圆锥曲线相关结论小结

圆锥曲线相关结论小结
圆锥曲线相关结论小结

圆锥曲线相关结论小结

一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的

距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标

轴的交点叫顶点。

第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

定点叫椭圆的焦点,定直线叫椭圆的准线;

引申定义:⒈若一个圆C1内含于另一个圆C2,则与大圆内切与小圆外切的圆的圆心的轨迹为一

椭圆,两圆的圆心为焦点,其长轴长为两圆半径之和;

⒉在一个圆内有一点,则过该点且与已知圆相切的圆的圆心的点的轨迹为一椭圆,且其长

轴长为已知圆的半径。

⒊过两点的两条直线的斜率之积为一负常数m的点的轨迹为一椭圆(两点除外)。两定点为

椭圆的顶点,两定点间的距离为长轴长。(-1

在y轴上)

例:过点(-8,0),(8,0)的两直线11,12的斜率之积为-3/8,求其交点的轨迹。

⒋将圆的横坐标(或纵坐标)拉伸或缩短为原来的m倍,该圆变成椭圆;

⒌连接圆内一定点与圆上任一点的线段的垂直平分线与圆上该点到圆心的连线的交点的轨迹

为一椭圆。方椭圆的长半轴与圆的半径长相等;

⒍两个同心圆较大圆上任一点与圆心的连线与小圆交于一点,从大圆上该点作x轴的垂线,

则过小圆交点向该垂线作垂线,其垂足的点的轨迹为椭圆。

对应练习:⑴在椭圆上任一点M与焦点F1F2构成△MF1F2,I为该三角形的内心,连MI交长轴于 N

点,则MI/IN的值为多少?

⑤若过点P作∠F1PF2的平分线交过点F1作其平分线的垂线于M,交PF2于N点,则有PF1=PN,所以有

⑶在椭圆上任一点P求:· 的最大值(a2-c2),PF1×PF2的最大值a2,点P到对应顶点

的最短距离为a-c.

⑷若在椭圆内部有一点M,要求作一点P使该点到右焦点F的距离与到该定点的距离和最小。则应

连接M与左焦点F',由|MF'|+|MP|+|PF|≥|PF'|+|PF|=2a,当P,M,F'在同一条直线上时距离

最小.最小距离为2a-|MF'|.

二、⑴椭圆的标准方程:(略)

⑸P(x1,y1)为椭圆上任点则焦半径(椭圆上任一点与焦点之间的线段长)为: |PF1|=a+ex1,|PF2|=a-ex2;

⑺从椭圆的一个焦点发出的光线经椭圆反射后会经过另一个焦点。

(8)离心率的求解可根据具体情况对相关线段整体设置,也可以进行坐标设置.

对应小题题例:

⑴当m+n<0时,求椭圆离心率的取值范围;

⑵求证:直线AB与⊙P不相切.(09新乡一模21题)

解析:设点F,B,C的坐标分别为F(-c,0),B(0,b),C(1,0)

⑵证明:假设相切,则点B必为切点,而k AB=b,

⒊设F1,F2为椭圆上的两个焦点,椭圆上有一点P与这两个焦点的连线所成的角为90°,

A.1:5

B.1:3

C.1:2

D.1:1

⒋已知F1,F2是椭圆的两个焦点,满足·=0的点M总在椭圆内部,则离心率的取值范围

A. B.2 C. D.3 A

此类题的解题思路不外乎是依据第一或第二定义进行整体设置或根据参数方程进行坐标设

置,本题就可以进行依据第一定义整体设置:过B作BB'⊥l,则BF:BB'=1:,又BF=AB/2,

故BB':AB=1:.∠ABB'=45°,又F到l的距离为1,所以AF=.此为法一;

法二:设l交x轴为D,则FD=1,FA=3FB,故点F的横坐标为4/3,则右求出其纵坐标为1/3,并

可求出A的纵坐标为1,所以FA=.

A.[0,3]

B.[2,3)

C.[0,2)

D.[0,4]

⒏已知A(2cosα,sinα),B(2cosβ,sinβ),C(-1,0)是平面上三个不同的点,且满足

⒐满足条件+=6的动点轨迹为C,若曲线C上三点到点(0,4)

解析:由题中条件知曲线C为一条在(-3,0)到(3,0)的线段,此等比数列的三

项的最短与最长分别为4和5,而其比为公比q的平方.

A.c

B.b C .a D.不确定C(10年湖北八校联考)

如图,由已知,Rt△OAM∽Rt△OFB,OA:OB=OM:OF→OB2OM=OA2OF=a2,故ON=a.

11.已知F是橢圓C 的一個焦點, B是短軸的一個端點,線段BF 的延長線交C於點D.

析:法一,依題意知點D 坐標為,由點D在曲線上,故滿足

法二:过点B及点D分别向其准线作垂线,垂足为B',D'依题意得:

例⒈已知椭圆的两个焦点分别为F1(0。-1),F2(0,1),直线y=4是椭圆的一条准线,

⑴求椭圆的方程;⑵若点P在椭圆上,设| |-||=m(m≥1),试用m表示

2;

解:(本题第一问主要是考查椭圆的几个参量之间的关系,第二问主要考查椭圆的基本定义及向量

介入的有关运算;第三问主要考查平面几何的有关知识如三角形任意两边之差小于第三边,但在

椭圆中若是椭圆上任意一点与两个焦点之间的连线所构成的三角形则是这点与两焦点连线所在的

边之差小于等于第三边,同时也考查了相关函数的单调性。)

即m≤2,所以m∈[1,2]

过椭圆的右焦点F(c,0)(c>b)作垂直于x轴的直线炮大圆于第一象限办点A, OA交小圆于点B,设直线BF是小圆的切线。

⑴证明:c2=ab,并求直线BF与y轴的交点M的坐标;

解:⑴由题设条件知:Rt△OFA∽Rt△OBF

∴直线BF与y轴的交点.

∴直线BF与y轴交点为(0,a)点为M(0,a)

→(b2+a2k2)x2 +2a3kx+a4-a2b2=0 ④

由③消去x整理得:(b2+a2k2)y2-2ab2y+a2b2-a2b2k2=0 ⑤

注意到:a2-ab+b2=a2-c2+b2=2b2

例⒊已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1,且过右焦点F交椭圆

于A,B两点, + 与=(3,-1)共线。

⑴求椭圆的离心率:

⑵设M为椭圆上任意一点,且=λ +μ(λ,μ∈R)

由+ =(x1+x2,y1+y2), =(3,1)

且+与共线得:3(y1+y2-2c)+(x1+x2)=0,又y1=x1-c,y2=x2-c。

⑵由⑴知a2=3b2∴椭圆方程为:x2+3y2=3b2,设=(x,y)

由已知(x,y)=λ(x1,y1)+μ(x2,y2)

又x21+3y21=3b2 x22+3y22=3b2代入①得λ2+μ2=1故所求为定值。

双曲线:

一、概念:

第一定义:到两定点F1(-c,0)、F2(c,0)的距离差为定值2a(小于两定点的距离)的

点的轨迹叫做双曲线。两定点叫做双曲线的焦点,两点间的距离叫做焦距。

引申定义:

⒈与两个相离的非等定圆均外切的圆的圆心的轨迹为以这两定型圆圆心连

线为实轴的

双曲线的一支;

⒉过两定点且相交的两条直线的斜率之积为正常数的点的轨迹(两定点除外)

为双

曲线。

⒊圆外一定点与圆上任意一点连线的垂直平分线和圆心与圆上动点连线的交

点的轨迹

为双曲线。圆半径为双曲线的实轴长,圆心与定点(为焦点)间的距离为焦距长。

二、⒈标准方程:(略)

三、相关运算:

注意直线是交在双曲线的同一支上还是交在两支上,特别是焦点弦交在同一支上,最短弦是垂直于过焦点

⒉焦半径公式:P(x0,y0)为双曲线右支上一点,与左右焦点之间的线段为焦

半径。|PF1|=ex0+a,|PF2|=ex0-a

若点P在左支上时,|PF1|=-ex0-a,|PF2|=-ex0+a.

A.内切

B.外切

C.内切或外切

D.外切或相交

⒋在证明或解答相关双曲线的问题时,要注意运用设而不求的点差法。如直线

y=kx+m,若焦点在x轴上的

⒌如果在进行直线与双曲线的相关求解时,若直线斜率需要考虑不存在时,可设直线为

x=my+c的形式,只不过这样求出的直线的斜率与所求的直线的斜率呈负倒数关系,若

是求的范围,a

⒎在焦点三角形中,过F1作∠F1PF2的平分线的垂线,则垂足H的轨迹为圆,其方程为

x2+y2=a2,(本题证明可延长F1H交PF2于M点),依题意知PF1=PM故PM-PF2=F2M=2a,

即点M是以F2为圆心2a为半径的的圆即:(x-c)2+y2=4a。

⒏相关点与双曲线只有一个交点的直线条数:在双曲线外部与双曲线只有一个交点的直线

条数有2条;在双曲线上时,与双曲线只有一个交点的直线条数为3条;在双曲线外部:

在直线与双曲线之间(如渐近线与双曲线一支之间且位于x由上方)由于过该点平行于渐

近线的与双曲线只有一个交点,但要与双曲线相切只有让该直线的斜率大于正斜率的渐近

线故只有与右支相切,同理与双曲线相切的直线也只有与右支相切,所以共有四条.

⒐已知双曲线x2-y2=a2(a>0)的左右顶点分别是A,B,双曲线在第一象限的图象上有一点P,

∠PAB=α,∠PBA=β,∠APB=γ,试确定三个角之间的关系.

⒑双曲线上任一点到焦点的距离大于等于焦点到对应顶点的距离.即d≥c-a. ⒒若在双曲线外部有一点P,要在双曲线上求作一点M,使该点到P点与到对应焦点的距

离之和最小.其主要方法:过点P作准线的垂线与双曲线的交点就是所求作的点.

小题题例:

⒈A,F分别是双曲线9x2-3y2=1的左顶点和右焦点,P是双曲线右支上任一点,若∠PFA

=λ∠PAF,则λ= 2 .(特值检验通径)

A. B.2 C.

D. C

⒍设e1,e2分别为有公共焦点F1,F2的椭圆和双曲线的离心率,p为两曲线的一个公共点且

右准线l:x=1/2,|AF|=3,过F作直线交双曲线右支于P,Q两点,延长PB交右准线l

于M点。

⑴求双曲线的方程;

⑵若·=-17,求△PBQ的面积S;

⑶若=λ,(λ≠0,λ≠-1),问是否存在实数μ=f(λ)的左右焦点,使

得=μ,若存在,求出μ=f(λ)表达式,否则说明理由。(北京海淀区06)

⑶(题中=λ及所求μ=f(λ)其实都是两点P,Q之间的关系,故首当其冲就

是求出两点的坐标之间的关系)

注:在求解与证明与圆锥曲线相关的问题时,如果是直线与圆锥曲线相交的问题时一定要注意该直线斜率是否存在的问题,应分斜率存在与不存在两种情况进行讨论,当然有时也将该直线设成x=my+n的形式,但要注意求解后对相关斜率的对应处理,即式中的m与所求的斜率为负倒数关系;同时也要注意对图中相关面积的处理,尽量用较简化的方式处理,如利用题中相关线段的互相垂直关系,这时常常要利用某个三角形是由两个三角形组成的公共底来处理以简化运算。对相关点的处理:主要有两种,利用向量的关系;利用点差法处理。

例⒉(成都市07第二次毕业诊断性测试22)如图,与抛物线x2=-4y相切于A(-4,-4)的

(理)求⑴中切点T到直线PQ的距离的最小值;

抛物线

一、概念:平面内与定点F的距离和一定直线的距离相等的点的轨迹。定点为焦点,定直线为

准线;与圆锥曲线的第二定义:到一定点与一定直线的距离比为定值(1)的点的

轨迹.即

离心率为1.

注意:不能把抛物线看成双曲线的一支,它们是有本质区别的:当抛物线上的点趋于无穷大

时,曲线上点的切线趋近于和对称轴平行;而双曲线上的切线趋近于与渐近线平行.

圆锥曲线知识点总结版

圆锥 曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为: 22 221x y a b +=(0a b >>)(焦点在x 轴上)或 122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位 置,只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原

点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b , a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a =叫椭圆的离心率。∵0a c >>,∴ 01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念 平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。 注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支; 21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射线; ③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。 (2)双曲线的性质

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线的相关结论192条

结论1:过圆上任意点作圆的两条切线,则两条切线垂直. 结论2:过圆2 2 2 2 b a y x +=+上任意点P 作椭圆122 22=+b y a x (0>>b a )的两条切线, 则两条切线垂直. 结论3:过圆2 2 2 2 b a y x -=+(0>>b a )上任意点P 作双曲线122 22=-b y a x 的两条切 线,则两条切线垂直. 结论4:过圆2 22a y x =+上任意不同两点A ,B 作圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆:2 2 2 2a y x =+. 结论5:过椭圆122 22=+b y a x (0>>b a )上任意不同两点A ,B 作椭圆的切线,如果切 线垂直且相交于P ,则动点P 的轨迹为圆2 2 2 2 b a y x +=+. 结论6:过双曲线122 22=-b y a x (0>>b a )上任意不同两点A ,B 作双曲线的切线,如 果切线垂直且相交于P ,则动点P 的轨迹为圆2 2 2 2 b a y x -=+. 结论7:点M (0x ,0y )在椭圆122 22=+b y a x (0>>b a )上,过点M 作椭圆的切线方 程为 12020=+b y y a x x . 结论8:点M (0x ,0y )在椭圆122 22=+b y a x (0>>b a )外,过点M 作椭圆的两条切 线,切点分别为A ,B ,则切点弦AB 的直线方程为 12020=+b y y a x x . 结论8:(补充)点M (0x ,0y )在椭圆122 22=+b y a x (0>>b a )内,过点M 作椭圆 的弦AB (不过椭圆中心),分别过B A 、作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:12020=+b y y a x x .

有关圆锥曲线的经典结论(稻谷书屋)

★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此! 有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

高考数学中圆锥曲线重要结论的最全总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

圆锥曲线常用结论(无需记忆,会推导即可)

椭圆与双曲线--经典结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。

圆锥曲线的相关结论192条

结论1:过圆2222a y x =+上任意点P 作圆222a y x =+的两条切线,则两条切线垂直. 结论2:过圆2 2 2 2 b a y x +=+上任意点P 作椭圆122 22=+b y a x (0>>b a )的两条切线, 则两条切线垂直. 结论3:过圆2 2 2 2 b a y x -=+(0>>b a )上任意点P 作双曲线122 22=-b y a x 的两条切 线,则两条切线垂直. 结论4:过圆222a y x =+上任意不同两点A ,B 作圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆:2222a y x =+. 结论5:过椭圆122 22=+b y a x (0>>b a )上任意不同两点A ,B 作椭圆的切线,如果切 线垂直且相交于P ,则动点P 的轨迹为圆2222b a y x +=+. 结论6:过双曲线122 22=-b y a x (0>>b a )上任意不同两点A ,B 作双曲线的切线,如 果切线垂直且相交于P ,则动点P 的轨迹为圆2222b a y x -=+. 结论7:点M (0x ,0y )在椭圆122 22=+b y a x (0>>b a )上,过点M 作椭圆的切线方 程为 12020=+b y y a x x . 结论8:点M (0x ,0y )在椭圆122 22=+b y a x (0>>b a )外,过点M 作椭圆的两条切 线,切点分别为A ,B ,则切点弦AB 的直线方程为 12020=+b y y a x x . 结论8:(补充)点M (0x ,0y )在椭圆122 22=+b y a x (0>>b a )内,过点M 作椭圆 的弦AB (不过椭圆中心),分别过B A 、作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:12020=+b y y a x x .

二次函数知识点总结大全一

二次函数知识点总结大全一 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数(R )。 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 结论:在Y 轴上,上加下减。

3. ()2 y a x h =-的性质: 结论:在X 左加右减。 4. ()2 y a x h k =-+的性质: 总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较

请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴 的交点. 五、二次函数2y ax bx c =++的性质: 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ? ?? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -.

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

圆锥曲线的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分12PF F ?在点 P 处的外角. (椭圆的光学性质) 2. PT 平分12PF F ?在点 P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. (中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离. (第二定义) 4. 以焦点半径1PF 为直径的圆必与以长轴为直径的圆内切. (第二定义) 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=.(求导或用联立方程组法) 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过0P 作椭圆的两条切线切点为12,P P ,则切点弦12PP 的直线方程是00221x x y y a b += 7. 椭圆22 221x y a b += (0a b >>)的左右焦点分别为12,F F ,点P 为椭圆上任意一点12F PF γ∠=, 则椭圆的焦点角形的面积为122 tan 2 F PF S b γ ?=.(余弦定理+面积公式+半角公式) 8. 椭圆22 221x y a b +=(0a b >>)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).(第二定义) 9. 设过椭圆焦点F 作直线与椭圆相交,P Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交 相应于焦点F 的椭圆准线于,M N 两点,则MF NF ⊥. 证明:x ky c =+, ()22222222222 22120x y a b k y b cky b c a b a b +=?++++=22222222222 2,P O P O b c a b b cky y y y y a b k a b k --=+=++, 222222222222 2,P O P O a c a b k a c x x x x a b k a b k -=+=++,

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论 椭圆与双曲线对偶结论 倾斜角为α的直线l过焦点F与椭圆相交 倾斜角为α的直线l过焦点F与双曲线相

如图,已知直线l与双曲线相交于,A (注:直线l与双曲线的渐近线相交于两点,其他条件不变,结论依然成立)

推广:如图,已知点,A B是双曲线上关于推广:如图,已知点,A B是椭圆上关于原 F c与双曲线相 线l过焦点(),0

1.过定点(定点在双曲线外且不在渐近线上)的直线与双曲线交点个数问题: 设斜率为k 的直线l 过定点()()0,0P t t ≠,双曲线方程为()22 2210,0x y a b a b -=>>,过点P 与双曲线 相切时的斜率为0k . (1)当0b k a ≤<时,直线l 与双曲线有两个交点,且这两交点在双曲线的两支上; (2)当b k a =时,直线l 与双曲线只有一个交点; (3)当 0b k k a <<时,直线l 与双曲线有两个交点,且这两交点在双曲线的同一支上; (4)当0k k =时,直线l 与双曲线只有一个交点; (5)当0k k >时,直线l 与双曲线没有交点. 2.如图,(),0F c 是双曲线()22 2210,0x y a b a b -=>>的焦点,过点F 作FH 垂直双曲线的其中一条渐 近线,垂足为H ,O 为原点,则,OH a FH b ==. 3.点P 是双曲线()22 2210,0x y a b a b -=>>上任意一点,则点P 到双曲线的渐近线的距离之积为定值 22 22 a b a b +. 4.点P 是双曲线()22 2210,0x y a b a b -=>>上任意一点,过点P 作双曲线的渐近线的平行线分别与渐 近线相交于,M N 两点,O 为原点,则平行四边形OMPN 的面积为定值2 ab .

圆锥曲线小结论

椭圆问题小结论: (1)与椭圆22221x y a b +=共焦点的椭圆的方程可设为()22 22 21,0x y b a b λλλ+=+>++ (2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为()22 22,0x y a b λλ+=> 或()22 22,0x y b a λλ+=> (3)直线l 与椭圆22 221x y a b +=相交与()()1122,y ,,A x B x y 两点,其中点(),P x y ,则有: 22AB OP b K K a ?=-;若椭圆方程为22221y x a b +=时,2 2AB OP a K K b ?=-; (4)椭圆的光学性质:从一个焦点发出的一束光线,照在椭圆上,其反射光线必经过另一个焦点,例:椭圆上一点P 到椭圆内一点A 和2F 的距离之和的最小值为12a AF -,最大值为12a AF +。 (5) 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. (6) 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. (7) 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. (8) 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). (9) 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. (10) 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. (11) 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

高中数学圆锥曲线小结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

初中二次函数知识点总结全面

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( )

有关圆锥曲线的结论(终审稿)

有关圆锥曲线的结论公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此! 有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨 迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是 00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为 P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上 任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个 顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2φφb a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2φφb a b x a y =+ . ②一般方程:)0,0(12 2 φφB A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θππ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10(ππe a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2φφb a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2φφb a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0φφb a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

相关文档
最新文档