2013年国家公务员考试行测排列组合常用的解题方法

2013年国家公务员考试行测排列组合常用的解题方法
2013年国家公务员考试行测排列组合常用的解题方法

2013年国家公务员考试行测排列组合常用的解题方法

【本内容转自华慧公务员网】

分析历年北京市公务员考试真题发现,其数学运算部分常用到排列组合知识解题。一些排列组合问题条件比较多,直接使用分类或分步来考虑较为复杂,在这种情况下,掌握一些特定的解题方法和公式有助于大家快速解题。常用的解题方法有特殊定位法、反面考虑法、捆绑法、插空法、隔板法、归一法、线排法等。在此,华慧公务员考试研究专家主要为考生介绍其中4种常用的方法,以备考生复习之用。

1.特殊定位法

排列组合问题中,有些元素有特殊的要求,如甲必须入选或甲必须排第一位;或者有些位置有特殊的元素要求,如第一位只能站甲或乙。此时,应该优先考虑特殊元素或者特殊位置,确定它们的选法。

2.反面考虑法

有些题目所给的特殊条件较多或者较为复杂,直接考虑需要分许多类,而它

的反面却往往只有一种或者两种情况,此时我们先求出反面的情况,然后将总情况数减去反面情况数就可以了。

例题:从6名男生、5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法?

A.240 B.310 C.720 D.1080

4.归一法

排列问题中,有些元素之间的排列顺序“已经固定”,这时候可以先将这些元素与其他元素进行排列,再除以这些元素的全排列数,即得到满足条件的排列数。

例题:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?

A.20

B.12

C.6

D.4

解析:此题答案为A。方法一:“添进去2个新节目”后,共有5个节目,因此,此题相当于“安排5个节目,其中3个节目相对顺序确定,有多少种方法?”

由于“3个节目相对顺序确定”,可以直接采用归一法。

方法二:也可以用插空法,即将2个新节目插入原来3个节目和两端之间形成的空处。需要注意的是,由于插入的2个新节目可以相邻,所以应逐一插入。

将第一个新节目插入原有3个节目和两端之间形成的4个空处,有4种选择;这时,4个节目形成5个空,再将第二个新节目插入,有5种选择。

根据乘法原理,安排方法共有4×5=20种。

2013年国家公务员考试教材(https://www.360docs.net/doc/a72696341.html,/category.php?id=106)

更多各省真题内容下载:(https://www.360docs.net/doc/a72696341.html,/down?t=1114.0)

2013年国家公务员考试高分备考专题:(https://www.360docs.net/doc/a72696341.html,/zhuanti.html)

行测排列组合例题

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法?

2013国家公务员考试行测暑期向前冲 数学运算:排列组合与概率问题重难点讲解

2013国家公务员考试行测暑期向前冲数学运算:排列组合 与概率问题重难点讲解 排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。 在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。 一、基础原理 二、基本解题策略 面对排列组合问题常用以下三种策略解题: 1.合理分类策略 ①类与类之间必须互斥(互不相容);②分类涵盖所有情况。 2.准确分步策略 ①步与步之间互相独立(不相互影响);②步与步之间保持连续性。 3.先组后排策略 当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。 【例题1】班上从7名男生和5名女生中选出3男2女去参加五个竞赛,每个竞赛参加一人。问有多少种选法?

A.120 B.600 C.1440 D.42000 中公解析:此题答案为D。此题既涉及排列问题(参加五个不同的竞赛),又涉及组合问题(从12名学生中选出5名),应该先组后排。 三、概率问题 概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。概率问题经常与排列组合结合考查。因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。 1.传统概率问题 2.条件概率 在事件B已经发生前提下事件A发生的概率称为条件概率,即A在B条件下的概率。 P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =?? ? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 14A 34C 1 3

国家公务员:排列组合之错位排序

国家公务员:排列组合之错位排序 排列组合的数量题目当中,有一些技巧我们常常会用到,今天我们就一起来看一下排列组合问题中常用的方法——错位排序。 我们来讨论一个问题:这是一个很经典的数学问题:有一个人写了n封信件,对应n个信封,然而粗心的秘书却把所有信件都装错了信封,那么一共有多少种装错的装法? 这个问题可抽象为以下一个数学问题:已知一个长度为n的有序序列{a1,a2,a3,…,an},打乱其顺序,使得每一个元素都不在原位置上,则一共可以产生多少种新的排列?首先考虑几种简单的情况: 原序列长度为1 序列中只有一个元素,位置也只有一个,这个元素不可能放在别的位置上,因此原序列长度为1时该为题的解是0。 原序列长度为2 设原序列为{a,b},则全错位排列只需将两个元素对调位置{b,a},同时也只有这一种可能,因此原序列长度为2时该问题的解是1。 原序列长度为3 设原序列为{a,b,c},则其全错位排列有:{b,c,a},{c,a,b},解是2。 原序列长度为4 设原序列为{a,b,c,d},则其全错位排列有:{d,c,a,b},{b,d,a,c},{b,c,d,a},{d,a,b,c},{c,d,b,a},{c,a,d,b},{d,c,b,a},{c,d,a,b},{b,a,d,c},解是9。 在往下数,次数会更多,那我们就可以用不完全归纳得出规律:f(n)=(n-1)f(n-2)+(n-1)*f(n-1)=(n-1)[f(n-2)+f(n-1)] 。 很明显,规律不太好记。但是我们不用记,因为在公务员考试当中,题目一般情况下比较简单,我们只需要记住D1=0;D2=1;D3=2;D4=9;D5=44。即可下面我们一起来看一道例题: 【例】(2015-山东-59)某单位从下属的5个科室各抽调了一名工作人员,交流到其他科室,如每个科室只能接收一个人的话,有多少种不同的人员安排方式?()

公务员考试逻辑判断排列组合题型解题技巧

公务员考试逻辑判断排列组合题型解题技巧 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。 一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。 例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( ) A6 B.9 C.11 D.23 解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B 二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。 三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

四、消序 例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。 解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。 五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。 经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

行测排列组合例题

行测排列组合例题Last revision on 21 December 2020

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)= 4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法 解答:

假设我们已经找出了两种排列方法(黄、白、蓝)和(蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P(3,3)= 3!321 6 (33)!1 ?? == - (计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法解答 这仍然属于排列问题,只不过r变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P(3,2)= 3!321 6 (32)!1 ?? == - (计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4黄、白、蓝三个球,任意取出两个,有几种取法 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下

排列组合公式详解(公务员)

排列组合公式大全 (1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 (2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 知识要点及典型例题分析: 1.加法原理和乘法原理两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1 .书架上放有3 本不同的数学书,5 本不同的语文书,6 本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3 种书,则分为3 类然后依据加法原理,得到的取法种数是:3+5+6=14 种。 (2)由于从书架上任取数学书、语文书、英语书各 1 本,需要分成3 个步 骤完成,据乘法原理,得到不同的取法种数是: 3 X 5 X 6=90 (种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1 本,语英各1 本)而在每一类情况中又需分2 个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3X 5+3X 6+5X 6=63(种)。 例2 ?已知两个集合A={1 , 2, 3}, B={a,b,c,d , e},从A到B建立映射, 问可建立多少个不同的映射?分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A 中的每一个元素,在B 中都有唯一的元素与之对应。” 因A 中有3 个元素,则必须将这3 个元素都在B 中找到家,这件事才完成。因此,应分3 个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5 X 5 X 5=125 (种)。

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法. ***************************************************************************** 习题 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 2、(1)将4封信投入3个邮筒,有多少种不同的投法? (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 3、七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600) (2)某乙只能在排头或排尾的不同排法有多少种?(1440) (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120) (4)甲、乙必须相邻的排法有多少种?(1440) (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)

行测排列组合例题整理

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 !()!r n n P n r =- r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中

取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法? 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下 ()!!!r n n C r n r =- r n C 也可写成C (n,r )其中n 表示总共的元素个数,r 表示进行组合的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 C (5,3)=5!54321302!(53)!(21)(21) ????==-??? 另外,为便于计算,还有个公式请记住 r n r n n C C -=

行测排列组合习题

错位重排问题又称伯努利-欧拉错装信封问题,是组合数学史上的一个著名问题。此问题的模型为: 编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法? 对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1, Dn=(n-1)( Dn-1+ Dn-2)。这样,就能根据这个递推公式推出所有数的错位重排,解题时又快又准 1.张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个节目,有多少种安排方法? A,20 B.12 C,6 D,4 2. 某单位今年新近3个工作人员,可以分配到3个部门,但是每个部门之多只能接收2个人,问有几种不同分配方案 A.18 B.20 C.24 D28 3.班委改选,由8人竞选班长、学习委员、生活委员、文娱委员和体育委员五种职务。最后每种职务都有一个人担当,则共有多少种结果?( ) A.120 B.40320 C.840 D.6720 4. 乒乓球比赛共有14名选手参加,先分成两组参加单循环比赛,每组7人,然后根据积分由两组的前三名再进行单循环比赛,决出冠亚军,请问共需要多少场? A.54 B.56 C.57 D.60 5. 林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同选择方法? ( ) A. 4 B. 24 C. 72 D. 144 6.从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法 A.240 B.310 C.720 D.1080 7.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) A280种B240种C180种 D96种 8.五人排队甲在乙前面的排法有几种? A.60 B.120 C.150 D.180 9.若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1) 26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法 一、相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 例1:五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么不同的 排法种数有种。 二、相离问题插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相 离的几个元素插入上述几个元素间的空位和两端. 例2:七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是。 三、定序问题缩倍法 在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法. 例3:A、B、C、D、E五个人并排站成一排,如果 B必须站A的右边(A、B可 不相邻),那么不同的排法种数有。 四、标号排位问题分步法 把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一 个元素,如此继续下去,依次即可完成. 例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。 五、有序分配问题逐分法 有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。 例5:有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人 中选出4人承担这三项任务,不同的选法总数有。 六、多元问题分类法 元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计。 例6:由数字 0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数 字小于十位数字的共有个。 例7:从1,2,3,…100这100个数中,任取两个数,使它们的乘积能被7 整除,这两个数的取法(不计顺序)共有多少种? 例8:从1,2,…100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 七、交叉问题集合法 某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 n A B n A n B n A B ?=+-?。 ()()()() 例 9:从6名运动员中选出4个参加4×100m接力赛,如果甲不跑第一棒,乙 不跑第四棒,共有多少种不同参赛方法? 八、定位问题优先法 某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素。 例10:1名老师和4名获奖同学排成一排照像留念,若老师不在两端,则有不

2018国家公务员考试排列组合题目怎么做

2018国家公务员考试排列组合题目怎么做 2018年国家公务员考试公告暂未公布,根据历年国家公务员考试安排,2018国家公务员考试预计也会在2017年10月份启动,备考之事必须提上日程。为帮助广大考生快速了解国考、顺利备考,湖南华图教育对历年国考信息进行分析汇总,并且会第一时间发布2018国家公务员考试相关信息,为广大考生的国考之路保驾护航! 根据往年的考试情况来看,2013年国家公务员考试报名工作预计在今年10月中旬展开,笔试时间一般为11月底或12月初。复习时间非常充裕。河南华图特整理资料。 数量关系的考核——“排列组合”历来是广大考生最为头疼的“拦路虎”,“排列组合”既是难点,又是重点,所以是考生必须引起重视的核心模块,能否突破排列组合这道关卡,将是考生最后取得高分的关键。华图公务员考试研究中心分析指出,最近联考的趋势中排列组合的考察逐渐出现创新点,就是基于传统排列组合问题之上的概率问题。概率问题在2010,2011的四月份联考中连续出现过两次,在2012年国家公务员考试中也有所出现,联考历来以国考为风向标,而概率问题也将成为排列组合中考核的要点,所以必须引起考生的重视,笔者在这里将简单介绍一下概率问题的知识点,并以一道联考真题为例讲解一些概率问题解题思路。 在这里首先介绍一下概率问题的基本知识点,对于大多数基础比较差的考生而言,概率问题首先需要记住这样一个公式:概率=满足条件的情况数÷总情况数

这个公式中,满足条件的情况数和总情况数的算法源于排列组合的相关知识,考生根据题意判断即可,而对于分情况概率和分步骤概率的解法,也是脱胎于排列组合问题,分类用加法,分步用乘法,因此有了这两个公式: 总体概率=满足条件的各种情况概率之和; 分步概率=满足条件的每个步骤概率之积。 以上是概率问题的一些基本概念,下面通过一道典型例题来讲解下概率问题的解题思路,这道题是是2011年424联考的第44题,一道典型的概率问题,题目是这样出的: 【2011-424-44】小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1、0.2、0.25、0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是( ) A.0.899 B.0.988 C.0.989 D.0.998 这道题问4个路口至少有一处遇到绿灯的概率,有两种解法:一种是分情况讨论,分别算出一处绿灯,二处绿灯,三处绿灯,四处绿灯的概率,然后相加即可; 另一种方法是逆向思维法,上文中反复提到,概率问题是排列组合的延伸,排列组合是概率问题的基础,而在解决排列组合问题的过程中,我们常用到这样一个公式:满足条件的情况数=总情况数—不满足条件的情况数 而在概率问题中,这个公式也能适用,具体公式为: 某条件成立概率=总概率—该条件不成立的概率 值得注意的是,这里的总概率指的就是全概率,就是1,落

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

行测排列组合秒杀方法(免费分享).

排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理

排列组合问题的解题方法与技巧的总结(完整版)

学员数学科目第次个性化教案 授课时间教师姓名备课时间 学员年级高二课题名称排列组合问题的解题策略 课时总数共课时教育顾问学管邱老师 教学目标1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 3、运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题) 教学重点1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 教学难点运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题) 教学过程 教师活动 一、作业检查与评价(第一次课程) 二、复习导入 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 三、内容讲解 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 1 m种不同的方法,在第2类办法中有 2 m种不同的 方法,…,在第n类办法中有 n m种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 1 m种不同的方法,做第2步有 2 m种不同的方法,…, 做第n步有 n m种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 排列组合问题的解题策略

相关文档
最新文档