated query vs.protien database(blastx))网站如下:https://www.360docs.net/doc/a710303395.html,/BLAST/ 参数选择:Translated query-protein database [blastx];nr;stander1 开放性阅读框(ORF)分析 利用NCBI的ORF Finder程序对基因做开放性阅读框分析,网址如下: https://www.360docs.net/doc/a710303395.html,/projects/gorf/orfig.cgi 参数选择:Genetic Codes:1 Standard 对蛋白质序列的结构功能域分析 运用简单模块构架搜索工具(Simple Modular Architecture Research Tool,SMART)对基因的ORF出的蛋白质序列进行蛋白质结构功能域分析。该数据库由EMBL建立,其中集成了大部分目前已知的蛋白质结构功能域的数据。 网址如下:http://smart.embl-heidelberg.de/ 运用NCBI的BLAST程序再对此蛋白质序列进行rpsBlast分析 参数选择:Search Database:CDD v2.07-11937PSSM Expect:0.01 Filter:Low complexity Search mode:multiple hits 1-pass 同源物种分析 用DNAMAN软件将蛋白质序列相关基因序列比对,根据结果绘出系统进化树,并进行分析。 蛋白质一级序列的基本分析 运用BioEdit(版本7.0.5.3)软件对基因ORF翻译的蛋白的一些基本性质,对分子量、等电点、氨基酸组成等作出分析。 二级结构和功能分析 信号肽预测 利用丹麦科技大学(DTU)的CBS服务器蛋白质序列的信号肽(signal peptide)预测,进入Prediction Serves 页面。 网址如下:http://www.cbs.dtu.dk/services/SignalP/ 参数选择: Eukaryotes;Both;GIF (inline);Standard; 疏水性分析 利用瑞士生物信息学研究所(Swiss Institute of Bioinformatics,SIB)的ExPASy服务器上的ProtScale程序对ORF 翻译后的氨基酸序列做疏水性分析 网址如下: https://www.360docs.net/doc/a710303395.html,/cgi-bin/protscale.pl 参数选择:

生物信息学主要内容和发展前景

生物信息学主要内容和发展前景 学生:xxx (x学院xxxx班,学号xxxxxxxxxxx) 摘要:21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 关键字:生物信息学;产生;研究内容;展现状;前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。 一、生物信息学的产生 21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 二、生物信息学研究内容 (一)序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序

生物信息学分析报告

目录 1序列信息提取 (2) 2Gene Ontology (GO)功能注释 (2) 2.1序列比对(BLAST) (2) 2.2GO功能条目提取(Mapping) (2) 2.3功能注释(Annotation) (3) 2.4补充注释(Annotation augmentation) (3) 2.5GO功能注释统计 (3) 2.6GO Slim注释与统计 (4) 3KEGG通路注释 (5) 4蛋白质相互作用网络分析 (6) References (8)

1 序列信息提取 原始数据中质谱鉴定成功的蛋白质共计695个,序列信息批量提取自UniProtKB数据库,以FASTA格式保存(2014040152BT76DF0L.fasta)。 2 Gene Ontology (GO)功能注释 基因本体(Gene Ontology) 是一个标准化的基因功能分类体系,提供了一套动态更新的标准化词汇表,并以此从三个方面描述生物体中基因和基因产物的属性:参与的生物过程(Biological Process),分子功能(Molecular Function) 和细胞组分(Cellular Component) 1。 2.1序列比对(BLAST) 我们利用本地化序列比对软件NCBI BLAST+(ncbi-blast-2.2.28+-win32.ext)将鉴定到的蛋白质与 SwissProt Mammals数据库中的蛋白质序列进行比对。根据相似性原理,所得的同源蛋白的功能信息可以用于目标蛋白的功能注释。我们仅保留排名前10条且E-value ≤1e-3的比对序列进行后续的分析(GO.xlsx表中sheet TopBlastHits)。所得的比对相似性范围为36-100% ,其中大部分目标蛋白序列的比对相似性为90% 或以上(图1)。 图1序列比对相似性分布 2.2GO功能条目提取(Mapping) BlastGO2是一个用于基因/蛋白质功能注释和数据分析的应用软件。我们利用Blast2GO(Version 2.7.1)中的Mapping功能对所有鉴定成功的蛋白的比对序列所关联的GO功能条目进行提取,共提取到与其中692个鉴定成功的蛋白序列(99.6%)相关的21,078条GO功能条目。

生物信息学分析

World Chin J Digestol 2003 October;11(10):1470-1474世界华人消化杂志 ISSN 1009-3079 CN 14-1260/R 2003 年版权归世界胃肠病学杂志社 P.O.Box 2345 Beijing 100023, China Fax: +86-10-85381893 Email: wcjd@https://www.360docs.net/doc/a710303395.html, https://www.360docs.net/doc/a710303395.html, ? 幽门螺杆菌 H pylori ? 幽门螺杆菌黏附素基因babA2的克隆 863 30270078 军队 并将他克隆到质 粒pET-22b(+)中进行核苷酸序列分析 并将其定向插入pET- 22b(+)载体 生物 信息学软件对其进行生物学特性分析.结果: DNA序列分析表明 并显示出了良好的抗原性和疏水性. 结论: 本研究获得了序列正确的babA2基因 为其重组表达及其相关 研究奠定了良好的基础. 白杨, 黄文, 王继德, 张兆山, 周殿元, 张亚历. 幽门螺杆菌黏附素基因babA2的克隆 Hp )感染是慢性胃炎和消化 性溃疡的主要病因[1-6] 血清流行 病学研究表明 Hp感染与循环 对其致病机制的研究日趋深入 但尤以其黏附机制最为关键 而黏附又是Hp定植在胃黏膜表面的前提. 文献报道的Hp 黏附素较多 AlpA 研究表 明babA基因存在两个等位基因: babA1和babA2 其蛋白不具有与Leb 结

合的功能[26]. 目前国内尚未见有关babA2的研究报道并构建 载体对其进行序列及生物信息学分析 研究其黏附作用 Noc I及T4 DNA连接酶 Taq DNA聚 合酶 DNA/EcoR I +Hind  测序质粒纯化试剂盒购自Qiagen 公司 按基因组DNA小量制备法制备[27]. 1.2.2 质粒的提取及纯化 质粒的快速抽提及大量制备均采用碱变性法[27]. 1.2.3 目的基因的PCR扩增 根据文献[26]设计引物 由军事医学科 学院生物工程所张京生合成. 序列如下: babA21:5babA22:5 95  72  转化和阳性克隆的鉴定[27] 质粒和目的基因DNA经Not I和Noc I双酶切 连接12 h 用自动测序仪进行序列分析. 1.2.6 生物信息学分析 ANTHEPROT V4.3c软件分析其生物学特性. 2 结果 2.1 babA2基因的扩增 PCR结果电泳分析发现在2 200 bp 左右有一条带 将PCR产物经Not I和Nco I 双酶切后 获得重组质粒命名 为pET-22b(+)/BabA2. 经Not I和Nco I双酶切后的重组 质粒电泳 得到了克隆片段的DNA 序列 序列测定及其生物信息学分析 1471

生物信息学工具介绍

生物信息学工具介绍 1、FASTA[10](https://www.360docs.net/doc/a710303395.html,/fasta33/)和BLAST[11](http://www.nc https://www.360docs.net/doc/a710303395.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。比较和确定某一数据库中的序列与某一给定序列的相似性是生物信息学中最频繁使用和最有价值的操作。本质上这与两条序列的比较没有什么两样,只是要重复成千上万次。但是要严格地进行一次比较必定需要一定的耗时,所以必需考虑在一个合理的时间内完成搜索比较操作。FASTA使用的是Wilbur-Lipman 算法的改进算法,进行整体联配,重点查找那些可能达到匹配显著的联配。虽然FASTA不会错过那些匹配极好的序列,但有时会漏过一些匹配程度不高但达显著水平的序列。使用FASTA和BLAST,进行数据库搜索,找到与查询序列有一定相似性的序列。一般认为,如果蛋白的序列一致性为25-30%,则可认为序列同源。BLAST(Basic Loc al Alignment Search Tool,基本局部联配搜索工具)是基于匹配短序列片段,用一种强有力的统计模型来确定未知序列与数据库序列的最佳局部联配。BLAST 是现在应用最广泛的序列相似性搜索工具,相比FASTA 有更多改进,速度更快,并建立在严格的统计学基础之上。这两个工具都采用局部比对的方法,选择计分矩阵对序列计分,通过分值的大小和统计学显著性分析确定有意义的局部比对。BLAST根据搜索序列和数据库的不同类型分为5种:1、BLASTP是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。 2、BLASTX是核酸序列到蛋白库中的一种查询。先将核酸序列翻译成蛋白序列(一条核酸序列会被翻译成可能的六条蛋白),再对每一条作一对一的蛋白序列比对。 3、BLASTN是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序列比对。 4、TBLASTN是蛋白序列到核酸库中的一种查询。与BLASTX相反,它是将库中的核酸序列翻译成蛋白序列,再同所查序列作蛋白与蛋白的比对。 5、TBLASTX是核酸序列到核酸库中的一种查询。此种查询将库中的核酸序列和所查的核酸序列都翻译成蛋白(每条核酸序列会产生6条可能的蛋白序列),这样每次比对会产生36种比对阵列。另外PSI-BLAST通过迭代搜索,可以搜索到与查询序列相似性较低的序列。其中BLASTN、BLASTP在实践中最为常用,TBLASTN在搜索相似序列

相关文档
最新文档