函数单调性之分类讨论.doc

函数单调性之分类讨论.doc
函数单调性之分类讨论.doc

函数单调性之分类讨论

一、思维导图

含参函数单调性的讨论

函数单调性判断导数正负数轴标根函数形式含分式函数形式二次函数形式

一次函数形式求导数求定义域、、、e 、、x 54321→→→???

??

??→→

???

???

?

→-=→>→-=→<→+=单调区间数轴标根单调区间数轴标根)(0)(0)(:)1(k b x k k b x k b kx x f 、

??

?

?

??????

??><→>→→<→→=?→→><→=→→

--=→→++=)(000000))(()()(:)2(2121212x x x x a a a x x x x a x f c bx ax x f 、、或比较两根大小单调区间数轴标根单调区间数轴标根不能判断则或一次函数讨论式

讨论参数因式分解

???→???????→?+=

??→?=>二次式讨论

一次式讨论讨论含分式的式子不用管

一般情况下分母通分)()

()()()(:)3(0x g b ax x g x f x f ,、、

?????→+=??→?→++=???→?→>=根据参数分类讨论形式根据参数分类讨论形式注的式子含提取因式分解)()())(()()0:)(()(:)4(b ax e x f b e a e x f e e x f x

、e

x x 、x

x 、x

二、例题精析

例题1、讨论函数ax x x f -=ln )(的单调性。 [解析]定义域:),0(+∞

函数的导数:x ax a x x f 、11)(+-=

-=

①当0=a 时,0

1

)(>=x

x f 、,故)(x f 在),0(+∞上单调递增; ②当0

01)(>+-=x

ax x f 、

故)(x f 在),0(+∞上单调递增;

③当0>a 时,令,0)(=x f 、

得:,1a x =故)(x f 在)1,0(a 上单调递增;

在),1(+∞a

上单调递减;

例题2、已知函数)0(,)1(2

1ln )(2

≠-+-=a x a ax x x f ,

(1)讨论)(x f 的单调性; [解析]定义域:),0(+∞

函数的导数:x

a x x a x x a ax a ax x x f 、)1

)(1(1)1(11)(2

+--+-+-=-+-= 221)(4)1(?-?--=?a a

①0=?时,即1-=a 故)(x f 在),0(+∞单调递增,

0>?时,a

x x 1

,121-==,比较两根大小情况,

②21x x <时,即01<<-a 故)(x f 在

),1

(),1,0(+∞-a

单调递增, 在

)1,1(a

-单调递减, 21x x >时,即1-a ,

③当1-

(a

-单调递减,

④当0>a 故)(x f 在)1,0(单调递增,在),1(+∞单调递减,

例题3、(2017全国卷1理21)已知函数x e a ae x f x x

--+=)2()(2

(1)讨论()f x 的单调性; [解析]:定义域:(,)-∞+∞,

函数的导数:()()()()2'22111x x x x f x ae a e ae e =+--=-+

因为,01>+x

e 所以只讨论1-x

ae 的符号,

①当,a 时0≤0)(≤x f 、

,故)(x f 在(,)-∞+∞上单调递减。

②当,a 时0>令0)(=x f 、

得,1ln a x = 即:

)1ln ,(a

x -∞∈时,0)(x f 、

,故)(x f 在)1ln ,(a -∞上单调递减,在),1(ln +∞a

上单调递增,

三、练习巩固

1、(2017全国卷3文21)已知函数x a ax x x f )12(ln )(2+++= (1)讨论)(x f 的单调性 [解析]:定义域(0,+),

函数的导数:x

ax x a ax x x f 、

)12)(1(1221)(++=+++=

①当0≥a 时,0)(>x f 、

,故)(x f 在(0,+)上单调递增。 ②当0

,10)12)(1(21a

x x ax x -=-=?=++且21x x <, 故f (x )在单调递增,在单调递减.

2、(2016四川高考理数21),ln )(2

x a ax x f --=其中,R a ∈ (1)讨论)(x f 的单调性 [解析]定义域:),0(+∞

函数的导数:x

ax x ax x f 、

1212)(2-=-=

①当,a 时0≤0)(≤x f 、

,故)(x f 在),0(+∞上单调递减。

②当0>a 时,分子=,21

,21012212

a

x a x ax =-=?=-且21x x <即:)21,

0(a x ∈时,0)(x f 、,故)(x f 在)21

,0(a 上单调递减,在),21

(+∞a

上单调递增,

3、(2014湖南高考)已知常数a >0,函数f (x )=ln(1+ax )-2x x +2

. (1)讨论f (x )在区间(0,+∞)上的单调性;

[解析]),0(+∞∈x

函数的导数:2

2

2)2)(1()1(4)2(2)2(211)(++-+=

+-+-+=x ax a ax x x x ax x f 、

①当1≥a 时,,0)(>x f 、故)(x f 在),0(+∞上单调递增。

②当10<

a

a x --=

),12(),12,(+∞----∞∈a a a a x 时,,0)(>x f 、)

12,0(a

a x -∈时,,0)(

a x 上单调递增。

4、(2016北京模拟理数)已知函数)(,11ln )(R a x

a

ax x x f ∈--+-= (1)当2

1

≤a 时,讨论)(x f 的单调性。

[解析]定义域:),0(+∞

函数的导数:2

2

22)

1)(1(111)(x a ax x x a x ax x a a x x f 、

+---=-++-=-+-= 22)12()1()(41-=-?-?-=?a a a

①当0=a 时,21

)(x

x x f 、

-=)(x f 在)1,0(上单调递减,在),1(+∞上单调增。

②0=?时,2

1=

a ,0)(≤x f 、

,故)(x f 在),0(+∞上单调递减。 0>?时,a

a

x x -==1,121,比较两根大小:

③21021<

,)1,1(a

a x -∈时,

0)(>x f 、

,故)(x f 在),1(),1,0(+∞-a a 上单调递减,在)1,1(a

a

-上单调递增。

④(21

,02

1舍或>a a x x )1,0(∈x 时,0)(x f 、,故)(x f 在)1,0(上单调递减,在),1(+∞上单调递增。

综上所述:当0a ≤时,()f x 在(0,1)单调递减,(1,)+∞单调递增;

当12a =时,()f x 在(0,)+∞单调递减;

当102a <<时,()f x 在(0,1)递减,1(1,1)a -递增,1

(1,)a

-+∞递减.

5、(2014全国卷)已知函数)1(,)1ln()(>+-+=a a

x ax

x x f (1)讨论)(x f 的单调性; [解析]定义域:),1(+∞-

函数的导数:2

2))(1()]

2([)(a x x a a x x x f 、

++--=

2222)2(014)2(a a a a -=??--=?

①0=?时,即)(02舍或==a a 0)(≥x f 、

,故)(x f 在),1(+∞-单调递增。

0>?时,,01=x ,222a a x -=比较两根大小情况:

②21x x >时,即21<

a a x --∈,),0(+∞时,0)(>x f 、

)0,2(2a a x -∈时,0)(

故)(x f 在)2,1(2

a a --,),0(+∞上单调递增;在)0,2(2

a a -上单调递减。

③21x x <时,即2>a )0,1(-∈x ,),2(2

+∞-a a 时,0)(>x f 、

)2,0(2a a x -∈时,0)(

故)(x f 在)0,1(-,),2(2

+∞-a a 上单调递增;在)2,0(2

a a -上单调递减。

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 1211x x a a ---+= =且12,x x < 所以函数()f x 在1(, a --∞,1(,)a -+∞上单调递增, 在11( a a --+上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为1211,,x x a a --= =且12,x x > 所以函数()f x 在1(, a --∞,1()a -+∞上单调递减, 在11( )a a -+--上单调递增。 综上所述,当0a <时,所以函数()f x 在11( ,a a --上单调递增, 在1(, a -+-∞,1(,)a -+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增, 在上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

专题5 导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1]讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论x a x x f ln )(+=的单调性,求其单调区间.

导数应用_含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈?Y Y Y Y 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 例2.讨论x ax x f ln )(+=的单调性

小结: 导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间的符号。一般先讨论0)('=x f 无解情况,再讨论解 0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 围扩 大而出现有根,但根实际上不在定义域的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。 变式练习2. 讨论x ax x f ln 2 1)(2 += 的单调性 小结: 一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如1)(2 +=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。 例3. 求1)(232--+=x ax x a x f 的单调区间

含参不含参函数单调性

含参不含参函数单调性

————————————————————————————————作者:————————————————————————————————日期:

利用导数研究函数单 调性

不含参函数单调性 【题型一】因式分解 【例1】 求函数的单调区间。 【变式1】求函数421()342 f x x x x = -+的单调区间。 【例2】 求函数2()322 x x e f x e x =-+的单调区间。 【变式1】求函数2()ln 7ln f x x x x x x =-+的单调区间。 【例3】 求函数()2()2x x x f x x e e -= +-的单调区间。 【变式1】求函数22 ln 3()ln 224 x x x f x ex x ex =--+的单调区间。 3227()154()32f x x x x x R = +-+∈

【例4】 求函数()2 ()ln 22 x f x x x e x =+-+的单调区间。 【变式1】求函数()()ln 1x f x e x =-+的单调区间。 【例5】 求函数2()ln f x x x x =-的单调区间。 【变式1】求函数ln 1()x e x e f x e +-= 的单调区间。 【变式2】求函数2()mx f x e x mx =+-的单调区间。

【例6】 求函数2311()26 x f x e x x x =-+ -的单调区间。 【变式1】求函数2 ()cos 12 x f x x =+-的单调区间。 【例7】 求函数()2311()123x f x x ex e x = -+-的单调区间。 【变式1】求函数()41()24x f x x e x x =--+,112,??∈ ???x 的单调区间。

(完整版)导数讨论含参单调性习题(含详解答案).doc

1.设函数. ( 1)当时,函数与在处的切线互相垂直,求的值; ( 2)若函数在定义域内不单调,求的取值范围; ( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出 满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数. ( 1)讨论的单调性; ( 2)当时,证明:; ( 3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). ( 1)当时,若在其定义域内为单调函数,求的取值范围; ( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. ( 1)讨论函数的单调性; ( 2)若存在两个极值点,求证:无论实数取什么值都有. 5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 . ( 1)求的值; ( 2)若在及所在的取值范围上恒成立,求的取值范围;

6.已知函数 ln , x ,其中. f x ax x F x e ax x 0, a 0 ( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的 e2 最小值 . 7.已知函数 f ( x) e x m ln x . ( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ; ( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) . 8.已知函数 f x ln 1 mx x2 mx ,其中0 m 1 .2 ( 1)当m 1时,求证: 1 x 0 时, f x x3 ;3 ( 2)试讨论函数y f x 的零点个数. 9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 . (1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 . 10 .已知函数 f x e x ax 2 (1)若a 1 ,求函数f x 在区间[ 1,1]的最小值; (2)若a R, 讨论函数 f x 在 (0, ) 的单调性; (3)若对于任意的x1, x2 (0, ), 且 x1 x2, 都有 x2 f ( x1) a x1 f ( x2 ) a 成立, 求 a 的取值范围。

导数讨论含参单调性习题(含详细讲解答案)

1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域内不单调,求的取值范围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域内为单调函数,求的取值范围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值范围上恒成立,求的取值范围;(3)讨论关于的方程的根的个数.

6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ? ? ∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()1 2ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,求实数a 的取值范围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

含参函数的单调性习题

导数专题------求函数的单调区间 1.设()()2 56ln f x a x x =-+,其中a R ∈,曲线 ()y f x =在点()()1,1f 处的切线与y 轴相交于点 ()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值. 2.设函数()()2 1x f x x e kx =--(k ∈R ) 当1k =时,求函数()f x 的单调区间; 3.已知函数ln ()x x k f x e +=(k 为常数, 2.71828e =???是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间; 4. 的单调区间求设函数)(,0,ln )(22x f a ax x x a x f >+-= 的单调区间和极值。)求函数(处的切线的斜率;,在点((时,求曲线当(设函数)(2))1(1)1)1(. 0),(,)1(3 1 ).5223x f f x f y m m R x x m x x x f ==>∈-++-=

。 的单调区间和极小值点求函数其中 (已知函数 ) ( .0 , ln ) 1( 2 1 ) .62 x f a x a x a x x f> + + - = 的单调区间。 )求 ( 处的切线方程 , 在点( 时,求曲线当 已知函数 ) ( 2 )) 1( 1 ) ( 2 )1( , 2 ) 1 ln( ) ( .72 x f f x f y k x k x x x f = = + - + = 8. 的单调区间。 ( 求 已知函数) ), .( )1 ( ln ) (2x f R a ax x x a x f∈ - - - = 的单调区间。 讨论 已知函数) ( ), 1 (, ln ) ( .9x f x ax x x x f> - =

专题5导数的应用含参函数的单调性讨论(答案)

〖专题5〗 导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1] 讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f < <<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.

函数的单调性知识点汇总及典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

(完整版)用导数求函数的单调区间含参问题

用导数求函数的单调区间——含参问题 一、问题的提出 应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。其中,学生用导数求单调区间最困难的是对参数分类讨论。尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类 二、课堂简介 请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。 例1、 求函数R a a x x x f ∈-= ),()(的单调区间。 解:定义域为),0[+∞ ,23)('x a x x f -=令,0)('=x f 得,3 a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增; (2) 0>a ,令0)('>x f 得∴> 3a x )(x f 在)3,0[a 上单调递减,在),3 [+∞a 上单调递增。 所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3 ,0[a 上单调递减,在),3 [+∞a 上单调递增。 分类讨论特点:一次型,根3 a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。 解:定义域R ),1)](1([1)('2---=-+-=x a x a ax x x f 令,0)('=x f 得1,121=-=x a x (1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。 (2) 21 1==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。 (3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。 所以,当2>a 时,)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调

函数单调性的教学的设计

函数单调性的教学的设计 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念。从函数单调性知识本身来讲,学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性。高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础。 在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,既未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图像得出。而本小节内容,正是初中有关内容的深化和提高,有承上启下的作用。 学生对函数单调性概念的认识,要经历直观感受、文字描述和严格定义三个阶段,即从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程。因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据。 二、教学目标的确定 对于函数的单调性,学生的认知困难主要在两个方面: 首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难。 其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的。 基于以上原因,从三个方面确定了以下教学目标: 1.知识目标:使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.能力目标:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

导数讨论含参函数的单调性

导数讨论含参函数的单调性 【思想方法】 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 【典例讲解】 例1 讨论x a x x f +=)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号)I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数,即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(', a x x a x x f <<<<-?≠<00)0(0)('或,此时)(x f 在),(a --∞和),(+∞a 都是单调 增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和 ),(+∞a ;)(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0?>>)0(0)(';a x x x f -<<0)0(0)(' 此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数, 即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -. 例2.讨论x ax x f ln )(+=的单调性 解:x ax x f ln )(+=的定义域为),0(+∞ )0(11)('>+=+ =x x ax x a x f (它与1)(+=ax x g 同号)

题型1讨论函数的单调性

题型1:讨论函数的单调性 1.已知函数()1x f x x ae =-+讨论f (x )的单调性; 解:, 当时,,则在上单调递增. 当时,令,得,则的单调递增区间为, 令,得,则的单调递减区间为. 2. 已知函数21()ln 2 f x x mx m x =++. 讨论函数()f x 的单调性; 解:f (x )的定义域是(0,+∞), f ′(x )=x +m + =, m ≥0时,f ′(x )>0, 故m ≥0时,f (x )在(0,+∞)递增; m <0时,方程x 2+mx +m =0的判别式为: △=m 2-4m >0, 令f ′(x )>0,解得:x > , 令f ′(x )<0,解得:0<x < , 故m <0时,f (x )在(,+∞)递增,在(0,)递减; 3.已知函数f (x )=x -a ln x ,g (x )=1a x +- ,(a ∈R ) (Ⅰ)若a =1,求函数f (x )的极值; (Ⅱ)设函数()()()h x f x g x =-,求函数h (x )的单调区间; (Ⅲ)若在[1,e](e=2.718…)上存在一点x 0,使得f (x 0)<g (x 0)成立,求a 的取值范围. 解:(Ⅰ)的定义域为, ……………………1分 当时,, , ()1x f x ae '=+0a ≥()0f x '>()f x R 0a <()0f x '>1ln x a ??<- ??? ()f x 1,ln a ????-∞- ? ???? ?()0f x '<1ln x a ??>- ???()f x 1ln ,a ????-+∞ ? ?????()f x (0,)+∞1a =()ln f x x x =-11()1x f x x x -'=-=

对含参函数单调性的讨论优秀教学设计

《对含参函数单调性的讨论》教学设计 一、教材分析 高考中导数类的题目占据了重要地位,而其中对含参函数的考查必不可少。利用导数分析含参函数的单调性,进而分析极值,最值,零点及趋势图像是解题的基础。高二选修课教材中给出了对具体函数单调性的求解范例,对含参函数论述较少。含参函数因加入了参数使得确定的函数变得不确定,对于含参函数的单调性求解一般要进行分类讨论,分类讨论的关键是要明确分类讨论的依据,做到分类准确恰当,不重不漏。 二、学情分析 本节课是高三的一轮复习课。高三的学生虽然经过高二的学习,但面对含参函数时常常思路不够清晰,特别在思考分类次序,明确分类依据,准确划分类别等方面存在困难,难以做到分类准确恰当,不重不漏。本节课以题组的形式对两大类常见题型给予针对性讲解和训练,以期突破难点。 三、教学目标 1、知识与技能:利用分类讨论思想进行含参函数单调性的讨论 2、过程与方法:分类讨论思想的应用 3、情态与价值:探究问题与解决问题的意识与能力 三、教学重难点 教学重点:利用分类讨论思想进行含参函数单调性的讨论 教学难点:明确分类讨论的依据 四、课时安排:1课时 五、教学策略:题组探究,分类总结 六、教学设计: 1、提出问题 含参函数因加入了参数使得确定的函数变得不确定,对于含参函数的单调性求解一般要进行分类讨论,分类讨论最难就是要做到不重不漏,今天我们重点来看看如何把握常见的含参函数单调性的分类讨论依据。 问题1、回顾具体函数的单调性的求解步骤是什么? [设计意图] 引导学生回顾具体函数单调性求解的解题步骤,有助于学生思考比较含参函数在求解过程中所遇到的不确定性,明确为什么要进行分类讨论。 2、方法统领,明确方向 问题2、含参函数相对于具体函数而言,不确定的因素可能存在于哪里?我们讨论的次序是怎样的? [设计意图] 此处预留空间让学生思考,讨论,激发学生的探究热情。即使学生回答得不全面也没有关系,教师后面可做补充,并概述要讨论的四个方面。 3、题组探究,分类总结 问题3、对于以下题组,观察参数在导函数中的位置,思考:不确定的因素可能在哪里?要分多少个层次进行讨论,每个层次分类的依据是什么?是否能做到不重不漏?题组一、导函数是非二次函数型 例1、(2016.山东卷节选),2 ()ln (2-1),f x x x ax a x a R =-+∈设'()(),() g x f x g x =令求的

函数单调性讲解及常见类型(整理)

函数的单调性 题型一 判断、讨论、证明函数的单调性 1判断函数y=x- x 1在其定义域上的单调性。 2讨论并证明y=x+ x 1在定义域上的单调性。 3定义在R 上的函数f (x )对任意不相等实数a ,b 总有 ()()b a b f a f -->0成立,则必有 A 、函数f (x )是先增加后减小 B 、函数f (x )是先减小后增加 C 、f (x )在R 上是增函数 D 、f (x )在R 上是减函数 4已知b x k x f ++=)12()(在实数R 是减函数,则k 的取值范围为( ) 5已知函数),0(,)(2 +∞∈++=x c bx x x f 是单调函数,则实数b 的取值范围为( ) .0.≥b A 0.≤b B 0.>b C 0,f (8(x —2))的解集是 A 、(2,716) B 、(—∞,716) C 、(2,+∞) D 、(2,7 16)

题型四 用图形讨论函数单调性 1函数y=|x —3|—|x+1|的单调递减区间是 。 2画出函数223.y x x =-++的图像,并指出函数的单调区间 3画出函数y=|x|的图像,并判断其单调性。 4画出函数y=|x 2+2x-1|的图像,并指出其在R 上的单调性。 题型五 基本初等函数的单调性问题 1.设函数243,[1,4]y x x x =-+∈,则()f x 的最小值和最大值为( ) A.-1 ,3 B.0 ,3 C.-1,4 D.-2,0 2.函数f (x )=—x 2+2(a —1)x+2在(—∞,4)上是增函数,则a 的范围是 A 、a ≥5 B 、a ≥3 C 、a ≤3 D 、a ≤—5 3.已知22(2)5y ax a x =+-+在区间(4,)+∞上是减函数,则a 的范围是( ) A.25a ≤ B.25a ≥ C.25 a ≥或0a = D.0a ≤ 3.若函数242--=x x y 的定义域为[]m ,0,值域为[]2,6--,则m 的取值范围是( ) A 、(]4,0 B 、[]4,2 C 、(]2,0 D 、()4,2 4.函数32++=bx ax y 在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则( ) A 、00<>a b 且 B 、02<=a b C 、02>=a b D 、的符号不确定b a ,

导数应用:含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立, 此时)(x f 在),0(+∞为单调增函数,

导数应用:含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f < <<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立, 此时)(x f 在),0(+∞为单调增函数,

讨论函数的单调性

导数微专题探究——讨论函数的单调性 例1:已知函数32()1f x x ax x =+++,a ∈R .讨论函数()f x 的单调区间; 练习1:设函数1 ()ln 1 x f x a x x -=++ ,其中a 为常数.讨论函数()f x 的单调性. 例2:已知函数2()ln (21)f x x ax a x =+++.讨论()f x 的单调性; 练习2:已知函数1()+1()a f x lnx ax a R x -=--∈.当2 1 ≤a 时,讨论)(x f 的单调性;

例3: (2012文)设函数()2x f x e ax =-- .讨论函数()f x 的单调性. 例4:已知函数2()()x x f x e e a a x =--.讨论()f x 的单调性 例5:已知函数32 11()()cos sin 32 g x x ax x a x x =-+--.讨论()g x 的单调性 例6:已知.讨论的单调性; ()2 21 ()ln ,R x f x a x x a x -=-+∈()f x

导数微专题探究——讨论函数的单调性答案 例1:32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0?≤,()0f x '≥,()f x 在R 上递增; 当2 3a >,由()0f x '= 求得两根为x =即()f x 在?-∞ ?? 递增,?? 递减,?+∞???? 递增; 练习1:函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2 . 当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2 +(2a +2)x +a , 由于Δ=(2a +2)2-4a 2 =4(2a +1), ①当a =-1 2时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-1 2时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-1 2<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a . 因为x 1=a +1-2a +1-a =a 2+2a +1-2a +1 -a >0, 所以,x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得,当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-1 2 时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时,f (x )在? ????0,-(a +1)+2a +1a ,? ????-(a +1)-2a +1a ,+∞上单调递减, 在? ?? ?? -(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增. 例2: 当0,此时()0f x <,函数单调递减. (2)当0a ≠时,由()0f x =,即 2 10ax x a -+-=,解得:121 1,1x x a == -. ①当0a <时, 1 10a -<,(0,1)x ∈时,()0g x >,此时'()0f x <,函数()f x 单调递减, (1,)x ∈+∞时,()0g x <,此时'()0f x >,函数()f x 单调递增; ②当1 2a = 时,12x x =,()0g x ≥恒成立,此时'()0f x ≤,函数()f x 在(0,)+∞上单调递减; ③当102a <<时,1 110a ->>,(0,1)x ∈时,()0g x >,此时'()0f x <,函数()f x 单调递减, 1 (1,1)x a ∈-时,()0g x <,此时'()0f x >,函数()f x 单调递增, 1 (1,)x a ∈-+∞时,()0g x >,此时'()0f x <,函数()f x 单调递减; 综上所述:当0a ≤时,函数()f x 在(0,1)上单调递减;函数()f x 在(1,)+∞上单调递增 当1 2 a = 时,函数()f x 在(0,)+∞上单调递减 当102a <<时,函数()f x 在(0,1)上单调递减;函数()f x 在1 (1,1)a -上单调递增. 函数()f x 在 1 (1,)a -+∞上单调递减。 例3: 例4:函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-, ①若0a =,则2()x f x e =,在(,)-∞+∞单调递增.

相关文档
最新文档