毛细管电泳测定阿片肽方法的探索

毛细管电泳测定阿片肽方法的探索
毛细管电泳测定阿片肽方法的探索

毛细管电泳测定阿片肽方法的探索

项目完成人员:董标董方霆梁月琴吴胜明杨征*

项目完成单位:军事医学科学院国家生物医学分析中心

*中国人民解放军第307医院

摘要阿片肽是一类具有广泛作用的神经肽,放射免疫分析(RIA)是目前测定生物体内微量阿片肽的一种灵敏方法,但也存在诸多缺点。为了开辟阿片肽定量的新途径,我们以阿片肽的标准品(脑啡肽、强啡肽、β-内啡肽)为分离目标,采用毛细管电泳技术对此进行摸索。以荧光素异硫氰酸盐(FITC)为衍生化试剂,建立用毛细管区带电泳-激光诱导荧光检测测定亮氨酸脑啡肽(Leu-ENK)的方法,检测限达10-14mol,线性范围是35.2~563.1 fmol/μL,(n=7)r=0.9985。测得样品微透析液中脑啡肽的含量为7.4?10-15 mol/μL,并对串联质谱测定阿片肽的方法进行尝试。

阿片肽存在于哺乳动物的组织和体液中,作用极为广泛,具有镇痛、抑制呼吸和参与应激反应等功能,与学习和记忆、生殖内分泌、免疫功能的调节也密切相关[1]。阿片肽的定量测定最常用的方法是放射免疫分析(Radioimmunoassay,RIA),它是通过专一活性(specific activity)高的示踪物,观察抗原与抗体结合反应产物来定量微量物质的一种分析方法。其缺点是一个抗体和其它肽的交叉免疫反应,限制了分子的专一性;其次放免试剂盒的成本较高,一种放免试剂盒只能测定其中一种阿片肽,操作复杂费时,使用时接触有生物毒性的放射性物质(如125 I),易对人体造成损害。毛细管电泳是上世纪80年代初迅速发展起来的一门分离分析技术,具有高效、快速、灵敏、样品用量少等特点,在生命科学、环境科学、食品科学、临床等领域有着广泛的应用[2-3]。毛细管电泳的分离模式众多,分离机理也各不相同,对样品来源受到限制的少量体积样品(如微透析液)分析,尤其是毛细管电泳-激光诱导荧光检测(CE-LIF),已成为首选技术。目前,CE-LIF 用于直接测定微透析液中物质主要集中在一些氨基酸和生物胺等小分子物质方面[4-5],未见测定多肽、蛋白等生物大分子的报道。为了开辟阿片肽定量的新途径,对生物样品中微量的阿片肽能同时测定,我们以阿片肽的标准品(脑啡肽、强啡肽、β-内啡肽)为分离目标,采用毛细管电泳技术对此进行摸索。

一、实验部分

1.1仪器与试剂

P/ACE5000型毛细管电泳仪(Beckman 公司,美国),配有紫外-可见检测器和氩离

子激光诱导荧光检测器(λex = 488nm,λem = 513nm),Gold System数据处理系统;弹性石英毛细管柱,50、75μm内径,购自河北永年光导纤维厂。质谱仪为电喷雾四极杆飞行时间串联质谱Q-TOF 2,英国micromass公司;亮氨酸脑啡肽(Leu-ENK)纯度99%、含量79%,强啡肽A(DYN A)纯度99%、含量72%,β-内啡肽(β-EP)纯度99%、含量77%,均购自sigma公司;荧光素异硫氰酸盐(FITC)异构体Ι、三羟基甲基氨基甲烷(Tris)、十二烷基硫酸钠(SDS)为进口分装;四硼酸钠、硼砂、氢氧化钠等试剂均为国产分析纯。实验用水均为Milli-Q级,实验室自制。微透析液用微透析探针采自大鼠脑部的伏隔核区,分子量截留大于3500D,由合作单位提供。

1.2 缓冲液的配制

Tris-H3PO4缓冲液:称取一定量的Tris,水溶解后,用H3PO4调pH,定容至所需浓。

Tris-硼砂缓冲液:称取Tris和硼砂,适量水溶解后,用NaOH调pH,定容至所需浓度。

硼砂-硼酸缓冲液(含SDS):称取适量硼砂、硼酸、SDS,加一定量的水溶解后,用NaOH调pH,定容至刻度。

1.3 标准品溶液的配制

精密称取一定量的阿片肽标准品,用去离子水溶解,配成浓度为1mg/mL的储备液,放-20℃保存,临用前稀释到所需的浓度。微透析液每次取5μL,未作任何处理,直接进行衍生化分析。

1.4样品的衍生化过程

所有衍生化过程都在200μL具塞离心管中进行。取一定量的样品液和0.2mol/L pH9.0碳酸钠盐缓冲液,衍生化时加入一定量的FITC溶液(0.2mg/mL,乙腈溶解,含1%甲醇、0.25‰吡啶v/v),涡旋混匀后避光室温反应12-14h。空白对照按相同方法配制,每次样品衍生化时均同时制备空白对照。

1.5电泳条件

柱子使用前用0.1mol/L的NaOH,H2O、运行缓冲液分别洗柱10min,每次进样前用H2O压力冲洗2min,缓冲液冲洗4min。每分析4-5次后更换新的运行缓冲液,UV或LIF 检测。

二、结果与讨论

2.1分离模式的选择

P/ACE5000型毛细管电泳仪配有检测器(波长200nm、214nm、254nm、280nm)和激光诱导荧光(LIF)检测器(λex/λem 488/520nm)。由于UV检测器的通用性,对于蛋白质、肽类样品不需要任何处理即可检测,我们首先用UV检测方法对阿片肽标准品进行分离。采用MEKC的分离模式对阿片肽标准品分别进样分离,仅Leu-ENK脑啡肽出现色谱峰。采用CZE分离,Leu-ENK、β-EP、DYN A在不同的保留时间出峰,混合后进样,三者能完全分开,见图1、2。在相同进样量情况下,Leu-ENK色谱峰的吸收强度约是MECC分离时的色谱峰强度的10多倍,故此确定CZE为分离模式。配制一系列不同浓度的阿片肽标准混合液,进行分离。阿片肽的UV最小检测限约为2?10-12 mol/μL。文献报道用RIA测定脑组织中内源性阿片肽的浓度仅为pg/mg的水平,UV检测的灵敏度远低于实际样品的含量。LIF检测是CE所有检测方法中灵敏度最高的一种方法。但是大多数物质的荧光量子产率很低,或不发荧光。特别是感兴趣的一些生物大分子,如氨基酸、多肽和多数蛋白质等。因此,需借助衍生或荧光标记技术,使待测组分转变为能发荧光的衍生物,提高检测灵敏度。不同的荧光试剂有不同的激发和发射波长,标记的对象也不尽相同。常用的荧光衍生试剂见表1–1。

表1–1 常用的荧光衍生试剂

衍生试剂激发和发射波长反应物

荧光素异硫氰酸盐(fluorescein isothiocyanate, FITC)λex 490nm

λem 519nm

氨基酸、多肽、蛋

白质

荧光胺(fluorecamine)λex 390nm

λem 450nm

伯氨基酸

邻苯二甲醛

(o-phthaldialdehyde,OPA)λex 350nm

λem 450nm

氨基酸、多肽、蛋

白质、胺

萘二醛衍生物

(naphthalene-2,3-dicarboxyaldehyde,NDA)λex 442nm

λem 490nm

氨基酸,多肽,生

物胺

3-(4-羧基甲酰基)-2-奎宁羧醛

[3-(4-carboxybenzoyl)-2-quinoline,CBQCA] λex 456nm

λem 552nm

氨基酸、多肽

四甲基罗丹明异硫氰酸盐(tetramethylrhodamine isothiocyanate,

TRITC)λex 543nm

λem 570 nm

氨基酸、多肽

异硫氰酸苯脂(phenyl-isothiocyanate,PITC)λex 290nm

λem 345nm

氨基酸、多肽、蛋

白质

9-芴基甲基氯甲酚酯

(9-fluorenylnethyl chloroformate,FMOC)λex 260nm

λem 305nm

氨基酸

恰当地选择激发波长和荧光标记试剂,对提高检测灵敏度有着重要意义。毛细管电泳仪配备的LIF 检测器,其λex/λem 为固定波长(488/520 nm ),限制了荧光试剂的选择范围,最适合的荧光衍生试剂仅有FITC 。

2.2样品衍生化条件的优化

FITC 用于标记胺、氨基酸、抗体等衍生化条件已有很多研究[6-8],用于多肽的衍生化还未见文献报道。为了达到最佳的检测灵敏度和分离效率,对柱前衍生条件进行优化是必需的。影响衍生化的因素很多,有反应时间、pH 、缓冲液等,我们以Leu-ENK 为对象对这些因素考察。文献中溶解FITC 的溶剂有丙酮、乙腈、甲醇。经比较发现,用乙腈作溶剂时,分离色谱图上FITC 副产物的峰少,FITC-ENK 色谱峰的荧光强度与丙酮、甲醇作溶剂时相近,故选择乙腈作为FITC 的溶剂。FITC 衍生化的过程不快,随着标记化合物的不同,文献上报道的反应时间也不同。衍生化时微量吡啶的存在,会加速反应完成,且起到稳定衍生化产物的作用[5],因此配制FITC 溶液时加入痕量的吡啶。考察了2h 、4h 、8h 、12h 、16h 不同时间点的衍生化程度,发现在12h 反应已完全,在实验时采取衍生化反应12-14h 。比较碳酸钠盐(CB )缓冲液pH9.0和pH9.0的硼砂缓冲液对衍生化效率的影响,二者结果相近。

图 1 MEKC 和CZE 分离脑啡肽标准品电泳图

MEKC 的分离条件:毛细管柱:50μm ?57cm ;电压:20KV , 50mmol/L pH8.5硼砂,含50 mmol/LSDS ,检测:(UV )200nm 柱温20℃,压力进样30s 。脑啡肽0.5mg/mL CZE 分离条件:毛细管柱:50μm ?37cm ;电压:15KV 缓冲液: 50 mmol/L pH2.5Tris-H 3PO 4,检测:(UV )200nm 柱温20℃,压力进样4s 。脑啡肽0.5mg/mL

ENK

ENK

ENK

DYN

β-EP 图2 阿片肽标准品混合物的CZE 分离图

CZE 分离条件:毛细管柱:50μm ?37cm ;电压:15KV ,缓冲液: 50 mmol/L pH2.5Tris-H 3PO 4,检测:(UV )200nm 柱温20℃,压力进样2s 。脑啡肽、强啡肽、内啡肽均为0.5mg/mL 。

在优化的衍生条件下对阿片肽的标准品Leu-ENK 、β-EP 、DYN A 分别进行CZE-LIF

分析,结果如图3。脑啡肽的FITC-ENK 为一单峰,而β-EP 和DYN 均为多个色谱峰,可能是多重标记造成的[9],故强啡肽和β-内啡肽不适宜用FITC 进行衍生化测定,无法对β-EP 和DYN 进行定量分析。 2.3分离条件的优化

进样方式的选择:电动进样与样品溶液的离子强度和各组分的淌度有关,存在“电歧视”现象,故均采用最常用的压力进样方式。电泳分离效果的指标主要考察FITC-ENK 峰与FITC 及其降解产物色谱峰的分离情况。比较了不同毛细管长度(47、57、67cm )和内径(50、75μm )的分离情况。毛细管柱长分离度好,出峰时间延长;在毛细管柱长度相同的情况下,50μm 内径柱分离好于75μm ,但由于进样量小,检测限低于后者近一个数量级。综合各种因素,我们选择的毛细管柱为75μm ? 67cm 。考察Tris-硼砂缓冲液不同浓度(20、40、60、80 mmol/L )的分离效果,60 mmol/L 分析效果最好。电泳缓冲液的浓度太低,不仅样品区带会发生电扩散,而且电渗流(EOF )的速度过快,降低FITC 衍生物的有效淌度差异,从而降低分离效率。随着缓冲液的浓度增加,电渗流速度降低,溶质在毛细管内的迁移速率下降,因此迁移时间延长。但浓度太高,产生的焦耳热的增加也会降低分辨率和分离效率。缓冲液pH 是又一影响电泳分离的重要因素,比较pH 为8.6、9.0、9.4、9.8、10.0缓冲液的分离结果,选择pH9.4的Tris-硼砂缓冲液。 2.4工作曲线的建立

取Leu-ENK 储备液,用水稀释配制一系列不同浓度(μg/mL )0.05、0.08、0.10、0.20、0.40、0.80、1.00的Leu-ENK 标准液,各取80μL ,按1.4项下方法操作,加入40μ L 的

A

3

4 1

2 荧光相对强度

min

B F I T

C -E N K

4

3

2

1 min

C

1

4

3

2 {

F I T C -E P

min

D

4

3 F I T C -D Y N

2 {

min

图3 CZE-LIF 分离三种FITC 衍生化的阿片肽标准品电泳图

A 空白对照,

B 脑啡肽标准品,

C 内啡肽标准品,

D 强啡肽标准品,1、2、3、4为FITC 及其降解产物峰。分离条件:75μm ? 67cm ,60 mmol/L pH9.4 Tris-硼砂缓冲液,电压350kv/cm , LIF 检测:λex/λem 488/520 nm ,柱温25℃, 压力进样3s 。

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

毛细管电泳出现问题分析

一、无样品峰出现 A、检查电流是否稳定: ①没有电流。 可能原因——毛细管堵塞或断裂。 解决方法——用水冲洗毛细管,并观察是否有水流出,若无水 流出请拆下卡盒检查毛细管两端和窗口是否断裂;毛细管没有 断裂的话可以用水反向高压冲洗以试图解决此问题。缓冲溶液 需要过滤,将样品过滤或者离心去除其中的颗粒。 ②电流波动很大,直至几乎消失。 可能原因——缓冲溶液中有气泡产生或者区带中样品析出。 解决方法——将缓冲溶液超声脱气,如果还有此现象发生,则 可能是样品区带有析出,可以通过降低样品浓度/延长ramp time来试图解决这一问题;对于在缓冲溶液中溶解度不高的样 品则需要在缓冲溶液中加入添加剂以解决此问题。 ③电流初始值较小,后逐渐增大。 可能原因——样品进样量过大。 解决方法——减少进样量,通常进样参数设置在0.5psi,5sec 左右。 ④电流正常。 可能原因:a样品浓度过低:使用高浓度样品测试,如果无法 解决则有可能是以下其他原因。b检测波长设置不正确:请确 认被分析物的特征吸收,检查方法中的检测波长设置。c分离

极性错误:对于蛋白样品,请注意蛋白在分离条件下其PI及所带电荷;对于核酸样品,通常条件下会带负电荷。d样品在毛细管内壁吸附:对于蛋白及核酸样品应尽量采用涂层毛细管分离,或采用极端pH条件或动态涂层防止样品吸附。e光学检测器或光纤损坏:进行标准样品的测试,如果没有对应的结果出现,则有可能存在硬件问题,请联系工程师。 B、检查毛细管窗口,是否有透明窗口: 可能原因——忘记开毛细管窗口或窗口位置不正。 解决方法——重新开毛细管检测窗口,或将窗口调整到正确位置。 二、样品峰出现拖尾 可能原因——样品在毛细管内壁吸附。 解决方法——对于蛋白及核酸样品应尽量采用涂层毛细管分离,或采用极端pH条件或动态涂层防止样品吸附。 三、样品峰形不对称 A、检查毛细管入口: 可能原因——毛细管入口切口不平齐。 解决方法——重新切割毛细管入口,注意毛细管切割方法,不可以用力过猛或反复刮擦。

荧光检测毛细管电泳法

通过荧光检测毛细管电泳法 快速灵敏地检测人体血浆中的亚硝酸盐的方法 本文选自塔兰塔(Talanta),爱思唯尔(Elsevier)出版,纯分析化学期刊。 作者:安范舒普代尔,来自比利时鲁汶大学。 摘要:分析亚硝酸盐,NO指示剂在体内的产生,为研究NO在体内的合成提供 了一个有用的工具。通过其衍生反应和2、3二氨基萘(DAN)中一个快速、灵敏荧光-毛细管电泳法被发展来测定了人体血浆中的亚硝酸盐。亚硝酸盐在人体血浆中很容易与DAN在酸性条件下反应得到收益率很高的荧光2,3-萘 酚三唑(NAT)。荧光检测是完成施达赛检测的最佳化方式,它允许一种等离子体样品的直接分析而不像大多数堆积样品的CE-UV方法。乙腈可去除蛋白质。短程注射和高压电(30千伏)可缩短分析时间。用20mm,pH值为9.23的缓冲溶液可更好的分离。NAT的分离在1.4分钟内完成,除蛋白等离子体样品以5s每50 mbar水动力地的速度被注射到60厘米×75微米的内部直径无涂层的玻璃毛细管里。激发波长被选中为一个宽带滤波器(240-400nm),发射光在418nm被测量通过采用一个截止过滤器。在2到500nm的范围内获得一个好的线性关系(R2=0.9975)。在原始血浆样本中亚硝酸盐的检测极限是0.6nm, 比我们此前的CE-UV法低了750倍。先进的荧光-毛细管电泳法相对于目前的荧光高效液相色谱法,具有更简单的系统和更低的成本优势,同时也很灵敏。这个研究表明该方法测定人体血浆中亚硝酸盐在的浓度与频繁报道的一致。 1介绍 研究表明,亚硝酸盐在生理和病理条件下有可能成为NO合成的一个标志,因此在实验和临床研究中可能作为一个生化参数。 但是到目前为止,还没有真正关于人体血浆中亚硝酸盐的浓度的共识。具报告,一般水平的亚硝酸盐在人体血浆中“不能检测”的范围达到26微米。人体血浆中亚硝酸盐的浓度最合理的范围是从100纳米到1微米,通过大多数研究者团体的测量最常报道的结果是从100纳米到200纳米。因此,对于分析学科来说测定人体血浆中的亚硝酸浓度是一个挑战。在样品配制的过程中,高灵敏度测定和一定的防范措施可以提高测量的精密度和准确度。荧光法已广泛用于亚硝酸盐的灵敏分析。这些方法涉及亚硝酸盐衍生化反应——由2,3-二氨基萘(DAN)合成2,3-萘酚三唑(NAT)。有一些使用高效液相荧光检测的方法用在检测水、尿液和细胞培养液中的亚硝酸盐。然而,大多数荧光高效液相色谱法对样品需要一个复杂的制备过程来去除一些小元件并需要一个保护柱。这些额外的合成步骤可能会引入环境中杂质

毛细管电泳分析方法在食品安全监控中的应用

毛细管电泳分析方法在食品安全监控中的应用(华东师大化学系叶建农) 食品安全是指食品中不应含有可能损害或威胁人体健康的有毒、有害物质或因素,从而导致消费者急性或慢性毒害或感染疾病、或产生危及消费者及其后代健康的隐患。近年来,世界范围内食品安全方面的恶性和突发事件不断发生。据美国疾控中心研究报告估计,美国每年因食品中毒而死亡的人数约5000人左右。日本也先后发生出血性大肠埃希菌O157食品中毒事件,以及导致上万人中毒的雪印牛奶事件。目前我国食品安全形势不容乐观,食品中毒事件时有所闻。据不完全统计,我国每年实际发生的食物中毒例数在200万人次以上,其中有相当比例是由违禁食品添加剂引起,如2005年“苏丹红”事件,2006年“瘦肉精”事件,2008年“三聚氰氨”事件等。这类事件不仅严重危害人们身体健康,而且也对经济发展和国家形象产生及其负面的影响。客观而言,目前我国食品安全仍处于风险高发期和矛盾凸显期,有必要进行全方位的整治。其中的一个环节,就是要切实做好食品安全监控工作。 食品分析大致可分为两大类,即食品中营养成分分析,以及

食品中化学添加剂、化学污染物的分析。由此可见,食品安全监控的主要内容,本质上是指能够准确分析和严格控制食品中化学添加剂及化学污染物的种类和含量。其中食品添加剂属限用品。根据我国卫生部2008年新修订的“食品添加剂使用卫生标准”(GB2760-2007)规定,在一定前提下可合法使用的食品添加剂总数为1812种,共分为22大类。这一千多种食品添加剂虽然已经卫生部认可,但对其允许的添加范围及添加量却有严格的规定和限制。至于化学污染物则属违禁品,有时又叫禁用品,即在任何条件下均不得人为添加,如苏丹红、瘦肉精、孔雀石绿、三聚氰氨等。 从理论上讲,现有的化学分析方法都有可能在某种程度上应用于食品安全监控。如比色法、滴定法、水解法、蔡氏砷斑法、凯氏定氮法、薄层色谱法、气相色谱法、高效液相色谱法、色谱-质谱联用法、毛细管电泳法等。 毛细管电泳(CapillaryElectrophoresis,CE)是近二十来发展最快的一种分离分析技术,具有分离效率高、所需样品量少、分析成本低等优点。毛细管电泳分析法是以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度的差

矿山环境监测报告

恒隆源煤业 绥阳县宏盛煤矿 矿 山 地 质 环 境 检 测 报 告 绥阳县宏盛煤矿 二0一四年三月三十日

第一章前言 1.1 监测目的 通过对矿山地质环境进行检测工作,为矿山建设施工过程中及生产后可能诱发、加剧的地质灾害及矿山本身可能遭受地质灾害的危险、合理开发和充利用矿产资源、有效保护地质环境以及为政府部门对矿山地质环境管理和采矿许可换证提供技术依据。 1.2 监测任务 为达到上述目的,本次监测工作的主要任务是: (1)步查明矿山及相关围的地质环境特征及地质灾害类型、分布现状、形成规律、发展趋势以及对矿山建设生产的危害; (2)定性监测分析矿山工程建设中和生产后可能诱发和加剧的地质灾害类型、规模以及对矿区地质环境的影响; (3)综合分析矿山地质灾害危险性,评价矿山建设对地质环境的影响,并提出地质灾害和灾害患的防治措施、建议。 1.3人员设备投入 本次地质环境监测工作,参加工作的人员共6人,其中,工程师1人,相关人员5人,关于设备先利用现有技术设备,

缺少的设备应尽快配备完善。 1.4完成的工作质量及质量评述 在充分研究已有成果资料的基础上,对矿区及邻近区域进行环境地质综合调查。经室综合分析整理编制完成《绥阳县宏盛煤矿矿山地质环境监测报告》一份和井上下对照图一。 本次监测报告编制工作资料收集比较全面,环境地质调查工作按国家现行有关技术规进行,报告编制参照省国土资源厅颁发的《省矿山地质环境影响评价技术要求》(试行)和《绥阳县宏盛煤矿地质报告》,完成预期的工作任务,达到预期的工作目的。 第二章监测区基本情况 2.1自然地理概况 (1)位置与围 宏盛煤位于绥阳县黄镇境,隶属于市绥阳县黄镇管辖围,矿山距桐梓至正安公路约5公里(至宽阔镇),宽阔镇距桐梓县城37公里,南距绥阳县城约66公里。交通较方便,煤炭外运较方便。矿区地理坐标:107°01′12″~107°01′40″,北纬:28°17′22″~28°17′50″。矿井有电信公司和手机与外界联系。 矿井生产能力9万吨/a,矿井处于安全生产期间。

毛细管电泳操作手册

毛细管电泳操作手册 一.毛细管紫外检测器简介 分高压电源(左侧)与毛细管检测主机(右侧)(紫外检测器)。 1.高压电源 设置高压电源分离电压范围在0-30 kV,最高设置不能超过25 kV,参考文献中如若提及分离电压在30 kV,务必不要将本高压电源也设置在30 kV。 2.毛细管检测主机 主机分毛细管系统、进样系统、和紫外检测系统。

a.毛细管系统主要包括:缓冲池、冲洗器、毛细管、高压电极。 缓冲池是两个高约3.5 cm 的玻璃瓶,用于乘装运行缓冲液。 冲洗器包括弹簧压力器和2.5 mL的医用注射器,注射器中乘装与缓冲池中一样的运行缓冲液,依靠弹簧压力将运行缓冲液推入毛细管中。 毛细管主要用的是未涂层的50 μm口径石英毛细管,有效长度在50 cm左右。 高压电极的作用是将高压电源产生的高压传输到两个缓冲池中形成电回路。 b.进样系统为一可伸缩的高度进样杆,一般进样升到最高点,所产生的高度差提供0.5 psi 的进样压力。 c.紫外检测系统提供各个波长的紫外光,可根据所做物质的紫外吸收最大波长进行手动 调节。

二.毛细管电泳的日常维护以及注意事项 1.毛细管每次使用之前必须检查正负铂丝电极是否断裂——用手指轻轻挑动电极; 2.毛细管电泳使用完毕后一定要将干燥硅胶置入主机内,如若变红,须烘箱干燥后再放入; 3.毛细管主机内部不能用水清洗,只能在关机状态下用酒精浸泡的脱脂棉擦拭,或用小毛 刷扫除主机内部的灰尘; 4.非正常情况下不要将紫外检测器的暗池打开,以免损坏紫外光接收器; 5.高压电源与主机非正常情况下不要轻易移动位置; 6.实验中手法保持轻盈,毛细管较易折断,主机窗门轻开轻关; 7.实验结束后一定要将高压电源和主机的插头都拔掉,也不要将试验样品留在主机内部的 样品架上,要保持主机内部无任何附加的化学试剂; 8.下雨天或者潮湿天气不要开机,高压电源对湿度比较敏感,湿度较大的情况下开机可能 会使高压电源击穿,造成仪器损坏; 9.寒暑假实验室无人的情况下要将毛细管主机及高压电源用干净的实验服盖住,门窗关 好,保持实验室无人的状态下也干燥; 10.若仪器长时间不用,须定时在不插电关机状态下将毛细管冲洗一次,以免毛细管堵塞。

矿山地质环境调查

矿山地质环境调查 1 定义 矿山地质环境是指矿床及其周围地区矿业活动影响到的岩石圈部分(岩石、矿石、土壤、地下水及地质作用和现象),与大气、水、生物圈之间相互联系(物质交换)和能量流动,组成的相对独立的环境系统。 1.1矿山环境地质问题是指矿业活动与地质环境之间的相互作用和影响所产生的地质环境破坏和环境污染等问题。 2 总则 2.1 矿山地质环境调查是实施省(自治区)级矿山地质环境保护和矿山地质环境监督管理的技术工作依据。 2.2 矿山地质环境调查是针对生产矿山和闭坑矿山环境保护服务的基础性、战略性工作,为矿山环境整治、矿山生态系统恢复与重建规划提供基础资料,为制定矿山地质环境保护规则提供科学依据。 2.3 矿山地质环境调查要求基本查明矿产资源开发过程中遇到和诱发的环境地质问题对地质环境的影响与破坏,摸清底数,做出现状评价、预测分析。 2.4 矿山地质环境调查区范围不能局限于矿山用地面积之内,应将矿业活动影响范围作为调查区范围。 2.4.1 矿产资源重点开发区范围应包括区域地质单元和影响的流域。 2.4.2 矿区地质环境调查区范围应根据矿区矿业活动对周围地质环境的整体影响确定其范围。 2.4.3 单个矿山地质环境调查区范围应根据矿山矿业活动对地质环境的影响和破坏确定其范围。 2.5 矿山地质环境调查任务: 2.5.1 调查矿山地区社会经济概况和矿业活动。 2.5.2 调查研究矿区地质环境条件及其特征。 2.5.3 查明矿山主要环境地质问题及其影响与危害。 2.5.4 调查、总结矿山地质环境保护和生态系统恢复治理的经验与教训。 2.5.5 对矿山地质环境作出综合评价,提出矿山地质环境保护规划建议。 2.5.6 建立矿山地质环境信息系统。 3 工作程序: 工作程序框图

环境监测方案

《离子型稀土矿山开采污染物排放标准》地标编制前环境监测方案(讨论稿一稿) 为规范离子型稀土矿山环境管理,配合地方环保部门对离子型稀土矿山监督检查,现准备制定《离子型稀土矿山开采污染物排放标准》地方标准,明确离子型稀土矿山企业水污染物和固体废物排放限值,规范离子型稀土企业水污染物和固体废物污染防治和管理。现结合矿山开采工艺及管理的要求,制定环境监测方案。本次监测属于研究性监测,为制定制定《离子型稀土矿山开采污染物排放标准》提供充分参考依据。 依据水体的功能以及污染源的类型,确定水质监测项目。环境水体的监测,对地表水,地下水,以及开矿前的矿体污染源的监测,首先对基础资料收集、现场调查,明确监测断面的布设、监测点的布设、采样时间、采样频次、样品采集与运输、样品的保存方法、样品的分析方法,依据水深和水宽定制采样点与数量,地下水采样井布设。 根据实际情况,现确定对地表水、地下水、河道底泥、矿区周边土壤、矿区矿体进行监测。 现场样品采集及运输保存参考《土壤环境监测技术规范》、《地表水和污水监测技术规范》、《海洋监测规范第5部分:沉积物分析》和《地下水环境监测技术规范》中的采样方法进行采样。 1.地表水监测 1.1监测点的设置 (1)监测点布置原则

依据稀土矿山资源分布、采矿证数量及大小、地形地质地貌条件、开采情况、流域走势等条件综合考虑选择在出矿区边界50-100米有代表性设置监测点,定好监测点坐标。 (2)监测点建设规格及保护设施 考虑到监测时期较长,在监测点旁边立标识牌。 (3)监测点初步选定 依据监测点布置原则,各资源县监测点初步选定如下:龙南9个、定南7个、信丰3个、安远6个、全南4个、寻乌3个。背景断面每年监测一次,其他断面每月监测一次。具体坐标见表1,位置见监测点布置图。 表1 地表水监测点位分布表

外文翻译--毛细管电泳电化学检测方法中文版-精品

毕业设计(论文)外文翻译 Electrochemical detection methods in capillary electrophoresis and applications to inorganic species 毛细管电泳电化学检测方法 在无机元素中的应用

电化学检测法在毛细管电泳 和无机元素中的应用 摘要:本文论述了毛细管电泳的三种电化学检测即电导检测法、安培检测法和电位检测法,并与较常见的光学检测方法进行了比较。详细介绍了三种检测方法的原理及其实现方法,同时介绍了它们在无机元素分析物中的应用情况。 关键字:电化学检测、毛细管电泳;无机阴离子、金属阳离子。 目录: 1.简介--------------------------------------------------------------1 2.电导检测法--------------------------------------------------------2 2.1原理----------------------------------------------------------2 2.2实现方法------------------------------------------------------3 3安培检测法--------------------------------------------------------6 3.1原理----------------------------------------------------------6 3.2实现方法------------------------------------------------------6 4电位检测法--------------------------------------------------------5 4.1原理----------------------------------------------------------9 4.2实现方法------------------------------------------------------9 5在无机元素中的应用------------------------------------------------9 6总结-------------------------------------------------------------10 7参考文献---------------------------------------------------------10 1.简介 毛细管电泳的检测方法通常采用光学方法(激光诱导荧光检测法),而毛细管电泳的三种电化学检测法即电导测定法、安培检测法、和电位测定法是非常有吸引力的一种替代方法,尽管目前开发的还相对较少。相对套色板离子法来说(其他和以前一般化的检测方法)他主要借助于电导性能而不是运用光学方法。由与针对毛细管中更小体积细胞的光学检测变得更加困难,而且事实上许多离子也不能直接由光学方法直接检测到,或许当人们意识到这些的时候会感到很惊讶。关于这一情况或许有两种解释。首先由于高性能流体套色板的广泛应用,我们在毛细管电泳中通常采用光学吸收检测法,许多毛细管电泳仪器制造商似乎已经走上

湖南省矿山地质环境影响评估技术要求内容

省矿山地质环境影响评估技术要求 省国土资源厅 二○○六年元月

目录 前言 (1) 1总则 (2) 2 术语 (2) 3 评估工作任务 (4) 4 评估工作主要容 (5) 5评估工作级别划分 (5) 6评估工作程序 (10) 7 各级评估工作的基本要求 (11) 8评估工作技术要求 (12) 附录 A (标准附录)人居因素分级表 (11) 附录 B(标准附录)矿山地质环境条件复杂程度分级表 (12) 附录 C (标准附录)矿山地质环境影响评估分级表 (14) 附录D(标准附录)矿山建设规模分类表 (14) 附录E(标准附录)地质灾害危险性分级表 (16) 附录 F(标准附录)矿山地质环境影响程度分级表 (16) 附录G(标准附录)矿山建设适宜性评估标准 (17) 附录H(标准附录)报告书及图件要求 (17) 附录I(提示附录)报告编写提纲 (21) 附录J (提示附录) 矿业活动引起的环境地质问题分类表 (23)

前言 为有效保护矿山地质环境,根据《中华人民国矿产资源法》、《地质灾害防治条例》、《省地质环境保护条例》等法律、法规,结合省实际情况,制定本技术要求。 本技术要求容包括:总则、术语、评估工作任务、评估工作主要容、评估工作级别划分、评估工作程序、各级评估工作的基本要求、评估工作技术要求和附录。 本技术要求的附录A、B、C、D 、E、F、G、H为标准附录,I、J为提示附录。 本技术要求编写组织单位:省国土资源厅。 本技术要求主要起草单位:省国土资源厅、省地质环境监测总站。 本技术要求主要起草人:顺泉、龙服忠、罗仕康、邱业惠、贵仁、佐海、徐水辉、平、东霞。 本技术要求由省国土资源厅负责解释。 省矿山地质环境影响评估技术要求

毛细管电泳法快速检测糖化血红蛋白概要

[4]郝贤 , 吴茜 , 杨丰源 . 2型糖尿病胰岛素抵抗的实验与临床研 究进展 [J]. 中国初级卫生保健 , 2006, 20(8 :60. [5]毛晓明 , 刘志民 . 氧化应激在糖尿病糖代谢中的作用 [J]. 江苏医 药 , 2005, 31(3 :212. [6]赵宝珍 , 白秀平 , 荣青峰 . 实验性 2型糖尿病大鼠模型的研究 [J]. 中国药物与临床 , 2002, 2(6 :383. [7]郭昆全 , 湛冯岚 . 硫酸镁对 2型搪尿病及糖耐量异常 (IGT 患者胰 岛素敏感性的影响 [J]. 中国糖尿病杂志 , 2001, 9(6 :355. [8]梁丽 , 李成江 . 低血镁与糖尿病的关系 [J]. 浙江医学 , 2005, 27 (12:958. [9]杨月莲 , 梁瑜祯 . 氧化应激与 2型糖尿病 [J]. 医学综述 , 2008, 14 (3 :429. [10]Firdlyand LE, Phlipson LH. Reactive s pecies and early manifes tation of ins ulin resis tance i n type 2diabetes [J ]. Di abtes Obes M etab, 2006, 8(2 :136. [11]张秋梅 . 氧化应激与 2型糖尿病的关系及 a 硫辛酸的应用 [J ]. 医学综述 , 2007, 13(24 :1984. [12]范晓岚 , 杨军 , 糜漫天 , 等 . B -胡萝卜素的抗氧化作用与疾病预 防 [J]. 中国公共卫生 , 2003, 19(4 :479. (收稿日期 :2008-11-20

矿山地质环境监测技术研究

矿山地质环境监测技术研究 发表时间:2019-07-30T10:01:20.280Z 来源:《基层建设》2019年第14期作者:李艳娟 [导读] 摘要:随着时代的发展,我国科学技术朝着更高的方向发展。 中国地质大学北京 100089 摘要:随着时代的发展,我国科学技术朝着更高的方向发展。中国地域辽阔地形复杂,所以对地质环境的遥感监测就尤为重要。我国对矿产资源巨大的需求量,导致对矿床的大量开采,矿山附近的生态平衡造到破坏,因此加强对矿山地质环境的遥感动态监测有至关重要的意义,工作人员要及时发现问题所在,深入分析原因和措施。 关键词:矿山;地质环境;检测技术 引言 我国矿山开采工作过程中,存在着很大的危险性,不合理的开采工作也会影响生态环境。因此,相关部门必须要采用一定的科学技术,解决矿山开采过程中产生的环境问题以及防控开采过程中的灾害问题。矿山地质环境保护刻不容缓,而对环境监测并进行有效的测评,有利于保护矿山环境,可以有效的防止地质灾害的发生。 1环境监测的重要意义 我国是矿业大国,拥有众多矿山,且分布范围广,各地的地质情况也有所不同。与此同时我国对矿产的开发强度不断增强,这些连接不断的开采作业在为我国经济做出贡献的同时也增加了地质环境的压力,导致很多矿山的地质环境问题日益突出,很多地区出现了地面下沉、地下水位下降等问题,而这些问题也会对生态环境产生负面影响。矿山的环境问题与矿藏的种类、开采方式以及地质背景等有着密切的关系。我国地域广阔,地质条件复杂,各个矿山产生的地质环境问题也各有不同,若要及时发现这些问题,需要通过科学专业且系统的监测方能实现。只有对矿山地质环境进行有效监测,才能判断矿山开发是否对地质环境产生负面影响。由于多种原因的限制,我国在矿山环境监测方面起步较晚,监测技术还不完善,本文对地质环境问题进行分析并对监测技术进行研究,为后期矿山环境管理、保护以及恢复的工作提供一定的基础。 2主要的地质环境问题 2.1废水污染、矿山开采破坏 矿山经济在我国经济中占据着重要的地位,根据相关数据显示,我国大型矿山以及中型矿山数量接近一万座,数量庞大,合理有效的开采将极大的提升我国的综合实力。开采过程中,经常会占用一系列的土地资源,比如说工厂房屋、工业场地等。另一方面,在开采过程中,会出现许多废弃的固体材料,并且难以分解和处理,还会出现废水污染等,对环境造成相应的破坏。废水主要的来源是矿坑里的排水、矿产经雨水冲刷产生的废水以及其他的生活、生产、工作废水。 2.2资源方面 矿山开采的同时会产生很多固体垃圾,通过对这些垃圾进行检测可以发现这些物质的组成相当复杂,成分中重金属比重较大,一些还含有对人有害的物质。这些物质通常堆放在矿山露天环境里,不但妨碍了对矿山的地质勘查或野外作业,还有可能影响周边的耕地、地下水或是森林地资源。此外,随着开采的深入,废气物质越来越多,所占空间也逐渐增大,这些大大的增加了清理的难度和时间,而且一些有毒物质对资源环境的破坏很难修复。 2.3滑坡灾害 滑坡灾害是我们常听到过的一种地质灾害,矿山地质滑坡灾害的形成可从两个方面说起,一是过度的露天开采,矿山植被层严重遭到破坏,对表层的土层失去固定作用,在外力作用下,极易造成滑坡现象;二是矿山开采产生的固体废弃物堆放没有一个严格的控制标准,且堆放的方式与管理欠缺,一旦遇上雨季或者是其他外力作用下,极易造成坍塌,影响周边的施工。 3检测内容和方法 3.1地下水监测 矿山的开采不仅仅止于表面,对矿区内的地下水、地表水都会产生一定程度的影响。例如榆神府矿区对煤炭的高强度开采导致萨拉乌苏组地下水位严重下降,最多部分超过15m,导致窟野河基流量减少、干涸,对周边的生态环境产生了严重的影响,同时也影响了该地区的沙漠植被发育。对于不同的矿山其地质背景不同,需检测的地下含水层也属于不同的地质年代。因此,在检测前要考察该地区的水文地质条件,确定地下水含水层,再通过建立含水层检测系统和泉流量检测系统,定期采取水样进行分析化验,检测变化情况。从而能够及早发现矿区里地下水严重受开采影响的区域,采取对应措施,保护含水层的地质结构、水位和水质的稳定。 3.2矿山地质环境的遥感动态监测与技术 如今矿山地质环境的遥感动态监测相比较传统的地质环境的动态监测有更多的优点,运用遥感动态监测可以降低成本,减少了人力的消耗,而且减少了疏忽漏洞,提高监测数据的准确性、完整性和及时性,得到信息的时间很短,而且很完整,能充分的反应矿山地质环境的存在的问题,有利于工作人员的工作和下达措施,为矿山地质环境的发展提供了高技术的支持。由于矿产资源所占有的重要地位,促进我国的综合发展,利用遥感监测的技术的优势,为我国的矿产资源制定合理的规划,防止对矿业的盲目开发。遥感监测有利于对矿山的管理,实现数字化的模式,储存足够的信息在遇到疑难问题时可以及时的进行分析。操控系统,随着时代的变迁,操控系统由原来的手工操作模式正在一步步转向人工智能操控系统,计算机相对于人脑来说更准确,能迅速的做出反应和提取信息,并不会被其它因素影响,随时处在理性的状态。 3.3监测地质灾害 遥感技术在地质灾害领域也发挥着重要的作用它除了可以监测灾害类型,还能够监测灾害体的信息。遥感技术在灾害监测中运用的时间比较长,领域经验也比较丰富,不仅仅涉及影像光谱,还涉及地貌地形覆盖等技术。可以自动的识别灾害以及灾害体的数据情况。特别是矿山区地震之后,遥感技术可以第一时间的提供地质信息,为灾害后的分布信息进行数据获取,最终转换为直观性的地图,为灾后的救援以及修复工作提供帮助。滑坡监测,在矿山开采过程中,施工动作过大可能会导致滑坡,遥感动态监测在对矿山滑坡监测中发挥了很重要的作用,能够及时的对危险进行评估。遥感技术在对地势的监测上颇有研究,利用遥感得到众多数据,了解到矿山的地势条件,分析地势条件对滑坡的影响力,为对滑坡的监测奠定了基础。塌陷监测,地势塌陷的前兆又快又急,要长期连续的对矿山进行监测,及时发现矿

高效毛细管电泳实验

高效毛细管电泳实验 一、实验目的 1. 进一步理解毛细管电泳的基本原理; 2. 熟悉毛细管电泳仪器的构成; 3. 了解影响毛细管电泳分离的主要操作参数。 二、实验原理 1.电泳淌度 毛细管电泳(CE )是以电渗流 (EOF)为驱动力,以毛细管为分离通道,依据样品中组分之间淌度和分配行为上的差异而实现分离的一种液相微分离技术。离子在自由溶液中的迁移速率可以表示为: ν = μE (1) r 6 q πημ= (2) 式中ν是离子迁移速率,μ为电泳淌度,E 为电场强度。η为介质粘度,r 为离子的流体动力学半径,q 为荷电量。因此,离子的电泳淌度与其荷电量呈正比,与其半径及介质粘度呈反比。 2.电渗流和电渗淌度 电渗流(EOF )指毛细管内壁表面电荷所引起的管内液体的整体流动,来源于外加电场对管壁溶液双电层的作用。 在水溶液中多数固体表面根据材料性质的不同带有过剩的负电荷或正电荷。就石英毛细管而言,表面的硅羟基在pH 大于3以后就发生明显的解离,使表面带有负电荷。为了达到电荷平衡,溶液中的正离子就会聚集在表面附近,从而形成所谓双电层,如图1所示。这样,双电层与管壁之间就会产生一个电位差,叫做Zeta 电势。但毛细管两端施加一个电压时,组成扩散层的阳离子被吸引而向负极移动。由于这些离子是溶剂化的,故将拖动毛细管中的体相溶液一起向负极运动,这便形成了电渗流。 电渗流的大小可用速率和淌度来表示: ()E EO F ηεξν/= (3) 或者 ηεξμ/=EO F (4) 式中νEOF 为电渗流速率,μEOF 为电渗淌度,ξ为Zeta 电势,ε为介电常数。 3.毛细管电泳的分离模式 CE 有6种常用的分离模式,其中毛细管区带电泳(CZE )、胶束电动毛细管色谱(MEKC )和毛细管电色谱(CEC )最为常用。本实验的内容为CZE 。 4.毛细管电泳的基本参数

矿山地质环境治理工程动态监测

治理工程动态监测说明 监测单位 2017/8/28

第一节项目简介 一、项目基本情况 项目名称:治理工程动态监测 项目地点:XX村 项目监测单位:监测单位 项目提交单位:国土资源局 二、项目背景 由于该项目建筑石料用灰岩矿采矿活动,严重破坏了矿山的地质环境。2016年3月,受国土资源局委托,XX设计公司编制了《该项目建筑石料用灰岩矿废弃矿山地质环境治理工程设计》,并通过验收。2016年8月底该环境治理工程项目开始启动,施工方依据《该项目建筑石料用灰岩矿废弃矿山地质环境治理工程设计》,对该项目建筑石料用灰岩矿矿山破坏的地质环境进行危岩清理、削坡、坡面清理等综合治理。2016年10月中旬,该环境治理工程项目因故暂停,施工中断。2017年8月25日接上级指示,该环境治理工程项目重新启动。为了保护国家资源、保证施工质量,国土资源局决定对该环境治理工程项目实施动态监测。 本次动态监测区为该设计方案指定治理区范围。 三、目的、任务 (1)目的 根据《该项目建筑石料用灰岩矿废弃矿山地质环境治理工程设计》方案,对治理工程定期进行动态监测,旨在施工方要按照设计要求进行治理施工,对在治理过程中未按设计要求的施工进行指正,最终由国土监管部门督促治理施工方严格按照要求规范施工。 (2)任务

通过定期对治理区1:1000地形测量、野外地质环境调查、地质灾害调查等方法,结合《该项目建筑石料用灰岩矿废弃矿山地质环境治理工程设计》方案,分析治理区是按照设计方案要求进行施工,对未按设计要求的施工进行指正,使矿山治理效果最大限度达到设计方案要求。 第二节矿山的自然地理 一、交通位置 安徽省该项目建筑石料用灰岩矿废弃矿山位于城130°方向,距县城约17km处,马山头南坡。治理区中心经纬度坐标为东经117°05'49";北纬34°06'17"。矿山有村道与S301省道衔接,交通较畅通(见交通位置图)。 交通位置图 二、地形地貌 治理区地处皖北低山丘陵区。山脉起伏呈北东向展布,马山头主峰海拔标高+227m,山上植被稀疏,主要为杂草及灌木丛,无建筑物。坡洪积裙环山分布。治理区水系不发育,山间冲沟呈“V”形浅、短季节性干沟,方向与坡向一致,平时均无水,受季节性降水控制。 治理区地貌为露天采坑,属现代人工地貌,由于原采石厂及其邻近采石场长期连续开采建筑石料用灰岩矿,现已形成一个较大的采矿宕口,南北长约460m,东西宽约360m,面积约136866.6m2的采坑,采场边坡高度约10-37m,边坡角50-70°左右,最大边坡角近90°,矿区地表基岩出露,主要由块状灰岩组成。 三、地质构造

矿山环境遥感自动监测方法与应用研究

矿山环境遥感自动监测方法与应用研究 目前矿产资源的不合理开发及资源利用效率低等现象导致矿山环境日趋恶化。因此加强矿产资源的调查研究十分必要。遥感技术作为矿山环境监测手段之一,其应用范围越来越广泛。基于此,笔者重点论述矿山环境遥感自动监测方法及其具体应用。 标签:矿山环境遥感自动监测应用 1矿山环境遥感自动监测方法的运用流程 1.1基础资料收集 基础资料收集的水平高低直接关系到整个遥感自动监测工作的顺利开展及监测结果的质量。在基础资料的收集阶段,主要收集矿山环境工作区内的相关资料,例如工作区的影像数据、地形图、DEM数据,矿产资源分布情况、矿点及道路、居民区和水体分布等详细资料。 1.2数据预处理 遥感影像的预处理和文字图形资料的数字化过程是数据预处理的两个重要组成部分。遥感影像的预处理主要是进行遥感解译之前的遥感影像的正射、融合、镶嵌及组合波段等操作项目,同时对两期影像变化检测之前进行几何精校正和匹配成像环境等工作内容;文字图形资料的数字化主要是将收集到基础数据进行数字化的转换过程。 1.3变化检测 该阶段属于整个工作的关键阶段。主要是依据预处理的结果,将整个变化检测部分划分为图像间变化检测、图形间变化检测和图形与图像间变化检测。变化检测工作结束之后,并结合研究区内部的基础地理数据及矿业活动数据等,对变化进行筛选,从而得到研究区内部和矿山活动相关的变化图斑。最终利用人机交互解译的途径将图斑进行识别和归类。 1.4成果结论 该阶段主要是运用图件、报表及数据库的方式将研究得到的数据进行汇总,并依据矿山遥感监测规范标准对其进行归纳表达。 1.5野外验证 野外验证主要是在包含所有地物类型的前提条件下,对图斑进行野外检查,并填写外业调查表,获取实地调查数据之后,来不断完善影像图制度的精度及成

毛细管电泳技术在检测分析中的应用

2011-12-31 毛细管电泳技术及其在检测分析中的应用分析化学毛细管电泳技术及其在检测分析中的应用 摘要:毛细管电泳技术(CE)作为现今一种主要的分析技术,凭借其高效、灵敏、快速、设备简单、广泛适用性等特点,广泛应用于各个领域。本文简要概述了CE技术的原理及特点,并简述了它在环境分析、食品分析、药物分析、生物大分子分析等各个领域的应用。 关键词:毛细管电泳;分析;应用 1.毛细管电泳技术简介 1.1 产生与发展 毛细管电泳技术(Capillary Electrophoresis, CE)是一种在电泳技术的基础上发展的一种现代分 离技术。电泳技术作为一种分离技术已有近百年历史,1937 年A.Tiselius首先提出:传统电泳最大的局限是难以克服由高电压引起的焦耳热。1967年,Hjerten最先提出了毛细管电泳的雏形,即在直径为3mm的毛细管中做自由溶液的区带电泳。但他并没有完全克服传统电泳的弊端。直至1981年Jorgenson 和Lukacs提出在75μm内径毛细管柱内用高电压进 行分离, 这时现代毛细管电泳技术真正产生。1984 年Terabe将胶束引入毛细管电泳,开创了毛细管电 泳的重要分支:胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管 内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳技术兼有高压电泳及高效液相色谱 等优点,其突出特点是: (1)所需样品量少、仪器简单、操作简便。 (2)分析速度快,分离效率高,分辨率高,灵 敏度高。 (3)操作模式多,开发分析方法容易。 (4)实验成本低,消耗少。 (5)应用范围极广。 自1988年出现了第一批毛细管电泳商品仪器, 短短几年内, 由于CE符合了以生物工程为代表的生 命科学各领域中对多肽、蛋白质(包括酶,抗体)、 核苷酸乃至脱氧核糖核酸(DNA)的分离分析要求, 得到了迅速的发展。 1.2 毛细管电泳技术的简单原理 毛细管电泳的基本装置是一根充满电泳缓冲液的毛细管(如图1),和与毛细管两端相连的两个小瓶。微量样品从毛细管的一端通过“压力”或“电迁移”进入毛细管。电泳时,与高压电源连接的两个电极分别浸人毛细管两端小瓶的缓冲液中。样品朝与自身所带电荷极性相反的电极方向泳动。各组分因其分子大小、所带电荷数、等电点等性质的不同而迁移速率不同,依次移动至毛细管输出端附近的光检测器,检测、记录吸光度,并在屏幕上以迁移时间为横坐标,吸光度为纵坐标将各组分以吸收峰的形式动态直观地记录下来。 图 1 图 2 1.3毛细管电泳技术的分离模式 (1)毛细管区带电泳( Capillary Zone

(安全生产)毛细管电泳分析方法在食品安全监控中的应用

毛细管电泳分析方法在食品安全监控中的应用 (华东师大化学系叶建农) 食品安全是指食品中不应含有可能损害或威胁人体健康的有毒、有害物质或因素,从而导致消费者急性或慢性毒害或感染疾病、或产生危及消费者及其后代健康的隐患。近年来,世界范围内食品安全方面的恶性和突发事件不断发生。据美国疾控中心研究报告估计,美国每年因食品中毒而死亡的人数约5000人左右。日本也先后发生出血性大肠埃希菌O157食品中毒事件,以及导致上万人中毒的雪印牛奶事件。目前我国食品安全形势不容乐观,食品中毒事件时有所闻。据不完全统计,我国每年实际发生的食物中毒例数在200万人次以上,其中有相当比例是由违禁食品添加剂引起,如2005年“苏丹红”事件,2006年“瘦肉精”事件,2008年“三聚氰氨”事件等。这类事件不仅严重危害人们身体健康,而且也对经济发展和国家形象产生及其负面的影响。客观而言,目前我国食品安全仍处于风险高发期和矛盾凸显期,有必要进行全方位的整治。其中的一个环节,就是要切实做好食品安全监控工作。 食品分析大致可分为两大类,即食品中营养成分分析,以及食品中化学添加剂、化学污染物的分析。由此可见,食品安全监控的主要内容,本质上是指能够准确分析和严格控制食品中化学添加剂及化学污染物的种类和含量。其中食品添加剂属限用品。根据我国卫生部2008年新修订的“食品添加剂使用卫生标准”

(GB2760-2007)规定,在一定前提下可合法使用的食品添加剂总数为1812种,共分为22大类。这一千多种食品添加剂虽然已经卫生部认可,但对其允许的添加范围及添加量却有严格的规定和限制。至于化学污染物则属违禁品,有时又叫禁用品,即在任何条件下均不得人为添加,如苏丹红、瘦肉精、孔雀石绿、三聚氰氨等。 从理论上讲,现有的化学分析方法都有可能在某种程度上应用于食品安全监控。如比色法、滴定法、水解法、蔡氏砷斑法、凯氏定氮法、薄层色谱法、气相色谱法、高效液相色谱法、色谱-质谱联用法、毛细管电泳法等。 毛细管电泳(Capillary Electrophoresis, CE)是近二十来发展最快的一种分离分析技术,具有分离效率高、所需样品量少、分析成本低等优点。毛细管电泳分析法是以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度的差异而实现分离的一种液相分离技术。由于食品组成的复杂性,检测前的各组分之间的分离是必不可少的。食品中各组分经毛细管分离后,即可选用合适的检测器进行检测,如紫外吸收检测(UV)、激光诱导荧光检测(LIF)、电化学检测(EC)等。 近年来,国内外化学工作者开展了大量的研究工作,探索和开发毛细管电泳分析方法在食品安全监控中的具体应用。众所周知,有机磷农药是目前使用量最大的杀虫剂,占全部农药用量的80%以上,广泛用于谷物、棉花、果树等农作物。有机磷农药

矿山环境监测方法探索

我国矿山地质环境监测工作方法初探 1 前言 我国是世界主要矿业大国,长期大规模矿产开发活动为国家经济建设做出了巨大贡献,但矿业开发引起的矿山地质环境问题,在一些地区已经成为制约经济和社会发展的重要因素,严重影响了人民生命财产安全和正常生活秩序。 刚完成的全国矿山地质环境调查已经摸清了全国矿山地质环境现状。矿业活动诱发的矿山环境地质问题与矿产种类、开采方式、环境地质背景以及矿山企业的规模、管理体制等密切相关。我国地域辽阔,地质条件复杂,矿山种类多样,开采条件各异,且矿山企业规模和管理体制也存在很大差别。因此,我国矿业活动诱发的矿山环境地质问题类型多、分布广,主要可以归纳为资源损毁、地质灾害、环境污染三大类,包括:①矿产资源开发压占、毁损土地资源严重;②采矿活动引发的地面(沉)塌陷、地裂缝、边坡失稳等地质灾害问题突出; ③矿产资源开发过程中的“三废”排放污染环境,造成公害;④采矿活动造成了地下水均衡系统破坏;⑤采矿活动加剧了矿区水土流失和土地沙化。 为了进一步掌握我国矿山地质环境发展变化趋势,必须进行矿山地质环境监测。通过监测及时掌握矿山地质环境动态变化规律,预测矿山地质环境发展变化趋势,从而提出相应的防治措施。由于多方面的原因,我国还没有系统地开展矿山地质环境监测工作,严重影响了矿山环境管理决策的制定。 在全国矿山地质环境调查综合研究的基础上,开展了全国矿山地质环境监测工作方法研究,提出了一套包括监测技术路线、监测内容与指标、监测方法、工作程序、监测组织与管理、质量控制、监测资料整理分析等内容的监测工作方法。 2 监测目标任务 通过开展矿山地质环境监测,进一步认识矿山地质环境问题及其危害,掌握矿山地质环境动态变化,预测矿山环境发展趋势,为合理开发矿产资源、保护矿山地质环境、开展矿山环境综合整治、矿山生态环境恢复与重建、实施矿山地质环境监督管理提供基础资料和依据。具体工作任务应包括以下几个方面: (1)开展单个矿山的地质环境监测和区域集中开采区或群采点矿山地质环境监测; (2)建立矿山地质环境监测数据库和信息系统; (3)矿山地质环境监测数据分析、处理及共享; (4)矿山地质环境质量评价与预测; (5)提出矿山地质环境管理控制措施以及矿山地质环境综合治理对策建议; (6)编制矿山地质环境监测年报;

相关文档
最新文档