对流传热与传质讨论复习题解答参

对流传热与传质讨论复习题解答参
对流传热与传质讨论复习题解答参

对流传热与传质期末复习题 请主要3-2、10-2和17题

1、结合外掠平壁层流对流换热的求解,试述由边界层控制方程得到精确解和利用边界层积分方程式得到近似解两种方法的主要步骤、特点并比较其结果。

答:对于外掠平壁层流对流换热,由边界层控制方程得到精确解的主要步骤为:先根据外掠平壁流动的边界层动量方程和连续性方程,运用相似变换用流函数将动量方程转化为常微分方程,根据相应的边界条件就可得到速度分布的精确解,在求出速度分布的基础上,根据能量方程式和相应的边界条件即可得到温度分布的精确解,从而得到壁面热流和局部换热系数。特点是:由边界层动量方程式得到的精确解,它的解依赖于速度分布的具体形式,且只适用于Re>>1的情况,不适用于进口导边附近的区域。

而利用边界层积分方程式得到近似解的主要步骤为:首先假定能满足有关边界条件的无量钢温度分布,在u ∞、t w 和t ∞都是常数的假定下,根据低速定物性流体外掠平壁的焓厚度定义式进行积分,可得到焓厚度及其沿轴向变化,壁面热流即可求出,进一步可得到换热系数。其特点在于用边界层积分方程式进行求解,它的解并不十分依赖于速度分布的具体形式,且工作量小,简便。

结果比较:两种方法得到的解结果完全一致。

2、同样是层流对流换热,为什么外掠平壁的Nu ~Re 1/2,而管内充分发展的则h X =常数? 答:流体外掠平壁时,从进口处形成速度边界层和热边界层,且随着流体的往前推进而逐渐增厚,到一定距离后会发生层流到紊流的过渡,不会象管内流动那样出现充分发展区,热流密度也不是常数而是和x

有关,即('(0)w w q t t λ∞=-,因此局部换热系数w x w q h t t ∞

=-,局部努谢尔数()

w w q x

Nu t t λ∞=

-

,所以可得'(0)Nu θ=,即Nu ~Re 1/2;

流体在管内作层流换热时,在充分热发展区,流体的无量纲温度分布不沿流体的推进方向而变化,只是r 的函数,管壁处沿径向的无量纲温度梯度

r r r

θ=??也不推进方向变化,即

w r r m w r r

t t r

r t t θ==??-??=

???-??=常数,而壁温t w 和流体的混合平均温度t m 不随径向距离r 变化,而换热系数是用壁温和流体混合平均温度之差来定义的,即0

w r r w m w m q t

h t t t t r

λ=?=

=---?,显然为常数。

3、以常压下20℃的空气在10 m/s 的速度外掠表面温度为45℃的平壁为例,计算离平壁前缘1mm 、2mm 、5mm 、10mm 、50mm 、100mm 、200mm 、300mm 、1000mm 、2000mm 、5000mm 、100000mm 处局部表面换热系数和平均换热系数(已知20℃的空气λ=0.0259W/(m.K))。 27℃的水以2 m/s 的速度外掠表面温度为45℃的平壁,试计算离平壁前缘1mm 、2mm 、5mm 、10mm 、50mm 、100mm 、200mm 、300mm 、1000mm 、2000mm 、5000mm 、100000mm 处局部表面换热系数和平均换热系数。

分析外掠平壁对流换热系数随距平壁前缘距离x 的变化规律,比较层流、过渡流、湍流时的对流换热系数并给以说明。

答:外掠平壁时,5Re 510x

局部表面换热系数1/21/30.332Re Pr x Nu =,平均换热系数1/21/30.664Re Pr m Nu =

65510Re 510x ?>>?时,过渡流

局部表面换热系数0.80.60.0287Re Pr x Nu =(Pr =0.5~1),平均换热系数2m Nu Nu =

6Re 510x >?时,湍流区

局部表面换热系数0.80.1

0.0287Re Pr 10.169Re [5Pr 5ln(5Pr 1)14]

x Nu -=+++-,平均换热系数2m Nu Nu = (1)定性温度()/2m w t t t ∞=+=(45+20)/2=32.5℃

此时空气物性参数,查表可得Pr 0.70975=,6216.2410/v m s -=? x=1mm 时,Re x u x

v

∞=

=615.76,层流 1/21/30.332Re Pr x Nu ==7.35,1/21/30.664Re Pr m Nu ==14.70

x=2mm 时,Re x u x

v

∞=

=1231.52,层流 1/21/30.332Re Pr x Nu ==10.39,1/21/30.664Re Pr m Nu ==20.78

x=5mm 时,Re x u x

v

∞=

=3078.80,层流 1/21/30.332Re Pr x Nu ==16.43,1/21/30.664Re Pr m Nu ==32.86

x=10mm 时,Re x u x

v

∞=

=6157.6,层流 1/21/30.332Re Pr x Nu ==23.24,1/21/30.664Re Pr m Nu ==46.48

x=50mm 时,Re x u x

v

∞=

=30788.0,层流 1/21/30.332Re Pr x Nu ==51.96,1/21/30.664Re Pr m Nu ==103.92

x=100mm 时,Re x u x

v

∞=

=61576.0,层流 1/21/30.332Re Pr x Nu ==73.5,1/21/30.664Re Pr m Nu ==147.0

x=200mm 时,Re x u x

v

∞=

=123152.0,层流 1/21/30.332Re Pr x Nu ==103.9,1/21/30.664Re Pr m Nu ==207.8

x=300mm 时,Re x u x

v

∞=

=184728.0,层流 1/21/30.332Re Pr x Nu ==127.28,1/21/30.664Re Pr m Nu ==254.56

x=1000mm 时,Re x u x

v

∞=

=615760.0,过渡流 0.80.60.0287Re Pr x Nu ==1000.17,2m Nu Nu ==2000.34

x=2000mm 时,Re x u x

v

∞=

=1231520.0,过渡流 0.80.60.0287Re Pr x Nu ==1741.4,2m Nu Nu ==3482.8

x=5000mm 时,Re x u x

v

∞=

=3078800.0,过渡流 0.80.60.0287Re Pr x Nu ==3624.5,2m Nu Nu ==7249.0

x=100000mm 时,Re x u x

v

∞=

=6.15×107,湍流 0.80.10.0287Re Pr

10.169Re [5Pr 5ln(5Pr 1)14]

x Nu -=+++-=38534,2m Nu Nu ==77068

(2)定性温度()/2m w t t t ∞=+=(45+27)/2=36℃

此时水,查表可得Pr 4.76=,6271.3810/v m s -=? x=1mm 时,Re x u x

v

∞=

=28.02, 1/21/30.332Re Pr x Nu ==2.96,1/21/30.664Re Pr m Nu ==5.92

x=2mm 时,Re x u x

v

∞=

=56.04, 1/21/30.332Re Pr x Nu ==4.18,1/21/30.664Re Pr m Nu ==8.36

x=5mm 时,Re x u x

v

∞=

=140.1, 1/21/30.332Re Pr x Nu ==6.61,1/21/30.664Re Pr m Nu ==13.22

x=10mm 时,Re x u x

v

∞=

=280.2, 1/21/30.332Re Pr x Nu ==9.35,1/21/30.664Re Pr m Nu ==18.7

x=50mm 时,Re x u x

v

∞=

=1401, 1/21/30.332Re Pr x Nu ==20.9,1/21/30.664Re Pr m Nu ==41.8

x=100mm 时,Re x u x

v

∞=

=2802, 1/21/30.332Re Pr x Nu ==29.6,1/21/30.664Re Pr m Nu ==59.2

x=200mm 时,Re x u x

v

∞=

=5604, 1/21/30.332Re Pr x Nu ==41.8,1/21/30.664Re Pr m Nu ==83.6

x=300mm 时,Re x u x

v

∞=

=8406, 1/21/30.332Re Pr x Nu ==51.2,1/21/30.664Re Pr m Nu ==102.4

x=1000mm 时,Re x u x

v

∞=

=28020, 1/21/30.332Re Pr x Nu ==93.5,1/21/30.664Re Pr m Nu ==187

x=2000mm 时,Re x u x

v

∞=

=56040,

1/21/30.332Re Pr x Nu ==132.2,1/21/30.664Re Pr m Nu ==264.4

x=5000mm 时,Re x u x

v

∞=

=140100, 1/21/30.332Re Pr x Nu ==209,1/21/30.664Re Pr m Nu ==418

x=100000mm 时,Re x u x

v

∞=

=2802000, 0.80.10.0287Re Pr

10.169Re [5Pr 5ln(5Pr 1)14]

x Nu -=

+++-=9876.3,2m Nu Nu ==19752.6 (3)从以上计算可以看出,外掠平壁对流换热系数随距平壁前缘距离x 的变化规律为: 在层流区1/2Re x Nu ∝,在过渡流和湍流区增大速度加快,其关系为湍流区换热系数最大,其次为过渡流,层流区换热系数较低。这是因为在湍流区流体扰动作用加强了对流换热。 3-2以常压下20℃的空气在10 m/s 的速度外掠表面温度为45℃的平壁为例,计算离平壁前缘1mm 、2mm 、5mm 、10mm 、50mm 、100mm 、200mm 、300mm 、10000mm 、20000mm 、50000mm 、100000mm 处局部表面换热系数和层流区的平均换热系数(已知20℃的空气 =0.0259W/(m.K))。

答:外掠平壁时,5Re 510x

局部表面换热系数1/21/30.332Re Pr x Nu =,平均换热系数1/21/30.664Re Pr m Nu =

6Re 510x >?时,湍流区

局部表面换热系数6.08.0Pr

Re 0296.0x Nu = 见3-2.xls

4、试说明管内充分发展的湍流换热和层流换热的本质区别,并分别简述其换热系数的推导方法及步骤。

答:管内充分发展的湍流换热和层流换热的本质区别在于雷诺数不同,管内流动时,Re<2300为稳定的层流,Re>104为湍流,2300

管内充分发展的层流换热其换热系数推导步骤为:先求出管内充分发展区的速度分布,由边界层充分发展区层流换热的基本关系式,将速度分布代入进行积分求解,由边界条件可求出

温度分布,然后求出按流体能量平均的混合平均温度,根据换热系数的定义式求出换热系数。

管内充分发展的湍流换热其换热系数推导步骤为:由通用速度分布代入剪切力公式可求得湍流动量扩散率的分布,然后求出管内湍流充分发展的温度分布,把湍流边界层分成层流底层、缓冲层和主湍流层,求得每一层的温差,即可得管中心温度和壁温之差。确定边界条件下的温度分布后,就可求解流体混合平均温度和换热系数。

5、为什么当冷凝换热温差增大时,冷凝换热系数减小?说明冷凝器为何多采用横管结构,结合工程实际说明维持较大的冷凝换热系数应采取的措施。

答:冷凝换热系数/h q T =?,从式中可以看出冷凝换热温差增大时,冷凝换热系数减小。

横管的表面传热系数计算式1/4

230.729()l l H l s w gr h d t t ρλη??

=??-??

而竖管的表面传热系数计算式1/4230.943()l l V l s w gr h t t ρλη??

=??

-??

特征长度横管用d ,而竖管用l ;两式系数也不同。在其他条件相同时,横管平均表面传热系数

h H 与竖管平均表面传热系数h V 的比值为1/4

0.77H V h l h d ??

= ???

,l/d =2.86时h H =h V ,冷凝器中一般

l/d>2.86,横管的平均表面传热系数较大,l/d =50时,横管的平均表面传热系数时竖管的2倍,所以冷凝器通常都采用横管的布置方案。

6、试结合Rohsenow 的大容器核态沸腾换热关系式说明汽泡跃离加热面的运动是影响换热的最重要的因素。

答:Rohsenow 的大容器核态沸腾换热关系式为:

其中

r 表示汽化潜热;C pl 表示 饱和液体的比定压热容,g 表示重力加速度,ηl 表示饱和液体的动

力粘度,C wl 取决于加热表面-液体组合情况的经验常数, q 表示沸腾传热的热流密度, s 是经验指数,

为特征长度,它正比于汽泡跃离加热面时的直径,可见汽泡跃离加热

面的运动是影响换热的最重要的因素。

7、一温度为120℃、高为1.2m 的竖壁,放置于温度为20℃的空气中,试计算离竖壁下端0.25m 处的局部表面换热系数。该壁面上是否会出现湍流边界层?如果出现的话,过渡为湍流边界层

10.33Re Pr s

wl l St C -=??Re Pr pl Nu r

St C t

==??

?Re =Pr pl l l l C ηλ=

的位置在何处?已知20℃的空气ανv g m K 2

731

14710=?--.。 答:定性温度()/2m w t t t ∞=+=(120+20)/2=70℃ 空气物性参数:Pr =0.706,329.2110/()W m K λ-=??,

6312

72.210v g

m K v α--=?

当0.1

x=0.25m 时,3632

()

72.2100.25(12020)v w x a gx t t Gr v ∞-==???-=1.128×108 1/40.411(Pr)x x Nu Gr ==38.826,

局部表面换热系数3

238.82629.2110 4.536/()0.25x x Nu h W m K x λ-??===?

x=L=1.2m 时,363

2

()72.210 1.2(12020)v w x a gx t t Gr v

∞-==???-=1.248×1010 491010x Gr ≤≤时为层流边界层,因此该壁面上会出现湍流边界层,过渡为湍流边界层的位置为21/3

1/3

9

6

10()72.210(12020)x cr v w Gr v x g t t α∞????== ?

?-??-??

??

=0.517m 8、3#机油以1134 kg/h 的流量在直径为12.7 mm 的管内流动,油温从93 ℃被冷却到67 ℃,管内壁温度为20 ℃。已知t f =80 ℃时,ρ=857.4 kg/m 3,λ=0.138W/(m.K) ,p c =2131J/(kg.K) ,Pr=490,μ=114.7kg/(m.K), w t =20℃时w μ=2879kg/(m.h)。若不考虑物性随温度的变化,计算所需换热管长度。高Pr 数的油类在换热器管程内的常用流速为0.5~1.8 m/s ,试通过上述实例计算说明其流动形式和换热特性,并说明应如何计算其在换热器内的换热系数。 答:定性温度12()/2m t t t =+=(93+67)/2=80℃

换热量12()11342131(9367)/360017452.89p Qc t t W Φ=-=??-=

管内油的流速为24m Q Q

u A d ρρπ=

==2.9m/s ,雷诺数Re m u d ρμ

==991 为层流 对于高Pr 数(Pr 5≥)介质,其速度扩散率比温度扩散率大的多,因此速度边界层迅速达到充

分发展时,热边界层才刚发展起来,属于管内进口段的层流换热。

采用齐德-泰特公式求Nu 数:1/3

1/3

Re Pr 1.860.1421.72//w Nu l l d μμ????==

? ?????

换热系数1/3236.05/Nu h l d

λ

=

= 换热量2/3()()564.79m w m w hA t t h dl t t l πΦ=-=-=

所需管长3/2

171.78564.79l m Φ??

== ?

??

高Pr 数的油类在换热器管程内的常用流速为0.5~1.8 m/s ,其流动形式一般为层流,很难达到充分发展区,属于管内进口段的层流换热,换热器内的换热系数的计算方法为:先根据流速求出雷诺数,判断流动形式,根据相应的换热关联式求出Nu 数,根据Nu 数求出换热系数。 9、既然对流换热包含了流体中温度不同的各部分之间发生宏观相对运动和相互掺混所引起的热量传递,为什么管内流动和热充分发展段的对流换热系数仅具有导热的特征而没有对流的特征?

答:对流换热是流体的宏观热运动(热对流)与流体的微观热运动(导热)联合作用的结果。因为在管内流动和热充分发展段,管内的速度分布和流体的无量纲温度分布都不随流体推进而变化,管壁处沿径向的无量纲温度梯度

r r r

θ

=??也不推进方向变化,即

w r r m w r r

t t r

r t t θ==??-??=

???-??=常数,而壁温t w 和流体的混合平均温度t m 不随径向距离r 变化,而换热系数是用壁温和流体混合平均温度之差来定义的,即0

w r r w m w m q t

h t t t t r

λ=?==---?,显然为常数,因此仅具有导热的特征而

没有对流的特征。

10、已知某一电厂凝汽器,蒸汽冷凝侧的放热系数为o α=10000 W/m 2.K ,冷却水的平均温度为32℃,当冷却水流速度Vw=2 m/s 时的对流换热系数为i α=3343 W/m 2.K,总传热面积为38000m ,总换热量为828500k W ,试分析当冷却水侧污垢热阻分别为Rf=1、2、3、4×10-4 m 2.K/W 时对机组性能的影响。(凝汽器背压每升高0.000981Mpa ,循环热效率降低0.5% ~ 0.7% 答:总传热系数11

1

f o

i

k R αα=

++

,换热量kA t Φ=?

Rf=1×10-4 m 2.K/W 时1f o

i

k R αα=

++

=2003.5 W/m 2.K ,t kA

Φ

?=

=10.88℃ Rf=2×10-4 m 2.K/W 时11

1

f o

i

k R αα=

++

=1669.1W/m 2.K ,t kA

Φ

?=

=13.06℃ Rf=3×10-4 m 2.K/W 时11

1

f o

i

k R αα=

++

=1430.3 W/m 2.K ,t kA

Φ

?=

=15.24℃ Rf=4×10

-4

m 2.K/W 时11

1

f o

i

k R αα=

++

=1251.4 W/m 2.K ,t kA

Φ

?=

=17.42℃ 可以看出,在相同的换热量和换热面积下,随着冷却水侧污垢热阻的增大,总传热系数减小,温差增大,凝汽器背压升高,循环热效率降低,机组性能下降。

10-2、已知某一电厂凝汽器,蒸汽冷凝侧的放热系数为0α=10000 W/m 2.K ,不考虑不凝性气体的影响,冷却水的平均温度为tw=28℃,冷却水流速度Vw=2 m/s 时的对流换热系数为i α=3343 W/m2.K ,总传热面积为38000m 2

,总换热量为828500kW ,试分析当冷却水侧污垢热阻分别为R f =1、

2、3、4×10-4

m 2.K/W 时对机组性能的影响。(凝汽器内蒸汽的饱和温度每升高1℃,机组热效率降低 0.26 %) 见10-2.xls

11、在研究沸腾换热时,为什么要计算临界热流密度?试给出计算临界热流密度的公式并说明得出该公式的理由。

答:当热流密度超过临界热流密度时,表面换热系数大大下降,将使壁温飞升,导致设备烧毁,因此计算临界热流密度具有非常重要的意义。 临界热流密度的计算公式为: 该公式是根据汽膜的泰勒不稳定性原理推导得出的。 12、是否可以用x

y x w x y

T T T h ,0,=∞

???--

来确定外掠平壁湍流换热的对流换热系

[]

14

12

max ()24

v l v q r g π

ρσρρ=

-

数x h ,试说明确定外掠平壁湍流换热的对流换热系数x h 和x Nu 的主要思路和所用到的近

似假设。

答:不能用x

y x w x y

T

T T h ,0,=∞

???

--

来确定外掠平壁湍流换热的对流换热系数

x

h ,在近壁的薄层中假定速度u 只是y 的函数,

u

x

??可略而不计,假定边界层中无量纲速度分布的1/7次方律,由速度分布可以求得排量厚度和动量厚度与边界层厚度的关系,再根据动量积分方程式确定动量厚度的变化规律,得到壁面阻力系数,把湍流边界层分成层流底层、缓冲层和主湍流层,求得每一层的温差,得到总温差,即可求得外掠平壁湍流换热的对流换热系数

x

h 和

x Nu 。

13、对管内充分发展段的层流对流换热,常壁温边界条件时的对流系数比常热流边界条件的对流换热系数大还是小?为什么?湍流时两种边界条件时的对流换热系数是否有差别?为什么? 答:对管内充分发展段的层流对流换热,常壁温边界条件时的对流系数比常热流边界条件的对流换热系数小,这是因为二者的无量纲温度分布曲线不同造成的,常热流时,壁面温度梯度较大,它的换热厚度较小,因此换热系数较高。

湍流时两种边界条件时的对流换热系数,对于低Pr 数的介质有明显差别,常壁温的低于常热流的,而对于Pr =0.7的空气和高Pr 数的油类,差别很小或几乎没有,其原因是由于Pr 数对整个界面上热阻分配的影响引起的。

14、在求解0.5<Pr <30的流体在管内的流动和热充分发展的湍流换热中,是如何假设流速分布?如何确定

t

Pr 和t ν的?

答:管内湍流充分发展区的速度分布和温度分布假设满足1/7方律,即

1/70

()c u y

u r =,1/70

()w c w t t y t t r -=-。空气的t Pr 是1的数量级,近壁处t Pr

略高于1,而大部分主湍流层约为0.9,并趋近一常数。但对液态金属,雷诺类似律的结果显著偏高,这意味着

t

Pr 应略高于1,取

t

Pr =1。

对能量方程式积分可得温度分布,将速度分布公式代入与温度分布对应的剪应力公式就可求得

t ν。

15、举例对比分析(空气、水)自然对流和强制对流边界层厚度随x 变化的规律、局部Nux 随x 变化规律。

答:边界层厚度随x

变化规律:强制对流时

x

δ

=

,即1/2x δ∝, 自然对流时,

1/4

1/420.952Pr 3.936Pr x

Gr

x

δ

-+??= ?

??

(以竖壁自然对流为例)即1/4x δ∝

局部Nux 随x 变化规律为:强制对流时1/21/30.332Re Pr x Nu =(以外掠平壁为例),即1/2x Nu x ∝,

自然对流时(以竖壁自然对流为例)1/4

2

1/4Pr 0.5080.952Pr x Nu Gr ??= ?

+??

,即3/4x Nu x ∝。

16、压力为0.1Mpa 的饱和水蒸汽,用水平放置、壁温为90℃的铜管冷凝,采用两种方案:用直径为10cm 的铜管一根和直径为1cm 的铜管10根,问两种方案的效果孰优孰劣,为什么?

答:水平管的凝结换热公式1/4

230.729()l l H l s w gr h d t t ρλη??

=??-??

两种方案的换热表面积相同,温差相等,由牛顿冷却公式H h A t Φ=?, 冷凝量H m h A t

q r r

?Φ=

=

, 因此两种方案的凝液量之比1/4

1/4

11222110.56210m H m H q h

d q h d ????==== ?

???

??

故小管径系统的凝液量是大管径的1.778倍,只要保证蒸汽压力和管壁温度在两种情况下相同,上述结论与蒸汽压力和铜管壁温无关。

17、试结合工程实际阐述强化传热技术应用的的意义及应考虑的因素。

化工原理传热练习习题及标准答案.docx

化工原理习题及答案 第五章传热 姓名 ____________ 班级 ____________ 学号 _____________ 成绩 ______________ 一、填空题: 1.( 6 分)某大型化工容器的外层包上隔热层, 以减少热损失 , 若容器外表温度为500℃ ,而 环境温度为20℃ ,采用某隔热材料, 其厚度为240mm,λ =此时单位面积的热损失为_______。 ( 注 : 大型容器可视为平壁) *** 答案 ***1140w 2.( 6 分)某大型化工容器的外层包上隔热层, 以减少热损失 , 若容器外表温度为500℃ ,而 环境温度为20℃ ,采用某隔热材料, 其厚度为120mm, λ =此时单位面积的热损失为 _______。 ( 注 : 大型容器可视为平壁) *** 答案 *** 1000w 3.( 6 分)某大型化工容器的外层包上隔热层, 以减少热损失 , 若容器外表温度为150℃ ,而 环境温度为20℃ , 要求每平方米热损失不大于500w, 采用某隔热材料, 其导热系数λ =则其 厚度不低于 _______。 ( 注 : 大型容器可视为平壁) *** 答案 *** 91mm 4.( 6 分)某间壁换热器中 , 流体被加热时 , 圆形直管内湍流的传热系数表达式为 ___________________. 当管内水的流速为0.5m.s时,计算得到管壁对水的传热系数α= .K). 若水的其它物性不变, 仅改变水在管内的流速, 当流速为 0.8m.s时,此时传热系数α =_____________. *** 答案 ***α =(λ /d)Re Pr α = .K) 5.( 6 分)某间壁换热器中 , 流体被加热时 , 圆形管内湍流的传热系数表达式为 _____________________. 当管内水的流速为0.5m.s时,计算得到管壁对水的传热系数α= .K). 若水的其它物性不变, 仅改变水在管内的流速, 当流速为 1.2m.s时,此时传热系数α =________________. *** 答案 ***α =(λ /d)Re Pr

化工原理--传热习题及答案

传热习题及答案 一、选择题: 1、关于传热系数K 下述说法中错误的是( )C A 、传热过程中总传热系数K 实际是个平均值; B 、总传热系数K 随着所取的传热面不同而异; C 、总传热系数K 可用来表示传热过程的强弱,与冷、热流体 的物性无关; D 、要提高K 值,应从降低最大热阻着手; 2、在确定换热介质的流程时,通常走管程的有( ),走壳程 的有( )。A、C、D;B、E、F A、高压流体; B、蒸汽; C、易结垢的流 体; D、腐蚀性流体; E、粘度大的流体; F、被冷却的流 体; 3、影响对流传热系数的因素有( )。A 、B 、C 、D 、E A 、产生对流的原因; B 、流体的流动状况; C 、流体的物性; D 、 流体有无相变;E 、壁面的几何因素; 4、某套管换热器,管间用饱和水蒸气将湍流流动的空气加热 至指定温度,若需进一步提高空气出口温度,拟将加热管管径 增加一倍(管长、流动状态及其他条件均不变),你认为此措 施是:A A 、不可行的; B 、可行的; C 、可能行,也可能不行; D 、视具 体情况而定; 解:原因是:流量不变 2d u =常数 当管径增大时,a. 2/u l d ∝,0.80.2 1.8/1/u d d α∝= b. d 增大时,α增大,d α∝ 综合以上结果, 1.81/A d α∝,管径增加,A α下降 根据()21p mc t t KA -=m Δt 对于该系统K α≈∴ 21 12ln m t t KA t A T t T t α-?≈-- 即 12 1 ln p mc A T t T t α=-- ∵A α↓ 则12ln T t T t -↓-∴2t ↓

传热学第四版课后思考题答案(杨世铭-陶文铨)]

第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试 写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: )(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何 一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就 烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析 其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热 量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好? 答:B:杯子的保温质量好。因为保温好的杯子热量从杯子内部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。 第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为:n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。

2012传热学模拟试题及参考答案(华科)

第一部分选择题 一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1 .对于过热器中:高温烟气→外壁→内壁→过热的传热过程次序为() A .复合换热、导热、对流换热 B .导热、对流换热、复合换热 C .对流换热、复合换热、导热 D .复合换热、对流换热、导热 2 .温度对辐射换热的影响对对流换热的影响。() A .等于 B .大于 C .小于 D .可能大于、小于 3 .对充换热系数为 1000W/(m 2 · K) 、温度为 77 ℃的水流经 27 ℃的壁面,其对流换热的热流密度为() A . 8 × 10 4 W/m 2 B . 6 × 10 4 W/m 2 C . 7 × 10 4 W/m 2 D . 5 × 10 4 W/m 2 4 .流体流过管内进行对流换热时,当 l/d 时,要进行入口效应的修正。() A .> 50 B .= 80 C .< 50 D .= 100 5 .炉墙内壁到外壁的热传递过程为() A .热对流 B .复合换热 C .对流换热 D .导热 6 .下述哪个参数表示传热过程的强烈程度?() A . k B .λ C .α c D .α 7 .雷诺准则反映了的对比关系?() A .重力和惯性力 B .惯性和粘性力 C .重力和粘性力 D .浮升力和粘性力 8 .下列何种材料表面的法向黑度为最大? A .磨光的银 B .无光泽的黄铜 C .各种颜色的油漆 D .粗糙的沿

9 .在热平衡的条件下,任何物体对黑体辐射的吸收率同温度下该物体的黑度。() A .大于 B .小于 C .恒等于 D .无法比较 10 .五种具有实际意义的换热过程为:导热、对流换热、复合换热、传热过程和() A .辐射换热 B .热辐射 C .热对流 D .无法确定 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 11 .已知某大平壁的厚度为 10mm ,材料导热系数为 45W/(m · K) ,则通过该平壁单位导热面积的导热热阻为。 12 .已知某换热壁面的污垢热阻为 0.0003 ( m 2 · K ),若该换热壁面刚投入运行时的传热系数为340W ( m 2 · K ),则该换热壁面有污垢时的传热系数为。 13 .采用小管径的管子是对流换热的一种措施。 14 .壁温接近换热系数一侧流体的温度。 15 .研究对流换热的主要任务是求解,进而确定对流换热的热流量。 16 .热对流时,能量与同时转移。 17 .导热系数的大小表征物质能力的强弱。 18 .一般情况下气体的对流换热系数液体的对流换热系数。 19 .在一定的进出口温度条件下,的平均温差最大。 20 .是在相同温度下辐射能力最强的物体。 三、名词解释(本大题共 5 小题,每小题 4 分,共 20 分) 21 .稳态导热 22 .稳态温度场 23 .热对流 24 .传热过程 25 .肋壁总效率 四、简答题(本大题共 2 小题,每小题 8 分,共 16 分)

化工原理计算题例题

三 计算题 1 (15分)在如图所示的输水系统中,已知 管路总长度(包括所有当量长度,下同)为 100m ,其中压力表之后的管路长度为80m , 管路摩擦系数为0.03,管路内径为0.05m , 水的密度为1000Kg/m 3,泵的效率为0.85, 输水量为15m 3/h 。求: (1)整个管路的阻力损失,J/Kg ; (2)泵轴功率,Kw ; (3)压力表的读数,Pa 。 解:(1)整个管路的阻力损失,J/kg ; 由题意知, s m A V u s /12.2) 4 05.03600(15 2 =??==π 则kg J u d l h f /1.1352 12.205.010003.022 2=??=??=∑λ (2)泵轴功率,kw ; 在贮槽液面0-0′与高位槽液面1-1′间列柏努利方程,以贮槽液面为基准水平面,有: ∑-+++=+++10,1 21020022f e h p u gH W p u gH ρ ρ 其中, ∑=kg J h f /1.135, u 0= u 1=0, p 1= p 0=0(表压), H 0=0, H=20m 代入方程得: kg J h gH W f e /3.3311.1352081.9=+?=+=∑ 又 s kg V W s s /17.410003600 15 =?= =ρ 故 w W W N e s e 5.1381=?=, η=80%, kw w N N e 727.11727===η 2 (15分)如图所示,用泵将水从贮槽送至敞口高位槽,两槽液面均恒定 不变,输送管路尺寸为φ83×3.5mm ,泵的进出口管道上分别安装有真空表和压力表,真空表安装位置离贮槽的水面高度H 1为4.8m ,压力表安装位置离贮槽的水面高度H 2为5m 。当输水量为36m 3/h 时,进水管道全部阻力损失为1.96J/kg ,出水管道全部阻力损失为4.9J/kg ,压力表读数为2.452×

化工原理传热复习题

传热复习题1 (1)保温瓶在设计和使用过程中采取了哪些防止热损失的措施? 答:首先,保温瓶瓶胆设计成玻璃夹层结构。夹层因空气被抽出接近真空,可防止对流散热损失。其次,瓶胆夹层内两表面均镀有银、铝等低黑度涂层,增加了辐射传热热阻大幅度降低了辐射散热量。举例说,如夹层内壁温度为98οC ,外壁温度为28ο C ,黑度为0.95的玻璃表面镀上黑度为0.02的银层后,其辐射散热量可由原来的5502m W 降至6.152m W 。第三,在使用保温瓶时,瓶盖选用导热系数很小的软木制作, 大,在数值上常视为相等,但就其本质讲,含义是完全不同的。 (4)何谓换热器的控制热阻? 答:换热器的总热阻1/K 主要取决于冷、热流体的对流传热热阻,当然也和管壁的热阻及污垢热阻有关,即, λ ααb K i ∑++=0111 若忽略管壁及污垢热阻,则有 1 11αα+≈i K

如果i α和0α相接近,也就是两种流体的传热阻力差不多时,在谋求强化传热过程中,一般要考虑把 i α、0α都增大。但往往有这种情况,两者的α 值相差很大,例如i α>>0α,则 1 1 αα<< i 。 这时 11α≈K K ≈0α 即总传热系数K 值接近对流传热系数小的一侧流体的α 值,在本例条件下总热阻完全被管外的对流传热热阻所控制。1/0α被称为控制热阻。 答:不正确。 冷却介质的出口温度越高,其用量越小,回收热能的品位也越高,动力消耗也随之减小。但出口温度升高的结果,导致传热推动力即对数平均温差降低,所需传热面积增大,设备费用增大。因此必须从综合角度考虑,全面加以权衡,确定一个适宜的出口温度。 对于常用的冷却介质工业水,出口温度不宜过高。还因为工业水中含有许多盐类。如CaCO 3、 MgCO 3、CaS04、、MgSO 4等。若出口温度过高,上述盐类就会因溶解度减小而析出,附在器壁表面上形成热阻很大的垢层,使传热过程恶化。尽管可以采取在冷却水中添加阻垢剂等化学方法,但至少从目前看,效果很有限。所以无节制了提高冷却介质出口温度的方法是行不通的。设计时常取冷却水进、出口的温度差为5-10℃ 四`选择题

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

化工原理课后习题答案第4章传热习题解答

化工原理课后习题答案第4章传热习题解答

习 题 1. 如附图所示。某工业炉的炉壁由耐火砖λ1=1.3W/(m·K )、绝热层λ2=0.18W/(m·K )及普通砖λ3=0.93W/(m·K )三层组成。炉膛壁内壁温度1100o C ,普通砖层厚12cm ,其外表面温度为50 o C 。通过炉壁的热损失为1200W/m 2,绝热材料的耐热温度为900 o C 。求耐火砖层的最小厚度及此时绝热层厚度。 设各层间接触良好,接触热阻可以忽略。 已知:λ1=1.3W/m·K ,λ2=0.18W/m·K , λ3=0.93W/m·K ,T 1=1100 o C ,T 2=900 o C ,T 4=50o C ,3 δ=12cm ,q = 1200W/m 2,Rc =0 求: 1 δ=?2 δ=? 解: ∵δλT q ?= ∴1 δ=m q T T 22.01200 900 11003.12 1 1 =-? =- λ 又∵3 3 224 23 4 33 2 3 22 λδλδδλδλ+-= -=-=T T T T T T q ∴W K m q T T /579.093 .012 .0120050900233422 2?=--=--= λδλ δ 得:∴m 10.018.0579.0579.022 =?==λδ

习 题1附图 习题2附图 2. 如附图所示。为测量炉壁内壁的温度,在炉外壁及距外壁1/3厚度处设置热电偶,测得t 2=300 o C ,t 3=50 o C 。求内壁温度t 1。设炉壁由单层均质材料组成。 已知:T 2=300o C ,T 3=50o C 求: T 1=? 解: ∵δ λ δλ3 13 2 3 T T T T q -=-= ∴T 1-T 3=3(T 2-T 3) T 1=2(T 2-T 3)+T 3=3×(300-50)+50=800 o C

浙江大学传热学复习题参考答案

高等传热学复习题答案 热动硕士2015 吕凯文 10、燃用气、液、固体燃料时火焰辐射特性。 答:燃料的燃烧反应属于比较剧烈的化学反应。由于燃烧温度较高,而且燃料的化学成分一般都比较复杂,所以燃烧反应的过程是非常复杂的过程,一般的燃料燃烧时火焰的主要成分还有CO 2、H 2O 、N 2、O 2等,有的火焰中还有大量的固体粒子。火焰中还存在大量的中间参悟。在不同的工况下,可能有不同的中间产物和燃烧产物。火焰的辐射光谱是火焰中的各种因素作用的结果。 燃烧中间产物或燃烧产物受火焰加热,要对外进行热辐射。在火焰的高温环境下,固体粒子的辐射光谱多为热辐射的连续光谱,而气体分子的发射光谱多为分段的发射或选择性吸收。此外,还有各物质的特征光谱对火焰的辐射的影响。在工业火焰的温度水平下,氧、氢等结构对称的双原子分子没有发射和吸收辐射的能力,它们对于火焰光谱的影响比较小。而CO 2和H 2O 等结构不对称的分子以及固体粒子对火焰光谱的影响起主导作用。在火焰中大量的中间产物虽然存在时间很短,但对火焰辐射光谱也有一定的影响。(该答案仅供参考) 11、试述强化气体辐射的各种方法。 答:气体辐射的特点有:①不同种类的气体的辐射和吸收能力各不相同;②气体辐射对波长具有强烈的选择性;③气体的辐射和吸收是在整个容积中进行的,辐射到气体层界面上的辐射能在辐射行程中被吸收减弱,减弱的程度取决于辐射强度及途中所遇到的分子数目。 气体的辐射和吸收是气层厚度L 、气体的温度T 和分压p (密度)的函数,(,)f T pL λα=。由贝尔定律,,0k L L I I e λλλ-=?可知,单色辐射在吸收性介质中传播时其强度按指数递减。 由上述可知,强化气体辐射的方法有:提高气体的温度;减小气体层的厚度,;选择三原子、多原子及结构不对称的双原子气体;减小气体的分压。(该答案仅供参考) 12、固体表面反射率有哪几种? 答:被表面反射的能量与投射到表面的能量之比定义为表面反射率。固体表面反射率有: ①双向单色反射率;②单色定向-半球反射率;③单色半球-定向发射率。

化工原理传热复习题

传热复习题1 (1)保温瓶在设计和使用过程中采取了哪些防止热损失的措施 答:首先,保温瓶瓶胆设计成玻璃夹层结构。夹层因空气被抽出接近真空,可防止对流散热损失。其次,瓶胆夹层内两表面均镀有银、铝等低黑度涂层,增加了辐射传热热阻大幅度降低了辐射散热量。举例说,如夹层内壁温度为98 C ,外壁温度为28 C ,黑度为的玻璃表面镀上黑度为的银层后,其辐射散热量可由原来的5502 m W 降至2 m W 。第三,在使用保 温瓶时,瓶盖选用导热系数很小的软木制作,而且在灌水时还要在瓶颈处留出一段空气的导热系数比水在小得多,从而有效地降低了瓶口的导热热损失。 (2)计算蒸气在水平管外冷凝的凯恩(Kern )公式为:=a (t d r g ??????023μρλ)。试 定性说明各种因素对冷凝给热系数a 的影响。 答:应当指出,冷凝给热的热阻是凝液造成的,因此式中各物性常数都是凝液的物性,而非蒸气的物性。 当λ大时,液膜导热性能良好,a 自然就大;ρ大,液膜容易从壁面上往下滑,同样使a 增大,潜热r 大,a 也大。相反,若蒸气温度和壁温之间的温差t ?大,则意味着单位时间内凝液量增多,凝液膜增厚,这反而不利于传热,因此a 会变小;当粘度μ增大时,因流动阻力增大,液膜增厚,a 必然减小;至于水平管的直径d 0 大了,会使管子下部液膜加厚, 同样不利于传热, a 也要变小。

将上面定性分析结果与凯恩公式对照后可以发现:二者是完全一致的. (3)换热器的热负荷与传热速率有何不同 答:冷、热流体在单位时间内在换器中所交换的热量,称为换热器的热负荷.它是针对换热任务的需要提出的,是生产上要求换热器应具有的换热能力,热负荷可根据生产中物流量、进出口温度及状态变化求化求出。 而传热速率则是指换热器本身在一定操作条件下所具有的传递热量的能力,是换热器本身的特性,二者是不相同的。 容易混淆的是,实际生产中设计或标定换热器时,常把传热速率与热负荷视为相等,一般都是通过热负荷的计算,求得换热器应具有的传热速率,再依据传热基本方程求出所需换热器的传热面积,尽管二者在数值上常视为相等,但就其本质讲,含义是完全不同的。 (4)何谓换热器的控制热阻 答:换热器的总热阻1/K 主要取决于冷、热流体的对流传热热阻,当然也 和管壁的热阻及污垢热阻有关,即, λααb K i ∑ ++=0 111 若忽略管壁及污垢热阻,则有 1 11αα+≈i K 如果i α和0α相接近,也就是两种流体的传热阻力差不多时,在谋求强化传热过程中,一般要考虑把i α、0α都增大。但往往有这种情况,两者

华北电力大学(北京)824传热学2011模拟试题

2011年全国硕士研究生入学考试自主命题科目模拟试题 招生专业: 考试科目:传热学 考试时间:14:00-17:00 试题编号:824 2011年全国硕士研究生考试华北电力大学(北 京 )自主命题模拟试题 姓名: 准考证号: 报考院校: 报考专业:

考场注意事项: 一、考生参加考试必须按时进入考场,按指定座位就坐。将有关身份证件(准考证、身份证)放在桌面左上角,以备查对。 二、闭卷考试,考生进入考场,不得携带任何书刊、笔记、报纸和通讯工具(如手机、寻呼机等),或有存储、编程、查询功能的电子用品(如已携带,必须存放在监考老师指定的地方)。考生只准带必需的文具,如钢笔、圆珠笔、铅笔、橡皮、绘图仪器或根据考试所需携带的用具。能否使用计算器,及开卷考试时允许携带的书籍及用具等由任课教师决定。 三、考生迟到30分钟不得入场,逾时以旷考论;因特殊原因不能参加考试者,必须事前请假,并经研究生部批准,否则作旷考论。考试开始30分钟后才准交卷出场。答卷时,不得中途离场后再行返回。如有特殊原因需离场者,必须经监考教师准许并陪同。答卷一经考生带出考场,即行作废。 四、考生拿到试卷后,应先用钢笔填写好试卷封面各项,特别是学号、姓名、学院名称、课程名称等,不到规定的开考时间,考生不得答题。 五、考试期间,考生应将写好的有答卷文字的一面朝下放置,考生必须按时交卷,交卷时应将试卷、答卷纸和草稿纸整理好,等候监考老师收取,未经许可,不得将试卷、答卷纸和草稿纸带出场外。 六、考生在考场内必须保持安静。提前交卷的考生,应立即离开考场,不得在考场附近逗留。 七、考生答题必须用钢笔或圆珠笔(蓝、黑色)书写,字迹要工整、清楚。答案书写在草稿纸上的一律无效。 八、考生对试题内容有疑问的,不得向监考老师询问。但在试题分发错误或试卷字迹模糊时,可举手询问。

化工原理—传热复习题

一、选择题 1、关于传热系数K,下述说法中错误的是() A、传热过程中总传热系数K实际是个平均值; B、总传热系数K随着所取的传热面不同而异; C、总传热系数K可用来表示传热过程的强弱,与冷、热流体的物性无关; D、要提高K值,应从降低最大热阻着手; C 2、在确定换热介质的流程时,通常走管程的有(),走壳程的有()。 A、高压流体; B、蒸汽; C、易结垢的流体; D、腐蚀性流体; E、粘度大的流体; F、被冷却的流体; A、C、D; B、E、F 3、影响对流传热系数的因素有( )。 A、产生对流的原因; B、流体的流动状况; C、流体的物性; D、流体有无相变; E、壁面的几何因素; A、B、C、D、E 4、对下述几组换热介质,通常在列管式换热器中K值从大到小正确的排列顺序应是()。 A、②>④>③>①; B、③>④>②>①; C、③>②>①>④; D、②>③>④>①; 冷流体热流体 ①水气体 ②水沸腾水蒸气冷凝 ③水水 ④水轻油 D 5、下述各种情况下对流传热系数由大到小的正确顺序应该是()。 A、③>④>①>②; B、④>③>②>①; C、③>④>②>①; D、③>②>④>①; ①空气流速为30m/S时的a;②水的流速为1.5m/s时的a; ③蒸汽滴状冷凝时的a;④水沸腾时的a; C 6、传热过程中当两侧流体的对流传热系数都较大时,影响传热过程的将是()。 A、管避热阻; B、污垢热阻; C、管内对流传热热阻; D、管外对流传热热阻; B 7、关于辐射传热,下述几种说法中错误的是()。 A、除真空和大多数固体外,热射线可完全透过; B、热辐射和光辐射的本质完全相同,不同的仅仅是波长的范围; C、热射线和可见光一样,都服从折射定律; D、物体的温度不变,其发射的辐射能也不变; A 8、冷热水通过间壁换热器换热,热水进口温度为90?C,出口温度为50?C,冷

传热学习题及参考答案

《传热学》复习题 一、判断题 1.稳态导热没有初始条件。() 2.面积为A的平壁导热热阻是面积为1的平壁导热热阻的A倍。() 3.复合平壁各种不同材料的导热系数相差不是很大时可以当做一维导热问题来处理() 4.肋片应该加在换热系数较小的那一端。() 5.当管道外径大于临界绝缘直径时,覆盖保温层才起到减少热损失的作用。() 6.所谓集总参数法就是忽略物体的内部热阻的近视处理方法。() 7.影响温度波衰减的主要因素有物体的热扩散系数,波动周期和深度。() 8.普朗特准则反映了流体物性对换热的影响。() 9. 傅里叶定律既适用于稳态导热过程,也适用于非稳态导热过程。() 10.相同的流动和换热壁面条件下,导热系数较大的流体,对流换热系数就较小。() 11、导热微分方程是导热普遍规律的数学描写,它对任意形状物体内部和边界都适用。( ) 12、给出了边界面上的绝热条件相当于给出了第二类边界条件。 ( ) 13、温度不高于350℃,导热系数不小于0.12w/(m.k)的材料称为保温材料。 ( ) 14、在相同的进出口温度下,逆流比顺流的传热平均温差大。 ( ) 15、接触面的粗糙度是影响接触热阻的主要因素。 ( ) 16、非稳态导热温度对时间导数的向前差分叫做隐式格式,是无条件稳定的。 ( ) 17、边界层理论中,主流区沿着垂直于流体流动的方向的速度梯度零。 ( ) 18、无限大平壁冷却时,若Bi→∞,则可以采用集总参数法。 ( ) 19、加速凝结液的排出有利于增强凝结换热。 ( ) 20、普朗特准则反映了流体物性对换热的影响。( ) 二、填空题 1.流体横向冲刷n排外径为d的管束时,定性尺寸是。 2.热扩散率(导温系数)是材料指标,大小等于。 3.一个半径为R的半球形空腔,空腔表面对外界的辐射角系数为。 4.某表面的辐射特性,除了与方向无关外,还与波长无关,表面叫做表面。 5.物体表面的发射率是ε,面积是A,则表面的辐射表面热阻是。 6.影响膜状冷凝换热的热阻主要是。

传热学课后习题

第一章 1-3 宇宙飞船的外遮光罩是凸出于飞船船体之外的一个光学窗口,其表面的温度状态直接影响到飞船的光学遥感器。船体表面各部分的表明温度与遮光罩的表面温度不同。试分析,飞船在太空中飞行时与遮光罩表面发生热交换的对象可能有哪些?换热方式是什么? 解:遮光罩与船体的导热 遮光罩与宇宙空间的辐射换热 1-4 热电偶常用来测量气流温度。用热电偶来测量管道中高温气流的温度,管壁温度小于气流温度,分析热电偶节点的换热方式。 解:结点与气流间进行对流换热 与管壁辐射换热 与电偶臂导热 1-6 一砖墙表面积为12m 2,厚度为260mm ,平均导热系数为1.5 W/(m ·K)。设面向室内的表面温度为25℃,而外表面温度为-5℃,确定此砖墙向外散失的热量。 1-9 在一次测量空气横向流过单根圆管对的对流换热试验中,得到下列数据:管壁平均温度69℃,空气温度20℃,管子外径14mm ,加热段长80mm ,输入加热段的功率为8.5W 。如果全部热量通过对流换热传给空气,此时的对流换热表面积传热系数为? 1-17 有一台气体冷却器,气侧表面传热系数95 W/(m 2·K),壁面厚2.5mm ,导热系数46.5 W/(m ·K),水侧表面传热系数5800 W/(m 2·K)。设传热壁可看作平壁,计算各个环节单位面积的热阻及从气到水的总传热系数。为了强化这一传热过程,应从哪个环节着手。 1-24 对于穿过平壁的传热过程,分析下列情形下温度曲线的变化趋向:(1)0→λδ;(2)∞→1h ;(3) ∞→2h 第二章 2-1 用平底锅烧水,与水相接触的锅底温度为111℃,热流密度为42400W/m 2。使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,计算水垢与金属锅底接触面的温度。水垢的导热系数取为1 W/(m ·K)。 解: δλt q ?= 2 .2381103424001113 12=??+=?+=-λδ q t t ℃ 2-2 一冷藏室的墙由钢皮、矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm 、 152mm 及9.5mm ,导热系数分别为45 W/(m ·K)、0.07 W/(m ·K)及0.1 W/(m ·K)。冷藏室的有效换热面积为37.2m 2,室内、外气温分别为-2℃和30℃,室内、外壁面的表面传热系数可分别按1.5 W/(m 2·K)及2.5 W/(m 2·K)计算。为维持冷藏室温度恒定,确定冷藏室内的冷却排管每小时内需带走的热量。 解:()2 3 233221116.95.21101.05.907.015245794.05.1123011m W h h t R t q =+ ???? ??+++--=++++?=?= -λδλδλδ总 W A q 12.3572.376.9=?=?=Φ 2-4一烘箱的炉门由两种保温材料A 和B 做成,且δA =2δB (见附图) 。 h 1 t f1 h 2 t f2 t w δA δ B

化工原理习题第二部分热量传递答案

化工原理习题第二部分热量传递 一、填空题: 1.某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w/m.K,此时单位面积的热损失为____ 1140w ___。(注:大型容器可视为平壁) 2.牛顿冷却定律的表达式为____ q=αA△t _____,给热系数(或对流传热系数)α的单位是__ w/m2.K _____。 3.某并流操作的间壁式换热器中,热流体的进出口温度为90℃和50℃,冷流体的进出口温度为30℃和40℃,此时传热平均温度差△t=____27.9K _____。 3. 某并流操作的间壁式换热器中,热流体的进出口温度为90℃和50℃,冷流体的进出口温度为15℃和30℃,此时传热平均温度差△t=____ 41.6K _____。 4.热量传递的方式主要有三种:__ 热传导___、___热对流 ____、热辐射。 5.对流传热中的努塞特准数式是__Nu=αl/λ____, 它反映了对流传热过程几何尺寸对α的影响。 6.稳定热传导是指传热系统中各点的温度仅随位置变不随时间而改变。 7.两流体的间壁换热过程中,计算式Q=α.A.△t,A表示为α一侧的换热壁面面积_______。 8.在两流体通过圆筒间壁换热过程中,计算式Q=K.A.△t中,A表示为____________ A 泛指传热面, 与K 相对应________。 9.两流体进行传热,冷流体从10℃升到30℃,热流体从80℃降到60℃,当它们逆流流动时, 平均传热温差△tm=_____ 50℃_______,当并流时,△tm=___ 47.2℃______。 10.冷、热气体在间壁换热器中换热,热气体进口温度T=400℃,出口温度T 为200℃,冷气体进口温度t=50℃,两股气体的质量流量相同,物性数据可视为相同,若不计热损失时,冷气体出口温度为_250__℃;若热损失为5%时,冷气体出口温度为__240℃_。 11.一列管换热器,列管规格为φ38×3, 管长4m,管数127根,则外表面积F=__F1=127×4π×0.038=60.6m2,而以内表面积计的传热面积F____ F2=127×4π×0.032=51.1m2__________。

传热学研究生模拟试题

传热学试题1 一、填空题(共20分,每题2分) 1.依靠流体的运动,把热量由一处传递到另一处的现象,称为热对流。 2.凡平均温度不高于350℃,导热系数不大于0.12W/(m·K) 的材料称为保温 材料。 3.对应管壁总热阻为极小值时的保温层外径称为临界热绝缘直径。 4.格拉晓夫准则的物理意义表征浮升力与粘滞力的相对大小,显示子然对流流态 对换热的影响;表达式Gr= 2 3 γ αl t g? 。 5.常物性流体管内受迫流动的充分发展段,沿管长流体的断面平均温度,在常热 流边界条件下呈线性规律变化,在常壁温边界条件下呈对数曲线规律变化。 6.一维常物性稳态导热物体中,温度分布与导热系数无关的条件是无内 热源。 7.不稳态导热采用有限差分方法求解温度场,节点的显式差分方程是采用温度对 时间的一阶导数向前差分方法获得的,此差分方程具有稳定性条件。隐式差分格式是温度对时间的一阶导数采用向后差分获得,没有稳定性条件。显式差分格式中温度对位置的二阶导数采用中心差分格式获得 8.减弱膜状凝结换热的主要影响因素有蒸汽含不凝结气体、蒸汽流速高且与液膜 重力方向相反。 9.在热辐射分析中,把光谱发射率=发射率=常数的物体称为灰体。 10.有效辐射包括发射辐射和反射辐射两部分能。 二、判断题,对的画√,错的画×(共10分,每小题2分) 1.换热器中,冷、热流体通过换热器可能经历的最大温差是热流体进口温度与冷 流体进口温度之差。(√) 2.稳态温度场中,温度处处是均匀的。(×) 3.无论在什么条件下,热边界层厚度与流动边界层厚度是相等的。(×) 4.当外径为d2的管道采取保温措施时,应当选用临界绝缘直径d c>d2。(√) 5.蒸汽在水平管束外表面膜状凝结换热时,从上面数的第一排管子的平均换热系 数最大。(√) 三、解释名词与基本概念(20分,每小题4分) 1.温度梯度 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上,称过点P的最大温度变化率为温度梯度,温度增加的方向为正。 2.接触热阻 在两个直接接触的固体之间进行导热过程时,由于固体表面不完全平整的接触产生的额外的热阻。

新版化工原理习题答案(05)第五章 传热过程基础

第五章 传热过程基础 1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。 解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 L t t S Q 2 1-=λ 式中 W 50W 1005.0=?==IV Q m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得 ()() )()C m W 333.0C m W 5020002.002 .05021??=??-??=-= t t S QL λ 2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为 20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2 32212 11b t t S b t t S Q -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+?=+ 21000.30.00030.30.00030.3150.000152 t t t λ+=+=+?=+ 代入λ1、λ2得 2.0100)00015.0315.0(4.01500)000 3.025.1(-+=-+t t t t 解之得 C 9772?==t t ()()()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ 则 () 221 11 m W 2017m W 4 .0977 1500543.1=-? =-=b t t S Q λ 3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),

传热学第四版课后题标准答案第四章汇总

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数 ()()() 2 21,253x t t t x t i n i n i n i n ?-+-≈??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1(Λ=n n μ Λ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 Bi n n =μμtan Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.24

化工原理复习题

1.一个被测量体系外柱按上一个U型压差计,出现如图情况,说明体系与大气压是()关系 A. 体系>大气压 B. 体系<大气压 C. 体系=大气压 (第1小题图)(第2小题图) 2.如图所示,连接A.B两截面间的压差计的读数R表示了( )的大小。 A. A.B间的压头损失H f ; B. A.B间的压强差△P C. A.B间的压头损失及动压头差之和; D. A.B间的动压头差(u A2- u B2)/2g 3.层流与湍流的本质区别是( )。 A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。

4.离心泵起动时,应把出口阀关闭,以降低起动功率,保护电机,不致超负荷工作,这是因为() A. Q启动=0,N启动≈0 ; B. Q启动〉0,N启动〉0; C. Q启动=0,N启动〈0 5..离心泵在一定的管路系统工作,如被输送液体的密度发生变化(液体其余性质不变),则( ) A. 任何情况下扬程与ρ无关; B. 只有当(Z2-Z1)=0时扬程与ρ无关; C. 只有在阻力损失为0时扬程与ρ无关; D. 只有当P2-P1=0时扬程与ρ无关。 6.为使离心机有较大的分离因数和保证转鼓有关足够的机械强度,应采用()的转鼓。 A. 高转速、大直径; B. 高转速、小直径; C. 低转速、大直径; D. 低转速,小直径。 7.为提高旋风分离器的效率,当气体处理量较大时,应采用()。 A. 几个小直径的分离器并联; B. 大直径的分离; C. 几个小直径的分离器串联; D.与并联和串联的方式无关。 8.穿过三层平壁的稳定导热过程,如图所示,试比较第一层的热阻R1与第二、三层热阻R2、R3的大小( )。 A. R1>(R2+R3); B. R1<(R2+R3); C. R1=(R2+R3) ; D. 无法比较。 (第8小题图) 9.有一列管换热器,用饱和水蒸汽(温度为120 ℃)将管内一定流量的氢氧化钠溶液由20℃加热到80℃,该换热器的平均传热温度差Δt m为()。 A. -60/ln2.5; B. 60/ln2.5; C. 120/ln5; D.100/ ln5.

相关文档
最新文档