黑硅太阳电池:制备工艺、研究进展和性能提升

黑硅太阳电池:制备工艺、研究进展和性能提升
黑硅太阳电池:制备工艺、研究进展和性能提升

黑硅太阳电池:制备工艺、研究进展和性能提升

摘要:黑硅材料特殊的微观纳米结构使其具备卓越的减反射性能,促使研究人员将其用于太阳电池的研发。然而,其优异的减反射性能和严重的载流子复合、收集之间存在着矛盾,难以达到很好的平衡。本文概述了黑硅太阳电池的研究进展,并基于对其制备工艺的理解,结合大量文献对其性能制约因素、工艺控制要点和性能提升方案进行了分析和讨论,最后对其未来的发展进行了展望。

一、前言

尽可能避免光学和电学损失,是太阳电池研究关注的两个核心问题。其中,减反射技术是解决太阳电池光学损失,提升太阳光谱利用率的重要手段。而电学性能的提升则主要通过减少光生载流子的复合来实现。近年来,基于硅纳米结构的太阳电池,特别是黑硅太阳电池(BSC),凭借其卓越的减反射性能,得到了学界和业界的关注。很多研究机构围绕BSC展开了广泛的研究,主要包括:黑硅的制备工艺[1-27]、黑硅发射结钝化工艺[2,6,7,19-25,28-37]、BSC制备工艺及其对太阳电池性能的影响[19-37]等。伴随着这些研究工作的开展,BSC在近几年得到了快速的发展,其光电转换效率从早期的低于10%(单晶)和5%(多晶)[27]逐渐提高到了目前的约18.2%(单晶)[34]和17%(多晶)[37]。但需要承认的是,BSC的转换效率还是落后于传统的晶硅太阳电池,一些关键的问题亟待阐明。因次,对BSC领域的研究进展进行总结和梳理是很有必要的。目前公开发表的关于BSC研究的综述性论文,大都

倾向于介绍黑硅的制备工艺,涉及电池后道工艺对比、优化等方面的介绍和讨论都非常不足。而涉及发射结钝化、电接触优化、先进黑硅电池结构等方面内容的综述性论文则几乎没有。为此,本文以电池工艺为主线,首先概述目前BSC的常规工艺流程以及各工序的具体实现方案(第二节)、其次结合大量前沿文献对常规BSC的研究进展做一小结(第三节)、然后对BSC工艺中所存在的性能制约因素进行分析,并结合文献给出一些BSC工艺控制要点和性能提升的方案(第四节)、最后对其未来的发展进行了展望(第五节)。

二、常规黑硅太阳电池制备工艺

从半导体器件物理的角度而言,太阳能光伏器件的核心部分就是PN结。目前的硅纳米结构BSC研究领域中,根据PN结的成结特点,大致可以分为两个大类:平面结和径向结。其中,平面结是目前绝大部分太阳电池所采用的结构,商业化的硅基太阳电池全部都采用此结构。而径向结虽然在载流子收集方面存在优势,但由于其制造工艺相对复杂,在可控性和成本方面还存在瓶颈,因此该技术目前还停留在实验室阶段。所以,本节仅讨论平面PN结BSC制备工艺。

一般而言,目前常规的BSC工艺和商业化晶硅太阳电池工艺是十分接近的,其主要工艺流程如图1所示,主要包括:黑硅制备(相当于制绒工序)、扩散制结、黑硅发射结钝化、电极丝网印刷、共烧结等工序。其中,扩散制结、电极丝网印刷、共烧结工艺和商业化的晶硅电池扩散

工艺是相同的,在此不做赘述。

关于黑硅的制备,目前有多种方法可以实现,主要包括:反应离子刻蚀(RIE)[1-7,23-26]、金属辅助刻蚀(MAE)[8-14,27-37]、激光加工(LP)[15-17]、化学气相沉积(CVD)[18]和等离子体浸没离子注入(PIII)[19-22]等。其中,RIE、MAE和PIII是目前黑硅太阳电池研究中较为常见的。如读者要更加系统的了解黑硅的制备方法,请参见相关参考文献[38,39]。而黑硅发射结钝化工序,目前主要通过四种方案实现:氮化硅(SiNx)钝化[19-25,37]、氧化硅(SiOx)钝化[29,34,35]、SiOx/SiNx叠层钝化[31,32,36]、原子层沉积(ALD)钝化[2,6,7]。其中,前两种钝化方案,特别是SiNx钝化,广泛应用于当前主流的晶硅电池工艺中。后两种钝化方案相对复杂、成本相对较高,但钝化效果更好,这些钝化方案的特点将在第四节中进行重点讨论。

图1 黑硅太阳电池工艺流程简图

三、黑硅太阳电池研究历程

2005年,清华大学朱静课题组[27]利用MAE法在单晶硅和多晶硅衬底上制备出了纳米线阵列黑硅,并将其应用于光伏器件。但由于没有对黑硅发射结进行钝化,无法抑制光生载流子的表面复合,导致前接触电极电流收集效率不高,获得了效率为9.31%(单晶硅)和4.73%(多晶硅)的太阳电池。2006年,德国Walter Schottky研究所的Koynov,

Svetoslav等人[28]采用干氧SiOx层对MAE法制备的黑硅发射结进行钝化,在三晶硅和多晶硅上获得效率约为14%(三晶硅)和12%(多晶硅)的电池器件。2008年,韩国能源研究所的Yoo, Jinsu等人[23]用SiNx层对RIE法制备的黑硅发射结进行钝化,在单晶硅上获得效率15.1%的太阳电池。之后,他们于2010年对RIE工艺进行优化,分别在单晶硅[24]和多晶硅上[25],获得效率为16.7%和16.1%的太阳电池。约一年后,中科院微电子所的夏洋课题组[19]利用PIII法在单晶硅上制备了黑硅,并用SiNx层作为电池钝化层,最终电池效率为15.68%。同年,美国可再生能源实验室(NREL)的Toor, Fatima等人[29]利用MAE法对黑硅层厚度进行优化,并对黑硅发射结进行热氧化SiOx层钝化,最终在区熔单晶上获得效率为17.1%的电池。国立台湾科技大学的Huang, Bohr-Ran等人[30]采用MAE法制备了效率为10.15%的未经钝化的单晶黑硅太阳电池,他们深入研究了黑硅层厚度(纳米线阵列长度)和电池效率的关系。中科院物理所的Liu, Yaoping等人[31],将SiNx/SiOx叠层钝化工艺应用于MAE法制备的黑硅发射结上,在多晶硅上得到了效率为15.8%的太阳电池。国立台湾清华大学的Hsu, W. Chuck等人[32]采取相似的钝化工艺,并通过减薄黑硅层厚度,制备了效率为16.39%的多晶黑硅太阳电池。2012年,夏洋课题组[20]利用PIII法和SiNx层钝化工艺在多晶硅上获得了效率为15.99%的器件,然后通过对SiNx层钝化工艺的优化,将效率提升至16.25%[21],继而又对电池工艺步骤进行调整,将黑硅制备工序置于硅片的扩散制结工序之后,抑制黑硅扩散制结的不均匀性而引入的侧向电场,再次将多晶黑硅

太阳电池效率提升至16.3%[22]。同年,NREL的Yuan, Hao-Chih利用液相沉积SiOx-退火工艺钝化MAE法制备的黑硅发射结,在区熔单晶上获得效率为16.4%的电池。NREL的Oh, Jihun等人[34]深入研究了MAE法制备的黑硅的复合性质,实现了俄歇复合、表面复合的识别和分离量化,并将SiOx层钝化和掩膜光刻相结合,在区熔单晶上得到了效率为18.2%的太阳电池。2013年,大连理工大学的Liu, W. F.等人[35]采用MAE法和热氧化SiOx层钝化工艺,制备了效率为12.22%的单晶黑硅太阳电池,他们主要研究了不同温度的钝化工艺对电池性能的影响。同年,韩国LG电子的Lee, Kyoung-soo等人[26]通过调控RIE 后道去损工艺和黑硅微观结构,实现了对自掩膜RIE的工艺优化,得到了效率为16.32%的多晶黑硅太阳电池。同年,上海交通大学Lin, X. X.等人[36]采用MAE法和SiNx/SiOx叠层钝化工艺,获得了效率为17.11%的单晶黑硅太阳电池。Liu, Yaoping等人[37]将选择性发射结(SE)工艺、MAE法、SiNx钝化工艺整合,在多晶硅上制备了选择性黑硅发射结太阳电池,其效率达16.94%,开创了先进电池工艺应用于黑硅太阳电池的先河。

为了能够更加清晰、详尽的了解BSC的研究历程,更加直观的认识BSC 工艺优化和器件性能的情况,笔者将上述研究进展以表格形式呈现,见表一。

表一黑硅太阳电池研究进展一览表

注:Voc——开路电压(单位:mV);Jsc——短路电流密度(单位:mA/cm2);FF——填充因子(百分比);

Eff——光电转换效率(百分比);面积/规格——(cm2或mm x mm)。

从上表可以看到:从2005年至今,BSC得到了快速发展,电池转换效率逼近目前的晶硅电池。但需要承认的是,绝大部分BSC的转换效率还是落后于传统的晶硅太阳电池。因此,有必要对BSC关键工艺、性能制约因素进行分析,并给出一些可行的解决方案。

四黑硅太阳电池性能制约关键工序、控制要点和性能提升方案初探4.1黑硅制备

4.1.1黑硅的反射率和表面复合间的相互制约

在黑硅的制备过程中,随着制备时间(刻蚀时间-Etch time)的增加,黑硅层厚度(和硅纳米线、棒长度成正比)也在增加,黑硅的反射率继续变低或趋于饱和[23-25,30,31]。这一现象在RIE法[23]和MAE法[31]制备的黑硅中都有出现,典型的例子如图2所示。其中,图2(a)为MAE法经不同刻蚀时间制备的黑硅的反射率[31],图2(b)是RIE法经不同刻蚀时间反射率、黑硅厚度变化的情况[23]。

图2(a)MAE 法不同刻蚀时间制备的黑硅的反射率;(b)RIE 法在不同刻蚀时间下的反射率和黑硅厚度;

表二不同BSC间的性能参数对比

注:Voc——开路电压(单位:mV);Jsc——短路电流密度(单位:mA/cm2);FF——填充因子(百分比);Eff——光电转换效率(百分比);Rs——电池串联电阻(单位:);

Rsh——电池并联电阻(单位:)。

反射率的降低有助于避免光损失,但是相应的黑硅表面积也随之增加,这会加剧载流子的表面复合,影响电池的性能。Hsu, W. Chuck等人[32]对比了不同黑硅厚度(不同的表面积)的太阳电池性能(结果如表二所示),发现:随着黑硅层厚度的增加,电池参数普遍有恶化倾向。因此,减反射性能和其它电池参数间是存在竞争的,黑硅层厚度(硅纳米结构的长度)存在一个使各性能指标达到平衡的最优化值。

4.1.2黑硅制备工艺优化

由上述4.1.1的分析可知:为避免大的黑硅表面积所导致的表面复合,在将黑硅的反射率维持在一个可接受的、较低的水平的同时,应该尽可

能的减薄黑硅层的厚度,即较短的黑硅制备(刻蚀)时间。Toor, Fatima 等人[29]对黑硅制备工艺进行改良,硅片经碱制绒后,再用传统的MAE 法制备黑硅,实现了传统的倒金字塔绒面和硅纳米结构相结合的多尺度减反射绒面,其减反射性能和内量子效率(IQE)如图3所示。从图中可以看出:相同刻蚀时间下,400-1200纳米(nm)范围内的反射率和平均反射率,两步制绒的黑硅(图中用Pyramid标示)都较一步法MAE 制绒(图中用Planar标示)要低[图3(a)]。而两步制绒的黑硅其IQE 表现也比一步法MAE制绒要好,且短波光谱响应随刻蚀时间的减少而提升,最佳IQE的黑硅制绒时间为1分钟(min)[图3(b)],对应的黑硅层厚约为100nm(0.1um),这和Hsu, W. Chuck等人[32]的研究结果一致。由此可以看出:通过优化黑硅制备工艺,可以减薄黑硅层厚度,降低黑硅表面复合,提升短波光谱响应。

图3 一步法和两步法经不同刻蚀时间制备的黑硅的反射率(a)和内量

子效率(b);

4.2扩散制结

4.2.1黑硅PN结结深不均匀性

如果将黑硅厚度(纳米结构的长度),和去刀损、酸/碱制绒所引入的硅片表面起伏都考虑在内,其轴向(纵向)起伏的长度和一般的BSC 的PN结结深(300-500nm)相比已不容忽略。如采用常规的黑硅发射结制备工艺:黑硅制备——扩散制结,黑硅的轴向(纵向)起伏会影响掺杂的均匀性(结深的均匀性),从而引入侧向电场,导致并联电阻减小和反向电流密度的增大,从而影响器件性能[22]。

4.2.2重掺杂导致的俄歇复合

黑硅的直径(横向尺度)一般在几十纳米量级,仅仅相当于PN结结深的1/10左右。传统的扩散掺杂将导致黑硅层成为“死层”,影响光生载流子的扩散。因为和黑硅表面积相关的表面复合可以通过减薄黑硅层厚度加以抑制,而对于重掺杂的黑硅区域,其载流子的复合路径则由俄歇复合所主导,中等掺杂的黑硅区域,则受表面复合和俄歇复合共同支配,图4简要示意了这种复合机制[34]。

图4 黑硅复合机制简图

4.2.3扩散制结工艺优化

为了减少4.2.1中所述的PN结结深不均匀性所带来的不利影响,夏洋等人[22]对扩散工艺进行调整,采用先发射结扩散,再进行黑硅制备的改进工艺路线。图5是两种工艺路线制备的黑硅PN结的扫描电镜图像(SEM)和电子束诱生电流谱图像(EBIC)。图5(c)和(d)中紫色区域代表PN结耗尽区宽度,从中可以看到:采用传统工艺路线制备的PN结,其耗尽区宽度在670nm-860nm范围内变化,而采用改进工艺路线制备的PN结,其耗尽区宽度在800nm-815nm范围内变化。这说明改进工艺路线制备的PN结结深更加均匀,不同区域的电势差更小,相应的侧向电场强度也更小,最终的电池光电转换效率也从15.5%提升至16.3%,证明了对扩散制结工艺进行优化的可行性[22]。

图5 传统工艺和改进工艺制备的黑硅PN结的(a)、(b)扫描电镜图像(SEM)和(c)、(d)电子束诱生电流谱图像(EBIC)

4.3发射结钝化

在第二节中,我们提到:氮化硅(SiNx)钝化[19-25,37]、氧化硅(SiOx)钝化[29,34,35]、SiOx/SiNx叠层钝化[31,32,36]、原子层沉积(ALD)钝化[2,6,7]是目前黑硅发射结钝化工序的四种主要技术方案。其中,ALD钝化技术其钝化效果堪称卓越,Otto, Martin等人[2]将ALD技术应用于RIE法制备的黑硅,将黑硅表面复合速度(Seff)降至13厘米/秒(cm/s)以下,钝化后的黑硅的有效载流子寿命可达毫秒量级。但是,目前绝大多数的ALD技术设备还仅仅用于实验室研发,用于大规模工业生产的商业化设备还在研发阶段,这也使得该技术在成本方面还

面临挑战,其后续的发展笔者将在第五节进行概述。这里,我们将重点讨论前三种技术的优劣。

在第三节中,我们可以看到SiNx、SiOx、SiOx/SiNx叠层钝化三种技术都可以应用于BSC工艺。那么这三种技术到底孰优孰劣呢?Lin, X. X.等人[36]系统的对比了这三种钝化技术在单晶BSC工艺中的表现(如图6)。从图中可以看到:SiOx/SiNx叠层钝化BSC具有更高的内量子效率(图6a),尤其在短波段体现得更加明显。此外,他们还借助太阳电池模拟工具PC1D,将短波的内量子效率和量化的“死层”厚度和杂质浓度(图6b-d)相联系,从实验和理论两个层面证明了SiOx/SiNx叠层钝化较SiNx、SiOx钝化更为优越。他们所研发的采用SiOx/SiNx叠层钝化技术的单晶BSC转换效率达17.11%,是目前正式发布的大面积单晶BSC(125x125)的最高转换效率记录。Liu, Yaoping等人[31]对比了多晶BSC工艺中SiNx和SiOx/SiNx叠层两种钝化技术的表现,也得到了相同的结论。需要说明的是,虽然Oh, Jihun等人[34]研发的单晶BSC采用SiOx作为钝化层,且电池效率达18.2%,但其采用小尺寸区熔单晶(0.8081cm2),而且为了获得良好的电接触,运用了光刻工艺,这会大大增加其成本。所以从成本、(和现有晶硅电池)工艺兼容性的角度来说,SiOx/SiNx叠层钝化工艺更胜一筹。

图6(a)不同钝化工艺黑硅电池的内量子效率对比(A、B、C、D 分别为未钝化、SiOx 钝化、SiOx/SiNx 钝化和SiNx 钝化,数字编号3 代表黑硅厚度300nm);(b-d)PC1D 拟合量化死层厚度和杂质浓

度的短波内量子效率。

4.4全道关键工艺的集成优化整合

黑硅制备、扩散制结、黑硅发射结钝化等关键工序的优化都能在一定程度上提升BSC的器件性能[22,29,31,32,36]。然而,最终的BSC性能还是未能超越传统的工业化晶硅电池,这也意味着单一工序的优化并不能在BSC的光俘获性能和其它性能指标间达到很好的平衡。那么如果能实现对所有或多数工序的整合优化,是否能够大幅提升BSC性能,实现超越传统的工业化晶硅电池性能的目标呢?答案是肯定的!

图7 四种电池工艺流程简图(路线1:标准多晶硅电池工艺;路线2标准SCHMID SE工艺;路线3:优化的BSC工艺;路线4:选择性

纳米发射结BSC工艺)

Liu, Yaoping等人[37]针对BSC的多道工艺优化整合,进行了系统的研究(工艺简图见图7),对标准的多晶硅电池工艺[路线1]、标准的SCHMID法SE工艺[路线2]、优化的BSC工艺[路线3]和纳米发射结黑硅SE工艺[路线4]进行了细致的比较、分析。其中,对传统BSC工艺的优化采用了4.1和4.2中所述的方案,主要包括:1运用优化的黑硅发射结工序,先进行扩散,再进行黑硅制备;2缩短制备(刻蚀)时间,减薄黑硅层厚度;3将SCHMID法SE回刻蚀工艺中的氢氟酸/硝酸(HF/HNO3)混合液替换为氢氟酸/硝酸银(HF/AgNO3)混合液,

相当于4.1.2中的两步法制备黑硅。此外,在优化的BSC工艺基础上,融入SCHMID法的掩膜印刷等工艺,实现了选择性纳米发射结黑硅SE 工艺。上述四种工艺所生产的太阳电池和传统的BSC的反射率和量子效率表征结果如图8、9所示。

图8 四种太阳电池的的反射率对比(传统BSC、优化BSC、选择性纳米发射结BSC、标准SCHMID SE电池

图9 五种太阳电池的外量子效率(a)和内量子效率(b)对比[黑硅电

池、标准多晶硅电池、标准SE电池、优化的BSC(□)、选择性纳米

发射结BSC(□)]

从图中可以看到:虽然传统BSC在300-550nm范围内具有最佳的减反射性能,但是很高的俄歇复合和表面复合,抵消了BSC在减反射方面的优势,表现为其IQE、EQE都是最低的。而优化的BSC,在扩散工序后再进行黑硅刻蚀,降低了复合,其在300-550nm范围内的IQE、EQE得以提升。但其IQE低于标准的多晶硅电池,说明其复合损失要大于标准的多晶硅电池。而其EQE在300-350nm范围内要优于标准的多晶硅电池,表明优化的BSC具有更好的减反射性能。选择性纳米发射结BSC则在减反射和复合的矛盾中取得了很好的平衡,而且通过黑硅发射结工序的优化,得到了更加均匀的发射结,还通过对不同工艺窗口的摸索,在方阻为107Ω/□的多晶硅片上获得了最佳的器件性能,详细的器件结果如表三所示。

表三标准多晶硅电池、SE多晶硅电池和几种黑硅电池的电池性能

从以上的分析可知:通过对传统BSC的多道工艺优化整合,可以使BSC 在减反射方面的优势得以发挥,使其性能达到甚至超过相同工艺的晶硅电池。在上述的择性纳米发射结黑硅SE工艺中,其黑硅发射结并没有采用优化的SiOx/SiNx叠层钝化工艺,而只是实现了黑硅制备和扩散制结工艺的集成优化,但也获得了很好的电池性能,这足以让我们憧憬全道关键工艺集成优化方案的前景。

五展望

尽管近些年来,BSC的研究取得了不小的进展,其光电转换效率已经能达到甚至超过相同工艺的晶硅电池。但是无论是采用MAE法还是PIII 法制备黑硅,都要增加一定的材料(主要是贵金属试剂)、设备成本。而如果要获得超越晶硅电池的性能,还必须采用如选择性发射结、SiOx/SiNx叠层钝化等工艺,这也要增加一定的成本。就其性价比而言,

并没有明显提升。但是在未来几年内,硅片厚度肯定趋于薄片化,传统的晶硅电池性能会因为光有效利用率的降低和载流子表面复合的加剧而变差[40]。而BSC在很宽的光谱范围内拥有卓越的光俘获能力,硅片的减薄对其光有效利用率的影响有限,BSC将迎来发展机遇,但前提是要做好黑硅前发射结和背表面的钝化。所以钝化工艺的研发将成为BSC 能否在未来取得突破的关键。笔者认为BSC下一阶段的钝化工艺中,基于ALD的电池前、背表面钝化工艺将成为重点和热点。因为无论是从传统晶硅电池向高效晶硅电池的过渡,还是BSC钝化的需求,ALD 钝化工艺近乎完美的钝化效果对电池性能的改善都将产生至关重要的影响。但是,传统的ALD技术受限于其2nm/min以下的沉积速率,这显然不能满足工业化生产的需要。而目前出现了三种工业化技术:高速空间技术,等离子体增强化学气相沉积技术(PECVD)和反应性溅射技术。其中,由于大面积在线式(in-line)PECVD系统已经被广泛应用于市场,因此短期内PECVD是最理想的ALD技术。总之,随着钝化工艺,特别是基于ALD的钝化工艺和工业化生产设备的进步,基于黑硅的太阳电池技术将具备更强的竞争力,BSC也将找到属于自己的舞台。

参考文献:

1 Schnell, Martin, Ralf Ludemann, and Sebastian Schaefer. "Plasma surface texturization for multicrystalline silicon solar cells." Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. IEEE, 2000.

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

几种新型太阳能电池性能比较

以化合物半导体为基体制成的太阳能电池。在种类繁多的化合物半导体材料中,不乏兼备优良光电特性、高稳定性、宜于加工制造的太阳能电池材料。化合物可构成同质结太阳能电池、异质结太阳能电池和肖特基结太阳能电池。它既可制成高效或超高效太阳能电池,又可制成低成本大面积薄膜太阳能电池,从而拓宽了光电材料的研究范围,也极大地丰富了太阳能电池家族。目前,世界上光电转换效率最高的是化合物半导体太阳能电池(如砷化镓太阳能电池效率η=24%~28%),或者是以化合物作为重要组分的太阳能电池(如砷化镓和硅叠合聚光太阳能电池效率η=32%~37%,薄膜硒铟铜/非晶硅太阳能电池效率η=14%~17%)。 在元素周期表中的Ⅲ-Ⅴ族化合物半导体,如砷化镓(GaAs)、磷化铟(InP);Ⅱ-Ⅵ族化合物半导体,如硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、硫化锌(ZnS)、硒化锌(ZnSe)、碲化锌(ZnTe)等,都具有直接禁带跃迁的能带结构,吸收系数大,结构比较稳定。若用Ⅰ-Ⅲ族元素取代Ⅱ-Ⅵ族化合物中的Ⅱ族元素,则得到Ⅰ-Ⅲ-Ⅵ族三元化合物,如硒铟铜(CuInSe)、硫铟铜(CuInS)等。对应地,用Ⅱ-Ⅳ族元素代替Ⅲ-Ⅴ族化合物中的Ⅲ族元素,则构成Ⅱ-Ⅳ-Ⅴ族三元化合物,如锌硅砷(ZnSiAs2)等。从中可以挑选禁带宽度适合于吸收不同波长的太阳光、且可制成低电阻p型或n型基体的化合物半导体来制造太阳能电池。 具有代表性的化合物半导体太阳能电池有砷化镓太阳能电池、硫化镉太阳能电池和硒铟铜太阳能电池。 砷化镓太阳能电池Ⅲ-Ⅴ族化合物太阳能电池,其主要特点是: (1) GaAs的禁带宽度达1.43 eV,能有效地吸收太阳光,其理论效率达28%。 (2) GaAs是直接禁带跃迁材料,吸收系数大。吸收90%的太阳能只需5μm厚的GaAs,而硅则需厚为100μm以上才能吸收同样多的太阳能。 (3)耐高温,耐辐射,适宜于做聚光太阳能电池(聚光比可以高达1000~1735倍),也适宜于做太空飞行器上用的太阳能电池。 砷化镓太阳能电池的主要缺点是:价格昂贵,功率/重量比小,表面复合速度大等。 自1956年砷化镓太阳能电池问世以来,已制成pn结GaAs同质结太阳能电池和GaAlAs/GaAs 异质面太阳能电池等。砷化镓还可以分别与元素半导体、其他化合物构成许多异质结构的多晶薄膜GaAs太阳能电池。砷化镓太阳能电池的结构类同于硅太阳能电池,开路电压为0.88~1.0 V,短路电流密度稍低,一般为20~30 mA/cm2。 硫化镉太阳能电池是最先问世的Ⅱ-Ⅵ族化合物太阳能电池。硫化镉的禁带宽度为2.42 eV,吸收系数大,是比较理想的异质结窗口材料,CdS-Cu2S太阳能电池的效率极限为17.8%。但在研究中发现,CdS-Cu2S电池在自然光照条件下,铜离子会在pn结中宏观迁移,因而造成输出功率下降。现在正在用CdTe和其他合适的材料来制造低成本薄膜太阳能电池。 碲化镉太阳能电池碲化镉具有稳定性好、薄膜沉积速度快、价格便宜等优点,因而碲化镉与硒铟铜同样被选为当前最有希望的两种薄膜化合物太阳能电池之一。其光电转换效率,1991年为12.5%,1995年为15.8%,2000年有可能达到18%而进入产业化生产。 硒铟铜太阳能电池性能最好的Ⅰ-Ⅲ-Ⅵ族化合物太阳能电池。硒铟铜是目前已知的Ⅰ-Ⅲ-Ⅵ族三元化合物半导体中性能最好的光电材料,禁带宽度为1.01~1.04 eV,有直接能带结构,在异质结电池中可作为理想的基体材料。硒铟铜与硫化镉、碲化镉材料一样,可以用真空沉积法、喷涂法、丝网印刷法和悬浮电镀法制造薄膜电池。电池结构与硅薄膜电池类同。也可制成前壁型和后壁型两种。CuInSe电池的开路电压比硅的低,约为0.4~0.5 V,而短路电流密度可高达40 mA/cm2左右,是一种稳定性比较好的薄膜太阳能电池。其光电转换效率,1991年为13%,1995年为17%,2000年可达20%。

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

新型太阳能电池资料

新型太阳能电池发展 姓名:学号:指导老师: 摘要:太阳能电池发电是解决目前能源问题,促进社会经济及环境健康发展的重要途径之一。目前,在市场占主导地位的硅基太阳能电池发电成本还不能和传统化石能源竞争。在此背景下,致力于高效率低成本的新型太阳能电池研究空前活跃。目前发展起来的有多结叠层太阳能电池、中间带太阳能电池、多激子产生太阳能电池、热载流子太阳能电池和热光伏太阳能电池,以及新型钙钛矿太阳能电池。这些被称为第三代太阳能电池主要以超高效率、薄膜化、低成本为目标。关键词:太阳能电池,多结叠层,钙钛矿,量子点,多激子产生 一、引言 太阳能电池(solar cell , SC)是一种可以直接将太阳光转换成电能的光电器件,具有永久性、清洁性和灵活性三大优点。自从第一块硅单晶p-n结SC于1954 年在贝尔实验室问世[1],半个多世纪以来,人们对SC的研究经久不衰。迄今为止,已使用多种材料的单晶、多晶、无定形和薄膜形式制造出各种器件结构的太阳能电池。但研究人员对器件性能的优化以及新材料和新结构电池的探索时刻没有停止,并且一直受到人们的热切关注。 2001年,Green[2]提出把太阳能电池的发展过程划分为3个阶段,其中第一代体硅太阳能电池(单晶Si和多晶Si)和第二代薄膜太阳能电池(非晶Si ,GaAs , CdTe,CIGS等)都是单结电池,已基本实现了商品化。第三代太阳能电池除了继续保持薄膜化并采用丰富、无毒的原材料外,最大的特点就是具有更高的光电转换效率。如果我们取太阳表面温度为6000K ,电池温度为300K,根据卡诺定理, 可得电池能量转换的热力学极限效率为95 %;但是Shockley和Queisser[3]通过细致平衡极限原理计算得出,理想单结太阳能电池的效率是材料带隙能量(Eg)的函数,当Eg≈1.3eV时,1sun照射下的极限效率(也称S-Q极限)仅为 31 %,全聚光(46200suns)下的极限效率为 40%。二者相差如此之大,原因是电池在吸收太阳光并转化成电能的过程中,各种方式导致的能量损失最终限制了它的效率。能量损失的内部原因主要有以下3方面: (1)太阳光谱中能量(hν)小于Eg的光子不能被吸收,从电池中透过;(2)能量大于Eg的光子被吸收后激发出热载流子(电子和空穴),超过Eg的那部分能量(hν-Eg)很快都以热能的形式释放掉了; (3)光生载流子的辐射复合,所有太阳能电池在吸收太阳光的同时也向外辐射光。另外,在实际电池中由于结构设计和工艺条件等外部因素的影响,还会产生一些损失机制使效率降低,例如表面反射、串联电阻、晶格缺陷等。 目前,单结GaAs薄膜电池的实验室纪录效率为26.1% [4],该值已接近于理论极限,但从太阳能利用率的角度来看还是比较低。为了研制高效太阳能电池技术,必须突破限制单结电池效率的主要束缚,也就是减小上述(1)和(2)两点造成的能量损失。近年来 ,研究者提出了一系列新型电池设计方案以超越S-Q极限,包括

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

新型纳米晶太阳能电池介绍

新型纳米晶太阳能电池介绍 南京大学已开发出的新型可见光响应型复合氧化物半导体制备光电极来开发新型可见光响应型太阳电池,在不使用有机染料条件下其太阳光转换率己达到1.0%;从根本上解决了染料敏化太阳电池寿命低且不稳定的弱点。本课题组最新研究结果表明,由多种新型可见光响应型复合氧化物半导体制备的光电极配以少量的染料来敏化电极可获得更高的电流(Jsc)和电压(V oc)而不会影响新型可见光响应型太阳电池的寿命。这是世界上第一次可见光响应型太阳电池的研究。 我们的研究目标是开发新型,高效,低成本的可见光响应型太阳能电池。优化构成新型太阳能电池的各个要素的性能,找出最佳值。最后利用锂离子电池良好的充放电特性将新型可见光响应型太阳能电池产生的电能储存起来。三年后的开发目标为转换效率11%,十年后转换效率提高至15%。力争实现整体生产计划成本4-5元/Wp的目标。最终实现成本3元/Wp 以下的目标。进一步完善新一代太阳能发电技术及储能系统研究的理论和试验体系,为我国提供无尽的能源储备,为我国高技术产业提供具有自主知识产权的高效率、低价格的光转换器件等一系列新产品以及相关的新材料和新技术。 染料敏化太阳电池由染料敏化剂、宽带隙半导体、氧化还原电解质和对电极四个部分构成。目前染料敏化太阳电池的最高能量转化效率为11%,由钌联吡啶配合物、二氧化钛、I-/I3-电对和铂对电极获得。染料敏化太阳电池的效率已经达到了传统的硅半导体电池的水平,与后者相比,前者的制作工艺简单,成本低廉,应用前景更加光明。在硅电池中,半导体硅承担三个重要功能,即吸收光线,承受电子与空穴分离所需的电场,电子的传输。因为同时高效执行这三项任务,半导体材料的纯度必须非常高,这就是基于硅的太阳电池成本昂贵,不能与传统发电方法进行商业竞争的主要原因。相反,染料敏化太阳电池的四个组成部分分别执行不同的功能,对各个部分可以从效率和成本两个方面分别进行优化,降低成本和提高效率的空间很大。 染料敏化太阳电池是由瑞士化学家Michael Gr?tzel首先提出的,他们研究小组可以获得大于10%的效率。我们是除了Gr?tzel研究组以外第一个获得效率大于或者等于10%的研究团体,具有丰富的电池制作和效率优化技术。在染料敏化太阳电池中,由于TiO2本身不能吸收可见光领域的能量(Eg<3.2eV),完全依赖有机染料(光敏染料)来提高吸收太阳光中的可见光。然而有机染料易老化耐热性差,因此带给染料敏化太阳电池寿命低且不稳定等弱点。另外染料的使用使电子跃迁过程复杂,加上和宽带半导体有能级匹配上的困难,降低了光电转化效率,又由于染料的大量使用加大了电池的成本,严重阻碍了其实际的应用。在这种现状下,我们从可见光响应型光电极入手,利用可见光响应型光电极来直接进行光电转化。在世界上首次进行了新型可见光响应型太阳电池的研究,首次成功合成了在可见光领域有活性的氧化物半导体光催化剂,从根本上解决了可见光响应型光电极材料。这一成果已于2001年末在科学界最有影响的杂志Nature上发表(附件),海外媒体对此作了广泛的报道(见附件)。 本课题组用已开发出的这些新型可见光响应型复合氧化物半导体制备光电极来开发新型可见光响应型太阳电池,在不使用有机染料条件下其太阳光转换率己达到1.0%;从根本上解决了染料敏化太阳电池寿命低且不稳定的弱点。本课题组最新研究结果表明,由多种新型可见光响应型复合氧化物半导体制备的光电极配以少量的染料来敏化电极可获得更高的电流(Jsc)和电压(V oc)而不会影响新型可见光响应型太阳电池的寿命。

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理 性能及特点: 太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。) 太阳能发电原理: 太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反

射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。 太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 太阳能发电原理图如下:

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

太阳能电池发展历史独家收集整理

太阳能电池的发展历史 太阳能光伏发电最核心的器件——太阳电池。 从1839年法国科学家E. Becquerel发现液体的光生伏特效应(简称光伏现象)算起,太阳能电池已经经过了160多年的漫长的发展历史。从总的发展来看,基础研究和技术进步都起到了积极推进的作用。对太阳电池的实际应用起到决定性作用的是美国贝尔实验室三位科学家关于单晶硅太阳电池的研制成功,在太阳电池发展史上起到里程碑的作用。至今为止,太阳能电池的基本结构和机理没有发生改变。 太阳电池后来的发展主要是薄膜电池的研发,如非晶硅太阳电池、CIS太阳电池、CdTe太阳电池和纳米燃料敏化太阳电池等,此外主要的是生产技术的进步,如丝网印刷、多晶硅太阳电池生产工艺的成功开发,特别是氮化硅薄膜的减反射和钝化技术的建立以及生产工艺的高度自动化等。 回顾历史有利于了解光伏技术的发展历程,按时间的发展顺序,将于太阳电池发展有关的历史事件汇总如下: 1893年法国实验物理学家E.Becquerel发现液体的光生伏特效应,简称为光伏效应。 1877年W.G.Adams和R.E.Day研究了硒(Se)的光伏效应,并制作第一片硒太阳能电池。 1883年美国发明家CharlesFritts描述了第一块硒太阳能电池的原理。 1904年Hallwachs发现铜与氧化亚铜(Cu/Cu2O)结合在一起具有光敏特性;德国物理学家爱因斯坦(AlbertEinstein)发表关于光电效应的论文。 1918年波兰科学家Czochralski发展生长单晶硅的提拉法工艺。

1921年德国物理学家爱因斯坦由于1904年提出的解释光电效应的理论获得诺贝尔(Nobel)物理奖。 1930年https://www.360docs.net/doc/a18716617.html,ng研究氧化亚铜/铜太阳能电池,发表“新型光伏电池”论文;W.Schottky发表“新型氧化亚铜光电池”论文。 1932年Audobert和Stora发现硫化镉(CdS)的光伏现象。 1933年L.O.Grondahl发表“铜-氧化亚铜整流器和光电池”论文. 1951年生长p-n结,实现制备单晶锗电池。 1953年Wayne州立大学DanTrivich博士完成基于太阳光普的具有不同带隙宽度的各类材料光电转换效率的第一个理论计算。 1954年RCA实验室的P.Rappaport等报道硫化镉的光伏现象,(RCA:RadioCorporationofAmerica,美国无线电公司)。 贝尔(Bell)实验室研究人员D.M.Chapin,C.S.Fuller和 G.L.Pearson报道4.5%效率的单晶硅太阳能电池的发现,几个月后效率达到6%。 1955年西部电工(WesternElectric)开始出售硅光伏技术商业专利,在亚利桑那大学召开国际太阳能会议,Hoffman电子推出效率为2%的商业太阳能电池产品,电池为14mW/片,25美元/片,相当于1785USD/W。 1956年P.Pappaport,J.J.Loferski和E.G.Linder发表“锗和硅p-n结电子电流效应”的文章。

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池研究毕 业论文 Final approval draft on November 22, 2020

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物 体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n 区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙

单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。用户根据系统设计,可

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.360docs.net/doc/a18716617.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

相关文档
最新文档