高数 定积分的概念

高等院校非数学类本科数学课程

大学数学(一)

——一元微积分学

第二十二讲定积分的概念教案制作:易学军主讲教师:易学军

第五章一元函数的积分

本章学习要求:

?熟悉不定积分和定积分的概念、性质、基本运算公式.

?熟悉不定积分基本运算公式.熟练掌握不定积分和定积分的换元法和分部积分法.掌握简单的有理函数积分的部分分式法.了解利用建立递推关系式求积分的方法.

?理解积分上限函数的概念、求导定理及其与原函数的关系.

?熟悉牛顿—莱布尼兹公式.

?理解广义积分的概念.掌握判别广义积分收敛的比较判别法.能熟练运用牛顿—莱布尼兹公式计算广义积分。

?掌握建立与定积分有关的数学模型的方法。能熟练运用定积分表达和计算一些几何量与物理量:平面图形的面积、旋转曲面的侧面积、平行截面面积为已知的几何体的体积、平面曲线的弧长、变力作功、液体的压力等。

?能利用定积分定义式计算一些极限。

第五章一元函数的积分

第一节定积分的概念和性质

一. 引例

请点击

二. 定积分的定义

三. 定积分的性质

曲边梯形:三边为直线,其中有两边相互

平行且与第三边垂直(底边),第四边是一条

曲线,它与垂直于底边的直线至多有一个交点

(这里不排除某直线缩成一点).

1. 曲边梯形

引例1. 曲边梯形的面积

2. 求曲边梯形的面积

首先,我们利用以下的的做法:

分割—近似—求和

得到曲边梯形的近似值,然后,引入极限过程,求出曲边梯形的精确值.

O x y

a b 1x 1-i x i

x )(x f y =,

0)( >x f 设

. ]),([)(b a C x f ∈第一步:分割

, 1110b x x x x x x a n n i i =<<<<<<<=-- 任意引入分点

).,,2,1( ],[ ] ,[ 1n i x x n b a i i =-个小区间成分将

. 1个小区间的长度表示第用i x x x i i i --=?称为区间的一个分法T

第二步:近似1-i x i

x i ξ

],,[1则i i i x x -∈?ξ

. )( :i i i x f S ?≈?ξ小曲边梯形面积?对每个小曲边梯形均作上述的代替

. 的选择有关与i i S ξ?

O x y

a b 1x 1-i x i x )

(x f y =第三步:求和

. )( :11∑∑==?≈?=n

i i i n i i x f S S ξ曲边梯形面积

. T 的选择有关及点与分法i S ξ

O x y

a b

1x 1-i x i x )

(x f y =第四步:取极限

, }{max |||| 1则令i n i x x ?=?=≤≤λ . )(lim :1

0∑=→?=n

i i i x f S ξλ曲边梯形面积

. T 的选择无关及点与分法极限存在与否,i ξ

引例2. 变速直线运动的路程

0a b t t i t i –1已知质点的运动速度v =v (t ). 求在时间段[a , b ]

内运动的路程s .

匀速运动:距离=速度×时间

(1)分割:

任取分点: a = t 0< t 1<…< t i –1< t i < … <

t n =b

分割[a ,b ]得: [t i –1, t i ] (i =1, 2, …n )

且记: t i = t i –t i –1

(2) 近似:

任取ξi ∈[t i –1, t i ] ,

i

i i t v s ?≈?)(ξ(3)求和:

i

i n

i n i i t v s s ?≈?=∑∑==)(1

1ξ(4) 取极限:

)

0}{max ∞→→?=n t i (这时令λ1≤i ≤n i

n

i i t v s ?=∑=→10)(lim ξλξi 0a

b t

t i t i –1作

想方法是:

解决这两个问题的的思

.

取极限

求和

近似

分割

处理的问题的结果,即通常人们把这类方法所

.

]

,

[

)

(

上的定积分

在区间为函数

这种和式的极限值,称b

a

x

f

二. 定积分的定义

. , ],[ )( 且有界上有定义在设函数b a x f , 1110b x x x x x x a n n i i =<<<<<<<=-- 任意引入分点

).,,2,1( ],[ ] ,[ 1n i x x n b a i i =-个小区间成分将区间 ],,[ . 11i i i i i i x x i x x x --∈?-=?ξ个小区间的长度表示第用 , 0 的且该极限值与对区间存在若],[)(lim 1b a x f n

i i i ∑=→?ξλ , ],[ )( , T 上可积在则称函数的选择无关及点分法b a x f i ξ的定上在极限值称为记为 ] ,[ )( ), ] ,[ ()( b a x f b a R x f ∈ . }){max ()(lim d )(:110i n

i n i i i b a x x f x x f ?=?=≤≤=→∑?λξλ积分值

定积分符号:

. ∑?

=→?=n i i i b a x f x x f 10)(lim d )(ξλ 定积分号;—?b a 积分下限;—a

积分上限;—b d )(被积表达式;—x x f )(被积函数;—x f d 积分变量;—中的x x

. ],[积分区间—b a

) ( 积分变量的取值范围

关于定积分定义的几点说明

. ] ,[ )( , T ),( d )( )1(有关区间及只与的选择无关及点它与分法具体的数是一个极限值定积分b a x f x x f i b

a ξ? . d )(d )(d )(

)2( ===???b

a b a b a t t f y y f x x f 号无关:定积分与积分变量的记

0. , , , 0 →∞→∞→→λλ却不一定有时个数当分点但是分点个数时n n ,)3(取极限

—求和—近似—分割分方法处理:

匀变化问题可以用定积则该非均乘积形式可以表示为两个变量的看成是均匀变化时若将非均匀变化的事物 , ,)4(

O x y a b )

(x f y =1

A 2A 3

A

,d )(1?=c

a x x f A c d .d )(3?=

b d x x f A , d )( 2?=d

c x x f A 由极限保号性: ,0

d )(≥?c a

x x f ,0d )(≤?d c x x f .0d )(≥?b

d x x f 面积:

O x

y a b )

(x f y =1

A 2A 3

A c d

, )( d )(b x a x x f y x x f b a ===?与直线等于曲线

. 面积的代数和轴所围成的几何图形的及x

例1.x x d 11

02?-例2.x x d sin ?-ππ0πy =sin x y

x

π-4

π=0=显然t t f x x f b a b

a d )(d )(??=u u f b

a d )(?= =

定积分的概念(教学内容)

授课题目定积分的概念 课时数1课时 教学目标理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。 重点与难点重点:定积分的基本思想方法,定积分的概念形成过程。难点:定积分概念的理解。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完导数和不定积分这两个概念后的学习,定积分概念的建立为微积分基本定理的引出做了铺 垫,起到了承上启下的作用。而且定积分概念的引入体 现着微积分“无限分割、无穷累加”“以直代曲、以不变 代变”的基本思想。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。

教学手段 传统教学与多媒体资源相结合。 课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、定积分问题举例 1、曲边梯形的面积 设)(x f y =在区间],[b a 上非负连续。由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点 b x x x x x a n n =<<<<<=-1210Λ 把],[b a 分成n 个小区间 ],[,],,[],,[12110n n x x x x x x -Λ 它们的长度依次为:n x x x ???,,,21Λ (2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积,)(i i i x f A ?≈?ξ ]).,[(1i i i x x -∈?ξ (3)求和:曲边梯形面积∑∑==?≈?=n i i i n i i x f A A 1 1 )(ξ (4)取极限:曲边梯形面积,)(lim 10∑=→?=n i i i x f A ξλ其中 }.,,m ax {1n x x ??=Λλ 2、变速直线运动路程 设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 x a b y o 1x i x 1-i x i ξ

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

定积分的基本概念

定积分的基本概念 摘要:定积分的概念,原理,思想方法。 关键词:分割,求和,取极限。 通过了一个学期的学习,我们的专业课数学分分析从开始接触时的一窍不通到现在的马马虎虎。使我迷茫的学习慢慢的清晰起来,其中给我学以致用的就是定积分了。可以用来做很多方面的问题。下面来和大家分享一下我学习定积分的感悟。 定积分的概念 1)定积分概念的引入 2)“分割、近似求和、取极限”数学思想的建立 3)定积分的数学定义 重点:定积分的数学定义 难点:“分割、近似求和、取极限”变量数学思想的建立 定积分概念的引入 在熟悉定积分的概念的同时我们应该明确定积分的基础思想。 在灵活运动定积分可以求曲边梯形的面积和变力所做的功,下面来分别的求它们的面积。我们可以从中比较一下,以给我们带来启发。 1曲边梯形的面积 中学里我们已经学会了正方形,三角形,梯形等面积的计算,这些图形有一个共同的特征:每条边都是直线段。但我们生活与工程实际中经常接触的大都是曲边图形,他们的面积怎么计算呢?我们通常用一些小矩形面积的和来近似它。

近似看成多边形面积来计算。现在我们来计算一下溢流坝上部断面面积。 我们分别取n=10, 50, 100用计算机把它的图像画出来,并计算出面积的近似值: 1.当n=10时,用10个小矩形的面积之和作为曲边梯形的面积时,则S10 0.7510。(见下图)

2.当n=50时,用50个小矩形的面积之和作为曲边梯形的面积时,则S50≈0.6766。 3.当n=100时,用100个小矩形的面积之和作为曲边梯形的面积时,则S100≈0.6717。 由此可知,分割越细,越接近面积准确值,而这个和求极限也是同出一则。把它这样简化来理解也就不再那么的难了。 再看一个变力做功的问题。 设质点m受力F(x)的作用,沿直线由A点运动到B点,求力 F(x)的做的功。 F虽然是变力,但在很短一段时间内△x,F的变化不大,可近似看着是常

定积分的基本概念

教 学 内 容 方法与手段 定积分的概念 大家好,这节课我们开始学习定积分的概念,主要分 为三个内容: 定积分概念引入 定积分的定义 定积分的几何性质 首先我们来看第一部分 一、定积分概念引入 说起定积分的思想,其萌芽是特别早的,可以追溯至古代,最具有代表人物就是阿基米德(公元前287年—公元前212年),我们比较熟悉的就是他的浮力原理,其实阿基米德还和高斯、牛顿并列为世界三大数学家,是个非常牛的牛人,有兴趣的可以找找这个人的一些资料,当时他就开始思考定积分问题。那么到底定积分问题是什么样子的呢我们先看一个例子。 1曲边梯形的面积问题: 我们知道矩形面积:S ah = 梯形的面积:() 2 a b S h += 曲边梯形的面积:设()y f x =在区间[a,b]上非负连续,由直线x=a,x=b,y=0及曲线()y f x =所围成的面积。 导入 幻灯 幻灯 幻灯 幻灯 详讲 详讲 详讲 幻灯

那么这样的问题怎么求呢 首先,我们考虑用一个矩形去近似计算其面积。a,b 的区间长度代表其宽,b点的函数值代表其高。我们可以得到一个近似的面积值。 好,现在我们将[a,b] 区间分为两个,同样我们用这两个区间的长度代表其宽,两个区间的右端点代表其高,然后计算这两个矩形的面积求和,作为曲边梯形的面积,可以发现,通过切分,其面积更接近曲边梯形的面积。我们就有这样的思考,是不是切分的越多,其面积越近似我们再将其分为四份,我们发现好像面积越来越接近真实面积。下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。 事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。 好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。 解决步骤: 大化小:在区间中任意插入个分点 ,用直线将一个曲边梯形分成个小的曲边梯形;详讲总结

考研数学高数5定积分

第五讲:定积分 定积分的概念:设()[]b a x f ,在上有界 1) 任意分割:.,2,1n i x i =? 2) 作乘积:任取[]i i i x x ,1-∈ξ,作乘积i i x f ?).(ξ 3) 作和式: ()i n i i x f ?∑=.1 ξ 4) 取极限:()i n i i x f ?∑=→.lim 1 ξλ 若不管[]b a ,如何分割,i ξ如何选取,当{}0max 1→?=≤≤i n v x λ时,上述极限如果存在,则称()x f 在[]b a ,上是可积的,并称此极限值为()[]b a x f ,在上的定积分,记为 ()0 ()lim .n b i i a i f x dx f x λξ→= =?∑? 我们规定: ()()()b b b a a a f x dx f u du f t dt ?=?=? ()0a a f x dx ?= ()()a b b a f x dx f x dx ?=-? 函数可积的条件: 充分条件:若()[]b a x f ,在满足下列条件之一,则()[]b a x f ,在上可积: 1、()[]b a x f ,在上连续; 2、只有有限个间断点的有界函数 3、单调函数 必要条件:若()[]b a x f ,在上可积,则在[]b a ,上一定有界。 定积分的几何意义: 设()[]b a x f ,在上可积 (1) 若()0≥x f ,则();A dx x f b a =?

(2) 若()0≤x f ,则();A dx x f b a -=? (3) 若()x f 有正有负,则();321A A A dx x f b a +-=? 例: 1、用定义计算积分dx x 2 10?; 2、利用定积分表示下列和式的极限: (1)∑=∞→+n i n n i n 1 11lim (2)()021lim 1>++++∞→p n n p p p p n 3、利用几何意义求积分 ,)2(; )1()1(2220dx x a dx x a b a -?-? 4、比较大小:2121 1 ln (ln )e e I xdx I x dx ==? ? 定积分的性质: 设()()x g x f ,在所讨论的区间上都是可积的,则有 性质1 (线性性) ()()[]()()( )为常数αββαβαdx x g dx x f dx x g x f b a b a b a ?+?=+? 推论: ()()()()[]()()dx x g dx x f dx x g x f dx x f A dx x Af b a b a b a b a b a ?±?=±??=? 性质2 (区间可加性) ()()()都成立 或或注:不论b a c c b a b c a dx x f dx x f dx x f b c c a b a <<<<<

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

高等数学第五章定积分及自测题

第五章定积分 一、基本要求: 1.理解定积分的概念、几何意义、物理意义及定积分的性质. 2.理解积分上限的函数,并掌握其求导法则. 3.掌握牛顿——莱布尼兹公式. 4.掌握定积分的换元法和分布积分法. 5.理解反常积分(广义积分)的概念,会计算反常积分,了解反常积分的审敛法. 6.了解定积分的近似计算方法. 二、主要内容

Ⅰ. 定积分概念: 1. 定积分定义:设()f x 在区间[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=.把[,]a b 分成n 个小区间1[,],(1,2, ,)i i x x i n -=,小 区间的长度记为1,(1,2, ,)i i i x x x i n -?=-=,在1[,]i i x x -上任意取一点i ξ,作1 ()n i i i f x ξ=?∑, 若0 1 lim ()n i i i f x λξ→=??∑ 1(max{})i i n x λ≤≤=?存在. 就称该极限为()f x 在[,]a b 上的定积分. 记为 1 ()lim ()n b i i a i f x dx f x λξ→==??∑? 当上述极限存在时,称()f x 在[,]a b 上可积. 2. 若()f x 在[,]a b 上连续,则()f x 在[,]a b 上可积。 3. 若()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上可积. Ⅱ. 定积分的几何意义 定积分 ()b a f x dx ? 在几何上表示:由曲线()y f x =,直线x a =和x b =以及x 轴所围图形面 积的代数和 (x 轴上方的面积取正,x 轴下方的面积取负) Ⅲ. 定积分的性质 1. 补充规定:(1)当a b =时, ()0b a f x dx =? (2)当a b >时, ()()b a a b f x dx f x dx =-?? 2. 性质: (1) [()()]()()b b b a a a f x g x dx f x dx g x dx - -+=+? ?? (2) ()(),()b b a a kf x dx k f x dx k =? ?为常数 (3) ()()()b c b a a c f x dx f x dx f x dx =+? ?? (4) b a dx b a =-? (5) 若在[,]a b 上,()0f x ≥,则 ()0,()b a f x dx a b ≥

高等数学教案22定积分的概念与性质

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示) .下面来求该曲边梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间[,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间[,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积(如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . 图5-1 图5-2

(1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x --ΛΛ, 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ,将 其作为曲边梯形面积的近似值,即 1 1 ()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ(max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值,即 0 1lim ()n i i i A f x λξ→==?∑. 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的乘积),,2,1()(n i x f i i Λ=?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i Λ=, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区间[,]a b 上可积,并将此极限值称为函数()y f x =在[,]a b 上的定积分,记为 ?b a dx x f )(. 即 ∑?=→?=n i i i b a x f dx x f 1 )(lim )(ξλ, 其中x 称为积分变量,()f x 称为被积函数,()f x dx 称为被积表达式, a 称为积分下限,b 称为积分上限,[,]a b 称为积分区间,符号?b a dx x f )(读作函数()f x 从

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

有关定积分问题的常见题型解析(全题型)

有关定积分问题的常见题型解析 题型一 利用微积分基本定理求积分 例1、求下列定积分: (1)()1 3 031x x dx -+? (2)() 94 1x x dx +? (3)? --2 2 24x 分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。 评注:利用微积分基本定理求定积分 dx x f a b )(?的关键是找出)()(/ x f x F =的函数)(x F 。 如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求 其面积。 题型二 利用定积分求平面图形的面积 例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。 分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。 评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。 关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。 知识小结:几种典型的曲边梯形面积的计算方法: (1)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≥0)围成的曲边梯形的面积: S = ()?b a dx x f ,如图1。 (2)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≤0)围成的曲边梯形的面积: S = ()()?? -=b a b a dx x f dx x f ,如图2。 (3)由两条直线x=a 、x=b (a <b )、两条曲线y=()x f 、y=()x g (()()x g x f ≥)围成的平面图形的面积:S = ()()?-b a dx x g x f ][,如图3。

相关文档
最新文档