化学成分常存五大元素的影响

化学成分常存五大元素的影响
化学成分常存五大元素的影响

《化学成分》常存五大元素的影响:

碳和硅——硅对铁==碳状态图的影响:1.使临界点C、E、S等向左上方移动,即将低共晶转变、工析转变和饱和奥氏体的碳量(将碳从熔体中挤出来),并提高各临界点的温度2.使共晶转变和共析转变在一定的温度范围内进行。碳使石墨化核心增多。因此碳和硅都是使铸铁石墨化和基本铁素体的元素。碳减少过冷度,而硅对过冷度无明显的影响,顾随着碳当量的增加,共晶团变粗。碳、硅和碳当量对灰口共晶团、石墨化和基本组织的影响。值得指出,硅对石墨化的定量作用存在于两个临界点。第一个临界点是使白口为灰口,第二个临界点值得是铸铁中石墨量最多。这两个临界点硅量相应为0.1~2.0%和3%~3.5%,并取决于其他元素的含量和冷却速度。

硫和锰——硫单独在铁碳合金中FeS形式存在。结晶时与铁形式低熔点(约985℃)Fe+FeS 的共晶体,位于晶界上妨碍原子的扩散,故硫是强烈的反石墨化元素。锰单独在铁碳合金中能溶解于渗碳体和奥氏体(铁素体),分配系数K=FeMn=1.5~4.5,并取决于其它元素的含量。锰稍许降低共晶转变温度,故锰略为增大铸铁形成白口的倾向。

磷——提高液相线的温度,但降低共晶温度和碳量。磷促使共晶转变的石墨化,但阻碍共析转变的石墨化(促使珠光体的形成)磷易偏析,故磷量0.05~0.15%时在铸铁组织中细化共晶团。

《炉前检测方法》

方法操作简述质量判断与控制

三角试样

试样冷却至暗红色(600~700℃)淬水,打断测量

试样白口宽度,观察截面组织,三角试样的规格见

图:使用注意——

1.试样砂型可用干型或湿型,湿型比干型激冷作用

强,白口宽度偏宽。

2.掌握淬水速度,若水强烈沸腾,则说明试样温度过

高,下水速度过快;若水中微沸腾,并有吱吱声响,

则速度合适

1—灰口层2—麻口层3—白

口层

1.测量白口宽度(试样尖角处

的白亮区出现灰点处)一般白

口宽度过大,铁液应补加孕育

剂,一般衬Si75=0.1%。白口

宽度过小,应向包内冲入适量

铁液以调整其成分。

2.观察断口颜色

根据断口颜色定碳量范围,

由白口宽度(Si+C)总量,

即可知道硅量

五大元素对铸件的影响讲课稿

五大元素对铸件的影 响

浅谈五大元素对铸件的影响 摘要:本文主要阐述了碳、硅、锰、硫、磷五大元素在铸件及铸造过程中的影响及作用。 关键词:碳、硅、锰、硫、磷;影响;作用 铸铁的出现,方便了人类,从此我们就离不开了铸铁件,人们就把铸铁件用于制作各种制品,例如:小到螺丝钉、炊具、容器、农业机具等生活用品,大到汽车、飞机、轮船、大炮、坦克等建筑军事器械。铸铁的生产推动了人类社会文明的进步,随着科学技术和我国国民经济的发展,各行各业对铸铁件的质量提出了更高的要求,而铸铁件的铸造技术涉及了物理、化学、冶金、机械等多种学科,影响铸铁件质量的因素很多,因此正确地使用合理的铸造技术是提高铸铁件质量的保证,而影响铸铁件质量铸造过程的主要因素有:冷却速度、化学成分、温度、气体、炉料等,这就要求人们认真考虑这些因素对铸铁件的影响。本人结合几年来的工作经验,现以化学成分为例,浅谈五大元素对铸件的影响。 影响铸件品质的常规元素主要有五种,分别是碳、硅、锰、硫、磷,以上元素我们叫做基本元素或俗称五大元素。它们是直接影响铸件物理性能的一个重要因素。其主要作用如下: 一、碳元素是铸铁中最基本的成分。它不但是区分钢或铁的主要依据,含碳量大于1.7%是铁,低于1.7%的称为钢,而且,在铸造过程中,碳影响着铸件的力学性能。在铸造中适当的碳促进石墨化,减小白口倾向,即减少渗碳体、珠光体、三元磷共晶,增加铁素体,因而降低硬度改善加工性能;碳促进镁吸收率的提高;改善球化,以达到预期效果;碳能改善流动性,增加凝固时的体

积膨胀;碳提高吸振性,减摩性,导热性。但碳含量过高引起石墨漂浮,恶化力学性能,过低又易产生缩孔松缩等缺陷。所以,对不同质量要求的铸件,合理选配碳含量一般是提高铸件质量的一种途径,例如:灰铁含碳量大多在 2.6%- 3.6%,球墨铸铁在3.5%-3.9%。碳对中锰球墨铸铁的力学性能影响不明显,一般碳量高于3.9%时易出现石墨漂浮,影响铸铁质量,碳低于3.0%时,不利于石墨化故一般控制碳量在3.0%-3.8%为宜。 二、硅元素是铸件中的有益元素,它和碳元素一样,能促进石墨化,以孕育剂的方式添加的硅作用更明显。对于铸态球磨铸件,增加含硅量有双重作用,一方面它使渗碳体、珠光体、三元磷共晶减少,铁素体增加,因而降低强度和硬度,改善铸件塑性;另一方面硅固溶强化铁素体,使屈服点和硬度提高;硅改善铸造流动性,增大凝固时体积膨胀;硅能改善耐热、耐蚀性。增加硅量,特别是孕育硅量,能够显著的控制碳化物的数量,因此,硅是抑制中锰球墨铸铁白口倾向的强力元素。硅在一定范围内,有利于强度和韧性的提高,但使抗磨性能有所降低。故要取合适的量。一般情况下,灰铸件硅含量在 1.2%-3.0%,球墨铸件中硅在 2.0%- 3.0%。 三、锰是铸件重要元素之一,适量的锰,有助于生成纹理结构,增加坚固性和强度及耐磨性。锰和硫一样都是稳定的化合物,是阻碍石墨化的元素,当与硫共存时,锰与硫的亲和力较大,会结合成MnS等化合物,在适当温度时,不仅无阻碍石墨化作用,还能中和硫,起着除硫作用。锰达到一定量时,能使铸件强度高、硬度高、密度高、耐磨等优点,此时硅量也相应提高。锰易在共晶团边界产生偏析,铸态下易生成碳化物,增加锰量,会恶化力学性能。因此锰的含量一般应低。但是锰能稳定奥氏体,促使形成奥氏体基体时,

压铸铝合金中各元素的作用和影响

?压铸铝合金中各元素的作用和影响 ?发布时间:2009-11-9 16:57:02 来源:互联网文字【大中小】 ?(一)日本ADC12 牌号合金 (二)压铸铝合金中各元素的作用和影响 1. 硅(Si) 硅是大多数压铸铝合金的主要元素。它能改善合金的铸造性能。硅与铝能组成固溶体。在577℃时,硅在铝中的溶解度为1.65%,室温时为0.2%、含硅量至11.7%时,硅与铝形成共晶体。提高合金的高温造型性,减少收缩率,无热裂倾向。二元铝基合金有高的耐蚀性。当合金中含硅量超过共晶成分,而铜、铁等杂质又多时,即出现游离硅的硬质点,使切削加工困难,高硅铝合金对铸件坩埚的熔蚀作用严重。 2. 铜(Cu) 铜和铝组成固溶体,当温度在548℃时,铜在铝中的溶解度应为5.65%,室温时降至0.1%左右,增加含铜量,能提高合金的流动性,抗拉强度和硬度,但降低了耐蚀性和塑性,热裂倾向增大。 3. 镁(Mg) 在高硅铝合金中加入少量(约0.2~0.3%)的镁,可提高强度和屈服极限,提高了合金的切削加工性。含镁8%的铝合金具有优良的耐蚀性,但其铸造性能差,在高温下的强度和塑性都低,冷却时收缩大,故易产生热裂和形成疏松。 4. 锌(Zn) 锌在铝合金中能提高流动性,增加热脆性,降低耐蚀性,故应控制锌的含量在规定范围中。至于含锌量很高的ZL401 铝合金却具有较好的铸造性能和机械性能,切削加工也比较好。 5. 铁(Fe) 在所有铝合金中都含有害杂质。因铝合金中含铁量太高时,铁以FeAl3、Fe2Al7和Al-Si-Fe 的片状或针状组织存在于合金中,降低机械性能,这种组织还会使合金的流动性减低,热裂性增大,

基体为铁素体的球墨铸铁五大元素的影响

基体为铁素体的球墨铸铁(简称球铁),具有一定强度、良好的冲击韧性和塑性,可由铸态或经退火获得。 金相组织石墨的形态和金属基体组织对其韧性有很大的影响。(1)石墨形态的影响。在金属基体组织合格条件下,石墨形状对伸长率和冲击值影响极大:片状石墨严重割裂了金属基体,其尖角处应力集中,因此片状石墨铸铁呈脆性,冲击值很低,强度被大大削弱;而球铁则不同,只要基体组织合格,球化率愈高韧性愈好。(2)基体组织的影响。铁素体球铁的基体组织以铁素体为主,余为珠光体。渗碳体和磷共晶是有害组织,一般分别控制在3%和1%以下。铁素体含量愈高则韧性愈好。珠光体数量增加,则冲击值和伸长率下降。珠光体一般应在10%以下,且为分散存在,这样对韧性影响不大。 化学成分在适当的孕育工艺条件下,提高碳当量将增加铁素体的含量,因而冲击值、伸长率随之上升,但碳当量过高,易引起石墨漂浮。石墨漂浮还和铸件厚度与冷却速度有关,砂型浇注中等厚度(10~40mm)的铸件,铸态铁素体球铁碳当量取4.4%~4.9%为宜,退火铁素体球铁的碳当量可取4.2%~4.8%,厚大件降低碳当量,薄小件提高碳当量。采用强化孕育工艺也宜降低碳当量。 各元素影响为: (1)碳。有利于石墨化和球化,提高碳量有利于发挥材料的韧性。 (2)硅。是强烈促进石墨化的元素,有利于提高韧性,硅的孕育作用能细化共晶团和使磷共晶分散。韧性铁素体球铁的终硅含量一般控制在2.7%以下,如果生铁含锰量≤0.5%、磷≤0.7%,则终硅量可放宽至3.O%左右。 (3)锰。阻碍渗碳体和珠光体的分解。球铁的激冷倾向本已相当高,故对铁素体球铁应控制锰含量,一般应低于0.4%。对用退火生产的韧性铁素体球铁,其含锰量允许在0.6%。 (4)磷。在铸铁中会形成脆相,特别是三元磷共晶或复合磷共晶对韧性危害极大,常采用如下措施以削弱磷的有害作用:提高碳量,采取高碳低硅的成分方案,以阻碍三元磷共晶的析出;强化孕育以细化共晶团,使磷共晶分散;920~980C退火,使三元磷共晶或复合磷共晶转变成二元磷共晶,减少磷共晶的数量,改善球墨形状。采用金属型浇注成麻口,即球墨和莱氏体及渗碳体组织,再经高温退火则可避免产生磷共晶。 (5)硫。其含量过高会使球化不稳定,而且会产生过多的硫化物夹杂,严重影响韧性,故要求原铁水硫量尽可能低,最好铁水采取脱硫措施(见铸铁碳当量和铸铁石墨漂浮)。 热处理欲保证球铁高韧性,需采用硅、锰、磷和杂质甚少的原生铁,许多国家采用高纯生铁效果很好。中国生铁来源很广,杂质含量较高,铸态韧性不稳定,铁lie所以对性能要求较高的铸件可采用退火的方法生产韧性球铁。

五大元素对铸件的影响

浅谈五大元素对铸件的影响 摘要:本文主要阐述了碳、硅、锰、硫、磷五大元素在铸件及铸造过程中的影响及作用。 关键词:碳、硅、锰、硫、磷;影响;作用 铸铁的出现,方便了人类,从此我们就离不开了铸铁件,人们就把铸铁件用于制作各种制品,例如:小到螺丝钉、炊具、容器、农业机具等生活用品,大到汽车、飞机、轮船、大炮、坦克等建筑军事器械。铸铁的生产推动了人类社会文明的进步,随着科学技术和我国国民经济的发展,各行各业对铸铁件的质量提出了更高的要求,而铸铁件的铸造技术涉及了物理、化学、冶金、机械等多种学科,影响铸铁件质量的因素很多,因此正确地使用合理的铸造技术是提高铸铁件质量的保证,而影响铸铁件质量铸造过程的主要因素有:冷却速度、化学成分、温度、气体、炉料等,这就要求人们认真考虑这些因素对铸铁件的影响。本人结合几年来的工作经验,现以化学成分为例,浅谈五大元素对铸件的影响。 影响铸件品质的常规元素主要有五种,分别是碳、硅、锰、硫、磷,以上元素我们叫做基本元素或俗称五大元素。它们是直接影响铸件物理性能的一个重要因素。其主要作用如下: 一、碳元素是铸铁中最基本的成分。它不但是区分钢或铁的主要依据,含碳量大于1.7%是铁,低于1.7%的称为钢,而且,在铸造过程中,碳影响着铸件的力学性能。在铸造中适当的碳促进石墨化,减小白口倾向,即减少渗碳体、珠光体、三元磷共晶,增加铁素体,因而降低硬度改善加工性能;碳促进镁吸收率的提高;改善球化,以达到预期效果;碳能改善流动性,增加凝固时的体积膨胀;碳提高吸振性,减摩性,导热性。但碳含量过高引起石墨漂浮,恶化力学性能,过低又易产生缩孔松缩等缺陷。所以,对不同质量要求的铸件,合理选配碳含量一般是提高铸件质量的一种途径,例如:灰铁含碳量大多在2.6%-3.6%,球墨铸铁在3.5%-3.9%。碳对中锰球墨铸铁的力学性能影响不明显,一般碳量高于3.9%时易出现石墨漂浮,影响铸铁质量,碳低于 3.0%时,不利于石墨化故一般控制碳量在3.0%-3.8%为宜。 二、硅元素是铸件中的有益元素,它和碳元素一样,能促进石墨化,以孕育剂的方式添加的硅作用更明显。对于铸态球磨铸件,增加含硅量有双重作用,一

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

灰铸铁五大元素的作用和对机械性能的影响

灰铸铁五大元素的作用和对机械性能的影响 产品机械性能是各国检验产品质量的重要指标,同时也是产品使用性能直接相关,为提高灰铸铁的性能,常采用的措施:选择合理的化学成分,改变炉料组成,孕育处理,铁液合金化等措施或几种措施结合,但是化学成分一般作为生产行为,标准中一般不做强制要求,要想得到一定的性能有多种配料方法。 灰铸铁中主要有五大元素碳、硅、锰、硫、磷,化学成分合理的选配是上述措施最重要和最经济的方法。 碳、硅及碳当量:碳、硅是铸铁的主要组成元素,又都是强烈促进石墨化的元素,一般情况下碳和硅含量越高,越有利于石墨化。为了简化和避免使用多元合金相图,可以将碳、硅等元素,按照其对共晶点实际碳量的影响,将这些元素的量折算成对碳量的增减,谓之碳当量,以CE表示,为简化计算一般只考虑硅、磷的影响,因此简化公式:CE%=C%+1/3(Si+P)%。因此碳当量的变化对机械性能有最直接影响,碳当量提高,促使石墨片变粗,数量增多,强度和硬度下降,碳当量降低,石墨数量减少,石墨片细化,由于增加初析奥氏体枝晶量,从而是提高铸件力学性能的措施,但同时导致铸件铸造性能降低,铸件断面敏感性增大,铸件内应力增加,硬度上升增加加工困难。一般碳的质量分数大多2.6%-3.6%,硅的质量分数大多1.2%-3.0%。 锰、硫本身是稳定碳化物、阻碍石墨化的元素。但两者共同存在时,会结合成MnS 及S化合物,以颗粒状分布于基体中,这些化合物的熔点在1600°C以上,不仅无阻碍石墨化的元素,而且还可作为石墨化的非自

发性晶核。一般硫的质量分数大多0.06%-0.15%,锰的质量分数大多0.4%-1.2%。 磷使铸铁的共晶点左移,作用程度与硅相似,但磷在铸铁中形成低熔点二元、三元磷共晶,虽然提高耐磨性,但随磷量增加铸件脆性增加致密性降低,磷的质量分数大多小于0.2%。

钢铁中五大元素的作用与危害及其分析方法

钢铁中五大元素的作用与危害及其分析方法 作者:刘张50905022010 应化2班 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。钢铁生产流程包括:矿山开采→选矿→烧结→炼铁→炼钢→连铸→轧钢等。 钢铁工业是最重要的基础工业,是其他工业发展的物质基础。有了钢铁,就使得中国国民经济的技术改造成为可能。同时,钢铁工业的发展也有赖于煤炭工业、采掘工业、冶金工业、动力、运输等工业部门的发展。由于钢铁工业与其他工业的关系十分密切,因此许多国家都把发展钢铁工业放在十分重要的地位,并把这种发展与国民经济各部门的发展互相协调起来,保持正常的比例关系。针对此块精英人才,也是目前我国最稀缺的。 五大元素是特指钢铁中的碳、硫、硅、磷、锰五种元素。 五大元素各个化学元素对钢的性能有以下的影响:1、碳(C) 碳是钢铁的主要成分之一它直接影响着钢铁的性能。碳是区别铁与钢,决定钢号、品级的主要标志。碳是对钢性能起决定作用的元素。碳在钢中可作为硬化剂和加强剂,正是由于碳的存在,才能用热处理的方法来调节和改善其机械性能,钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。2、硅(Si):由原料矿石引入或脱氧及特殊需要而有意加入,在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。3、锰(Mn):少量由原料矿石中引入,主要是在冶炼钢铁过程中作为脱硫脱氧剂有意加入,钢铁中主要以MnS状态存在,如S含量较低,过量的锰可能组成MnC、MnSi、FeMnSi等,成固熔体状态存在,在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。4、磷(P):由原料中引入,有时也为了特殊需要而有意加入,以Fe2P或Fe3P状态存在,在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。5、硫(S):主要由焦炭或原料矿石引入钢铁,主要以MnS或FeS状态存在,硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 检测钢铁中碳、硫、锰、磷、硅五大元素的方法:碳元素采用气体容量法硫元素采用碘量法锰元素采用银盐--过硫酸铵氧化光度法。磷元素采用氟化钠--氯化亚锡钼蓝光度法硅元素采用亚铁还原--硅钼蓝光度法钢铁中碳、硫、锰、磷、硅五大元素测量范围:C:0.020~6.000%;S:0.0030~2.000%;Mn:0.010~20.500% ;P:0.0005~1.0000%;Si:0.010~18.000%。

铸件中化学元素的作用

铸件中化学元素的作用 化学元素对钢的性能的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使

焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀

浅谈铸造缺陷对铸件的影响

浅谈铸造缺陷对铸件的影响 【摘要】铸造是机械制造业的基础技术之一,是机械工业的根本,在国民经济建设中占有极其重要的地位,所以说铸造生产的发展水平和铸件质量的好坏极大地影响着机械产品的使用寿命。 【关键词】铸造缺陷铸件影响 铸造生产是一项较为复杂的工艺过程,影响铸件质量的因素很多,往往由于原材料质量不合格、工艺方案不合理、生产操作不恰当,工厂管理不完善等原因产生各种各样的缺陷。铸造缺陷是导致铸件性能低下,使用寿命短,报废和失效的主要原因。铸件的不同缺陷对机械加工造成的影响也各有差异。分析铸件缺陷时,要从具体情况出发,根据具体条件,如缺陷的特征、位置、采用工艺及材料等因素,进行综合分析,找出缺陷产生的主要原因,采用相应的技术和组织措施,有效地防止和消除缺陷。在机械加工时可以减少不必要的劳动损耗,降低成本、提高产品的合格率、提高生产效率。本着这一课题,具体分析如下: 当铸件出现肉类缺陷时,一般多是由于铸型分型面不平、芯与芯、型与型、型与芯的间隙过大,芯头间隙过大,型、芯搬运时产生裂纹,烘干过程型、芯开裂,浇注前吸湿、反潮开裂等原因造成的。出现这种缺陷一来增加重量、提高成本;二来增加机械加工工时、耗费原材料、对刀具也产生负面影响。孔洞类缺陷有:析出气孔、侵入气孔、反应气孔,一般由于炉料不净,型砂水分过多、透气性差、浇注充型不良卷入气体,不利于气体排除、浇注温度太低等原因。缩孔:一是由于冒口和冷铁设置数量、大小不当,不能保证顺序凝固。二是由于含气量、含磷量太高,浇注温度太高,浇口开设不当等原因造成的。此类缺陷对铸件造成的影响在齿部尤其严重。齿部若有气孔、沙眼,在不严重的情况下可以通过焊补来补救;若出现大面积气孔、沙眼而又经过了车、制齿等生产工序后最终报废的铸件,不仅给机械加工带来损失,铸造厂的损失也更为严重。下面以齿式联轴器为例来谈谈其中的厉害关系: 联轴器是联接两轴或轴回转件,在传递运动和动力过程中一同回转而不脱开的一种装置,具有补偿两轴相对位移、缓冲和减震以及安全防护等功能。所以联轴器在选用时一般都是以联轴器所需传递的计算转矩Tc小于所选联轴器的许用转矩T或标准联轴器的公称转矩Tn为原则来选用。齿式联轴器是可移式刚性联轴器中用途最广泛的一种联轴器,它是利用内外啮合以实现两半联轴器的连接。其特点是结构紧凑,承载能力大,使用的速度范围广、工作可靠,具有综合补偿两轴相对位移的能力。齿形除普通的直齿外,还可制成鼓型齿,当两轴有相对角位移时,鼓型齿可避免轮齿发生边缘接触,改善啮合面上压力分布的均匀性,并可增加许用角位移,所有这一切表明,齿部的承载能力高,齿部若出现气孔、沙眼等缺陷,极易在联轴器工作时,因强度达不到,产生齿部断裂而引发事故。所以在铸造时,合理地设置浇冒口位置,采用冷铁及补贴实现顺序凝固,控制铁水

各种元素对铸铁组织性能的影响

各种元素对铸铁组织性能的影响 1.C 碳是铸铁的基本组元,在铸铁中的存在形式主要有两种,一种是以游离碳石墨的形式存在,另一种是以化合碳渗碳体的形式存在,也正是碳在铸铁中的这种存在形式可把铸铁分成许多类型可把铸铁分成许多类型,在灰铸铁中,碳的质量分数控制在2.7%-3.8%的范围内,碳主要以片状石墨形式存在,高碳灰铸铁的金相组织为铁素体和粗大的片状石墨,机械强度和硬度较低,但挠度较好;低碳灰铸铁的金相组织为珠光体和细小的片状石墨,有较高的机械强度和硬度,但挠度较差。由于灰铸铁的成分位于共晶点附近,因此具有良好的铸造性能。对于亚共晶范围的灰铸铁,增加碳含量能提高流动性,反之,对于过共晶范围的灰铸铁,只有降低碳含量才能提高流动性。在QT中含C量高,析出的石墨数量多,石墨球数多,球径尺寸小,圆整度增加。提高含C量可以减小缩松体积,减小缩松面积,使铸件致密。但是含C量过高则降低缩松作用不明显,反而出现严重的石墨漂浮,且为保证球化所需要的残余Mg量要增多。 2.Si 硅是铸铁的常存五元素之一,能减少碳在液态和固态铁中的溶解度,促进石墨的析出,因此是促进石墨化的元素,其作用为碳的1/3 左右,故增加硅量会增加石墨的数量,也会使石墨粗大;反之,减少硅量,会使石墨细小。在灰铸铁中,硅的质量分数控制在1.1%-2.7%的范围

内,一般碳硅含量低可获得较高的机械强度和硬度,但流动性稍差;反之,碳硅含量高,流动性好,机械强度和硬度较低。当薄壁铸件出现白口时,可提高碳硅含量使之变灰;当厚壁铸件出现粗大的石墨时,应适当降低碳硅含量,并达到提高机械强度和硬度的目的。Si是Fe-C 合金中能够封闭r区的元素,Si使共析点的含C量降低。Si提高共析转变温度,且在QT中使铁素体增加的作用比HT要大。 HT中C、Si 都是强烈促进石墨化的元素。提高碳当量促使石墨片变粗、数量增多,强度和硬度下降。降低碳当量可以减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而是提高灰铸铁力学性能常采取的措施。但是降低碳当量会导致铸造性能降低、铸件断面敏感性增加,硬度上升加工困难等问题。 3.Mn 锰是铸铁的常存五元素之一,除少量固溶于铁素体以外,大部分溶入共析碳化物和渗碳体中,以复合碳化物的形态存在,加强了碳化物的形成,因此是阻碍石墨化的元素,故增加锰量会增大基体组织中的珠光体数量。在灰铸铁中,锰的质量分数控制在0.5%-1.4%的范围内,主要作用有二,一是中和硫的有害作用,生成MnS及(F e、Mn)S 化合物,以颗粒状分布于机体中。这些化合物的熔点在1600℃以上,不仅无阻碍石墨化的作用,而且还可以作为石墨化非自发性晶核。二是稳定和细化珠光体,在此含量范围内,随锰含量的增加,铸铁的强度、硬度增加,而塑性和韧性降低。 在QT中Mn的作用是形成碳化物和珠光体。对于厚大断面的QT件来

影响灰铸铁性能的因素

提高灰铁铸件机械性能的方法 一、灰铸铁定义 灰铸铁是指具有片状石墨的铸铁,因断裂时断口呈暗灰色,故称为灰铸铁。主要成分是铁、碳、硅、锰、硫、磷,是应用最广的铸铁,其产量占铸铁总产量80%以上。 二、影响灰铸铁机械性能的因素 对灰铸铁铸件机械性能和金相组织的影响主要有化学成分、铁水的孕育、炉料配比、铁水过热处理、高温铁水在炉内保温时间、铁液的冷却速度、铸件的开箱时间等因素都会对灰铁铸件机械性能产生影响。 三、影响机械性能的机理 1、化学成分: (1)五大常规元素C、Si、Mn、P、S的影响: a、C、Si都是促进石墨化元素,CE=C+1/3(Si+P),石墨的强度极低,相对与铁来说可以看作没有,加上灰铸铁中石墨以片状形态存在,对基体的割裂作用很明显,所以提高CE促进石墨变粗,石墨数量增加,铸件的强度和硬度会下降;CE降低,石墨数量减少,会增加铸件白口倾向,石墨片细化,由于增加初析奥氏体枝晶,从而提高铸件的力学性能,但铸件的铸造性能会下降,铸件的断面敏感性增加,

硬度增加。 b、Mn、S都是稳定碳化物、阻碍石墨化元素,Mn是扩大奥氏体区元素,提高铁液中的Mn含量可以有效的降低奥氏体转变温度,有利于珠光体的形成和稳定珠光体的作用,并且奥氏体在较低温度下转化为珠光体,所以减小了珠光体之间的间距,有细化珠光体的作用,故Mn可以提高灰铁铸件的抗拉强度。两者同事存在时会生成MnS及S的化合物,呈粒状分布在基体中,成为石墨非自发性晶核,促进石墨的形成,如果Mn、S过量不但对改善铸件性能没有帮助,还会增加铸件夹渣的机率,从而降低铸件的机械性能。 c、P可以使共晶点左移,少量的P可以增加铸件的硬度,但由于P熔点低,铁液凝固是偏析到晶界,形成磷共晶,增加铸件的脆性,降低铸件的致命性。 (2)其他合金元素和微量元素的影响: a、Mn、Cu、Mo等元素都可以促进珠光体生成,细化珠光体,稳定珠光体的作用,故Mn、Cu、Mo也能提高灰铁铸件的强度。 b、Pb:在灰铸铁中,Pb含量过高会形成魏氏石墨,严重影响铸件的性能。 2、铁水孕育处理:孕育处理降低白口倾向,增加铁水的形核物质,改善铸件的机械性能,良好孕育可以提高灰铁铸件一个牌号。灰铸铁在凝固时,孕育剂为其凝固提供更多的形核物质,使铸件组织更加细密(适当的孕育会使组织细密,过孕育则会使共晶团过多会增加缩松缩孔倾向,降低性能)。铁水在凝固时过冷度会增大,增加了铸

可锻铸铁五大元素分析方法

天津市××公司 技术标准 文件编号:QJ/TMI HY004-2002 受控号:现行版本 A 拟制:日期: 审核:日期: 批准:日期:

天津市××技术标准 可锻铸铁五大元素分析方法 现行版本:A 部门编号:33 修改号:0 QJ/TMI HY004-2002 页码:1/6 1.范围 本标准规定了玛钢管件五大元素(C、S、Si、Mn、Cr)的分析方法。 本标准只适用于玛钢管件五大元素(C、S、Si、Mn、Cr)的分析。 2.分析方法: 2.1 碳、硫的化验 2.1.1 方法要点(非水滴定法定碳、碘酸钾定硫): 试样在氧气流中经高温燃烧后,生成CO2和SO2,首先导入硫吸收杯,被淀粉溶液吸收后生成亚硫酸,以碘酸钾标准溶液滴定使亚硫酸氧化为硫酸。根据碘酸钾标准溶液消耗的体积来计算硫的含量。未被吸收的CO2和O2导入碳吸收杯,被含有百里酚酞指示剂的乙醇--乙醇铵—氢氧化钾混合液吸收。根据碱性非水溶液消耗的体积计算碳的含量。 2.1.2 试剂: 氢氧化钾5ml、茜黄素R5ml、百里香酚酞10ml、三乙醇铵30ml、丙三醇20ml、以无水乙醇稀释至1000ml摇匀; 氢氧化钾:50%(于塑料瓶中存放);0.1%的无水乙醇溶液;0.5%的无水乙醇溶液; 碘酸钾溶液(0.05N):称取1.78g碘酸钾溶于水后稀释至1000ml(此为测硫母液); 碘酸钾滴定液:分取28ml 0.05N碘酸钾母液稀释至1000ml,加1g碘化钾摇匀; 淀粉溶液:称取4g淀粉,用少量水拌匀成糊状,溶于300ml左右的沸水中,再沸腾5分钟左右再稀释至5000ml,加浓盐酸50ml摇匀。

2.1.3 分析方法: 2.1. 3.1 使用专用碳硫分析仪操作。 2.1. 3.2 称标样与试样各250mg。 2.1. 3.3 接通氧气,调整氧气输出压力为0.04Mpa。 2.1. 3.4 坩锅内先放入少许添加剂铺平坩锅底面,后放入标样,再放入少许助燃剂,用坩锅夹移臵坩锅座内,合上坩锅座。 2.1. 3.5 依次打开“前氧”“后控”开关,流量调整为80~120升/小时。 2.1. 3.6 观察滴定前碳、硫吸收杯中各自药液的颜色(约为淡兰色),记录滴定前碳、硫滴定液的位臵。 2.1. 3.7 打开“引弧”,时间约0.4秒,使标样燃烧,双手分别捏住滴定管将滴定液滴入碳吸收杯和硫吸收杯,并始终保持吸收杯中的溶液为淡兰色, 滴至吸收杯中的溶液颜色与滴定前颜色一致为止。 2.1. 3.8 依次关闭“后控”“前氧”开关,记录滴定标样碳、硫所消耗滴定液的毫升数。 2.1. 3.9 按上述方法做试样,记录滴定试样碳、硫所消耗滴定液的毫升数。2.1.4 计算: 标样中碳的含量x滴定试样碳所消耗滴定液的毫升数 C%= 滴定标样碳所消耗滴定液的毫升数。 标样中硫的含量x滴定试样硫所消耗滴定液的毫升数 S%= 滴定标样硫所消耗滴定液的毫升数 2.1.5 注意事项: 2.1.5.1 每次滴定后,应将碳、硫滴定管中的滴定液加满,以便做下一个试样。 2.1.5.2 新仪器或维修后的仪器,在做试样前需做几个废样,以便驱赶管道

铝合金当中各项元素及微量元素对铸造性能和铸件性能的影响

铝合金当中各项元素及微量元素对铸造性能和铸件性能的影响 硅(Si)是改善流动性能的主要成份。从共晶到过共晶都能得到最好的流动性。但结晶析出的硅(Si)易形成硬点,使切削性变差,所以一般都不让它超过共晶点。另外,硅(Si)可改善抗拉强度、硬度、切削性以及高温时强度,而使延伸率降低。 在铝合金中固溶进铜(Cu),机械性能可以提高,切削性变好。不过,耐蚀性降低,容易发生热间裂痕。作为杂质的铜(Cu)也是这样。 镁(Mg) 铝镁合金的耐蚀性最好,因此ADC5、ADC6是耐蚀性合金,它的凝固范围很大,所以有热脆性,铸件易产生裂纹,难以铸造。作为杂质的镁(Mg),在AL-Cu-Si这种材料中,Mg2Si会使铸件变脆,所以一般标准在0.3%以内。 铁(Fe) 杂质的铁(Fe)会生成FeAl3的针状结晶,由于压铸是急冷,所以析出的晶体很细,不能说是有害成份。含量低于0.7 %则有不易脱模的现象,所以含铁(Fe)0.8 ~ 1.0 %反而好压铸。含有大量的铁(Fe),会生成金属化合物,形成硬点。并且含铁(Fe)量过1.2 %时,降低合金流动性,损害铸件的品质,缩短压铸设备中金属组件的寿命。 镍(Ni) 和铜(Cu)一样,有增加抗拉强度和硬度的倾向,对耐蚀性影响很大。想要改善高温强度耐热性,有时就加入镍(Ni),但在耐蚀性及热导性方面有降低的影响 锰(Mn)

能改善含铜(Cu),含硅(Si)合金的高温强度。若超过一定限度,易生成Al-Si-Fe- P+o { T*T f;X Mn四元化合物,容易形成硬点以及降低导热性。锰(Mn)能阻止铝合金的再结晶过程,提高再结晶温度,并能显着细化再结晶晶粒。再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解杂质铁(Fe),形成(Fe,Mn)Al6减小铁的有害影响。锰(Mn)是铝合金的重要元素,可以单独加入Al-Mn 二元合金,更多的是和其他合金元素一同加入,因此大多铝合金中均含有锰(Mn)。 锌(Zn) 若含有杂质锌(Zn),高温脆性大,但与汞(Hg)形成强化HgZn2对合金产生明显强度作用。JIS中规定在1.0%以内,但外国标准有到3%的,这里所讲的当然不是合金成份的锌(Zn),而是以杂质锌(Zn)的角色来说,它有使铸件产生裂纹的倾向。 铬(Cr) 铬(Cr)在铝中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力腐蚀开裂敏感性。但会增加淬火敏感性。 钛(Ti) 在合金中只需微量可使机械性能提高,但导电率却下降。Al-Ti系合金产生包晶反应时,钛(Ti)的临界含量约为0.15%,如有硼存在可以减少。

化学成分常存五大元素的影响

《化学成分》常存五大元素的影响: 碳和硅——硅对铁==碳状态图的影响:1.使临界点C、E、S等向左上方移动,即将低共晶转变、工析转变和饱和奥氏体的碳量(将碳从熔体中挤出来),并提高各临界点的温度2.使共晶转变和共析转变在一定的温度范围内进行。碳使石墨化核心增多。因此碳和硅都是使铸铁石墨化和基本铁素体的元素。碳减少过冷度,而硅对过冷度无明显的影响,顾随着碳当量的增加,共晶团变粗。碳、硅和碳当量对灰口共晶团、石墨化和基本组织的影响。值得指出,硅对石墨化的定量作用存在于两个临界点。第一个临界点是使白口为灰口,第二个临界点值得是铸铁中石墨量最多。这两个临界点硅量相应为0.1~2.0%和3%~3.5%,并取决于其他元素的含量和冷却速度。 硫和锰——硫单独在铁碳合金中FeS形式存在。结晶时与铁形式低熔点(约985℃)Fe+FeS 的共晶体,位于晶界上妨碍原子的扩散,故硫是强烈的反石墨化元素。锰单独在铁碳合金中能溶解于渗碳体和奥氏体(铁素体),分配系数K=FeMn=1.5~4.5,并取决于其它元素的含量。锰稍许降低共晶转变温度,故锰略为增大铸铁形成白口的倾向。 磷——提高液相线的温度,但降低共晶温度和碳量。磷促使共晶转变的石墨化,但阻碍共析转变的石墨化(促使珠光体的形成)磷易偏析,故磷量0.05~0.15%时在铸铁组织中细化共晶团。 《炉前检测方法》 方法操作简述质量判断与控制 三角试样 试样冷却至暗红色(600~700℃)淬水,打断测量 试样白口宽度,观察截面组织,三角试样的规格见 图:使用注意—— 1.试样砂型可用干型或湿型,湿型比干型激冷作用 强,白口宽度偏宽。 2.掌握淬水速度,若水强烈沸腾,则说明试样温度过 高,下水速度过快;若水中微沸腾,并有吱吱声响, 则速度合适 1—灰口层2—麻口层3—白 口层 1.测量白口宽度(试样尖角处 的白亮区出现灰点处)一般白 口宽度过大,铁液应补加孕育 剂,一般衬Si75=0.1%。白口 宽度过小,应向包内冲入适量 铁液以调整其成分。 2.观察断口颜色 根据断口颜色定碳量范围, 由白口宽度(Si+C)总量, 即可知道硅量

钢铁中五大元素的作用与危害及其分析方法

钢铁中五大元素的作用与危害及其分析方法 作者:刘张 50905022010 应化 2 班 钢铁是铁与C(碳)、Si(硅卜Mn(锰卜P(磷)、S(硫)以及少量的其他元素所组成的合金。 其中除Fe(铁)外,C 的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程 技术中最重要、 用量最大的金属材料。 炼 钢T 连铸T 轧钢等。 是其他工业发展的物质基础。 有了钢铁, 就使得中国国 钢铁工业的发展也有赖于煤炭工业、采掘工业、冶金工 家都把发展钢铁工业放在十分重要的地位, 并把这种发展与国民经济各部门的发展互相协调 起来,保持正常的比例关系。针对此块精英人才,也是目前我国最稀缺的。 五大元素是特指钢铁中的碳、硫、硅、磷、锰五种元素。 五大元素各个化学元素对钢的性能有以下的影响: 1、碳(C)碳是钢铁的主要成分之一 它直接影响着钢铁的性能。碳是区别铁与钢, 决定钢号、 品级的主要标志。 碳是对钢性能起 决定作用的元素。 碳在钢中可作为硬化剂和加强剂, 正是由于碳的存在, 才能用热处理的方 法来调节和改善其机械性能, 钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性 降低,当碳量 0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一 般不超过 0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此 外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):由原料矿石引入或脱氧及特殊需要而有 意加入,在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有 0.15-0.30%的硅。如果 钢中含硅量超过 0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉 强度,故广泛用于作弹簧钢。在调质结构钢中加入 1 .0- 1 .2%的硅,强度可提高 15-20%。 硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅 1-4%的 低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、 锰(Mn):少量由原料矿石中引入,主要是在冶炼钢铁过程中作为脱硫脱氧剂有意加入,钢 铁中主要以MnS 状态存在,如 S 含量较低,过量的锰可能组成 MnC 、MnSi 、FeMnSi 等, 成固熔体状态存在, 在炼钢过程中, 锰是良好的脱氧剂和脱硫剂, 一般钢中含锰 0.30- 0.50% 。 在碳素钢中加入 0.70%以上时就算“锰钢” ,较一般钢量的钢不但有足够的韧性,且有较高 的强度和硬度,提高钢的淬性,改善钢的热加工性能,如 16Mn 钢比 A3 屈服点高 40%。含 锰 11-14%的钢有极高的耐磨性, 用于挖土机铲斗, 球磨机衬板等。 锰量增高, 减弱钢的抗 腐蚀能力,降低焊接性能。 4、磷(P):由原料中引入,有时也为了特殊需要而有意加入,以 Fe2P 或Fe3P 状态存在,在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能 变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于 0.045%,优质钢要求更 低些。5、硫(S):主要由焦炭或原料矿石引入钢铁,主要以 MnS 或FeS 状态存在,硫在通 常情况下也是有害元素。 使钢产生热脆性, 降低钢的延展性和韧性, 在锻造和轧制时造成裂 纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于 0.055%,优质钢要求 小于 0.040%。在钢中加入 0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 检测钢铁中碳、硫、锰、磷、硅五大元素的方法: 碳元素采用气体容量法 硫 元素采用碘量法 锰元素采用银盐 --过硫酸铵氧化光度法。 磷元素采用氟化钠 --氯 化亚锡钼蓝光度法 硅元素 采用亚铁还原 --硅钼蓝光度法 钢铁中碳、硫、锰、磷、 钢铁工业是最重要的基础工业, 民经济的技术改造成为可能。同时, 业、动力、 运输等工业部门的发展。 由于钢铁工业与其他工业的关系十分密切,因此许多国 钢铁生产流程包括:矿山开采T 选矿T 烧结T 炼铁T

铝合金中各元素对铸造与铸件的影响

铝合金当中各项元素及微量元素对铸造性能和铸件性能有什么影响? 以下对几个主要元素略作说明: 硅(Si) 硅(Si)是改善流动性能的主要成份。从共晶到过共晶都能得到最好的流动性。但 结晶析出的硅(Si)易形成硬点,使切削性变差,所以一般都不让它超过共晶点。 另外,硅(Si)可改善抗拉强度、硬度、切削性以及高温时强度,而使延伸率降低 。 铜(Cu) 在铝合金中固溶进铜(Cu),机械性能可以提高,切削性变好。不过,耐蚀性降低 ,容易发生热间裂痕。作为杂质的铜(Cu)也是这样。 镁(Mg) 铝镁合金的耐蚀性最好,因此ADC5、ADC6是耐蚀性合金,它的凝固范围很大,所 以有热脆性,铸件易产生裂纹,难以铸造。作为杂质的镁(Mg),在AL-Cu-Si这种 材料中,Mg2Si会使铸件变脆,所以一般标准在0.3%以内。 铁(Fe) 杂质的铁(Fe)会生成FeAl3的针状结晶,由于压铸是急冷,所以析出的晶体很细, 不能说是有害成份。含量低于0.7 %则有不易脱模的现象,所以含铁(Fe)0.8 ~ 1.0 %反而好压铸。含有大量的铁(Fe),会生成金属化合物,形成硬点。并且含 铁(Fe)量过1.2 %时,降低合金流动性,损害铸件的品质,缩短压铸设备中金属组件的寿命。 镍(Ni) 和铜(Cu)一样,有增加抗拉强度和硬度的倾向,对耐蚀性影响很大。想要改善高 温强度耐热性,有时就加入镍(Ni),但在耐蚀性及热导性方面有降低的影响。 锰(Mn) 能改善含铜(Cu),含硅(Si)合金的高温强度。若超过一定限度,易生成Al-Si-Fe- Mn四元化合物,容易形成硬点以及降低导热性。锰(Mn)能阻止铝合金的再结晶过 程,提高再结晶温度,并能显着细化再结晶晶粒。再结晶晶粒的细化主要是通过 MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解 杂质铁(Fe),形成(Fe,Mn)Al6减小铁的有害影响。锰(Mn)是铝合金的重要元素, 可以单独加入Al-Mn二元合金,更多的是和其他合金元素一同加入,因此大多铝合 金中均含有锰(Mn)。 锌(Zn) 若含有杂质锌(Zn),高温脆性大,但与汞(Hg)形成强化HgZn2对合金产生明显强度 作用。JIS中规定在1.0%以内,但外国标准有到3%的,这里所讲的当然不是合金成

相关文档
最新文档