关于悖论

关于悖论
关于悖论

关于悖论

这个学期所学的两门课程——《离散数学》和《马克思主义基本原理概论》课上,老师们都谈到了“悖论”。何谓“悖论”?康德称作“二律背反”,黑格尔称作辩证矛盾,简而言之就是互相矛盾的命题,即:若从正面论证则推出反面成立,若从反面论证却又推出正面成立,这极大地引起了我的兴趣。

首先整理了一下资料,收集了以下的一些悖论:

一.谎言者悖论。如:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个慌,因此他此时说的是实话;但如果这是实话,他又在说谎。矛盾不可避免。类似的,“这句话是错误的”,也是同种类型的悖论。

二.理发师悖论。理发师说:“我只给那些不给自己理发的人理发。”同样也是矛盾推理,如果理发师不给自己理发,他就属于他所说的那一类人,则他应该给自己理发。反之,如果理发师给自己理发,由他所说,他就不能给自己理发。

三.集合论悖论。南京理工大学朱保平老师所编的《离散数学(第2版)》第75页中描述:“定义S是由不以自身为元素的集合组成的,问:S是不是一个集合?如果我们假定S 是集合,那么按照集合与对象的关系,S本身或者是自己的元素,或者不是自己的元素,二者居其一且只居其一。若为前者,则S是集合S的元素,所以应该满足S中的元素的性质特征,即S不属于它本身,矛盾。若为后者,则因为S是集合,且S不属于他自己,即S 满足S中的元素的性质特征,故有S属于S,矛盾。”

四.书目悖论。一个图书馆编纂了一本书名字典,它列出这个图书馆里所有不列出自己书名的书。那它列不列自己的书名?

五.苏格拉底悖论。“西方孔子”苏格拉底说:“我知道一件事,那就是什么都不知道。”

六.“世界上没有绝对的真理”,我们无法得知这句话是不是“绝对的真理”。

七.阿基里斯悖论。阿基里斯是希腊神话中善跑的英雄,然而他在赛跑中不可能追上起步稍微领先于他的乌龟,因为当他要到达乌龟出发的那一点,乌龟又向前爬动了。他们之间的距离可以无限地缩小,但永远不可能追上乌龟。

八.二分法悖论。顾名思义,当一个物体行进一段距离到达D,他必须首先到达距离D 的二分之一,然后是四分之一、八分之一、十六分之一,以至于可以无穷地划分下去。因此这个物体永远不可能到达D。

九.“飞矢不动”悖论。由于飞箭在其飞行的每个瞬间都有一个瞬间的位置,它在这个

位置上和不动没有什么区别。那么问题是,无限个静止位置之和就应该还是更大的静止。或者说无限重复的静止位置就是运动?

十.“一尺之锤,日取其半,万世不竭”。语出《庄子》中慧施的一句话。实际上同上面的第八个悖论。

下定义不如打比方,通过上面十个著名的悖论,相信我们都对他们的自相矛盾性产生好奇。比如,为什么会有悖论?悖论能解决吗?

首先第一个问题,为什么会有悖论?我个人也是百思不得其解,我想大概是因为人类的语言描述上不够成熟导致的歧义。在查找资料过程中,中国著名学者、历史学家、经济学家、国际知名政论家何新说过这么一句话:“悖论的根源在于人类语言的不精确性,或者说,语言符号的有限性。”这和我的观点不谋而合!

那么语言到底如何缺陷在哪儿是悖论得以乘虚而入呢?仔细分析上面所列出的第一到第六个悖论,不难发现,我们在描述时,实际上已经将概念指向本身,此时就极容易产生悖论。如说谎者、理发师、集合S、书目书、苏格拉底、“绝对的真理”等等。再分析上面列出的第七到第十个悖论,我们在讨论有限事物的同时引入了“无限”的概念,此时也可引发悖论。如对阿基里斯与乌龟之间有限的距离却进行了无限次的“缩小”、对有限的距离D进行分析时却用无限的思想分析、对有限的飞箭运动却将其划分为无限的瞬间进行分析、对有限的“锤”却进行了无限的“日取其半”等等。

当然我个人觉得悖论的产生,实际上是因为人为地不当使用语言、偷换概念的结果。要避免悖论、避免使得思维和语言陷入自相矛盾、避免语义混乱而不知所云,首先要慎用语言的描述。课堂上,老师也给我们讲过:中国诡辩家公孙龙曾指出过一个著名的命题:白马非马。“白马”是一个大类、集合,而“马”则是另一个类、集合,它们等同则必须要求是“同一属性、完全相同”的关系,此时才能划上“=”。从而推出“白马非马”。实际上,这就是典型的利用语言的歧义或者说符号与符号形式之间的矛盾而构造出来的命题。如上面列出的十个悖论中,要避免如上所示的“概念自指”或者再分析有限事物却不小心引入无限的分析方法。实际上,悖论问题从来没有真正得到过很好的解决,不过是逐渐地,大家意识到应该通过恰当的矛盾陈述,正确地表述问题时,尽量少避免类似的悖论产生罢了。

倘若悖论真地不可避免发生时,黑格尔早就指出,没有简单的回答,回答只能是矛盾的。历史上不乏有人研究过悖论发生的解决方案:在西方,克吕西波,一个著名的斯多葛派,就曾经对这个问题写了六部书,但仍然没能很好解决。另一个柯斯的斐勒塔,就是因为用心研究解除这种进退两难的悖论回答问题操劳过度患病而死。

实际上,说到悖论,就不得不提数学史上的第三次危机:19世纪末20世纪初发生了集合论的悖论,引发了关于数学逻辑基础可靠性的问题。这种悖论最简略的表述形式之一是,在涉及无限的集合时,整体与部分一样多。例如,南京理工大学朱保平老师主编的《离散数学(第二版)》第125页中说到:“任何一个有限集的真子集的元素个数一定比原集合的元素个数少。但在无限集中,这个结论就不一定成立了。例如B是偶数集,它是自然数集N的真子集·······不难证明,偶数的元素与自然数集的元素的个数是相等的。”简而言之,就是说从一个100L大桶里面倒出10L水给小桶,结果倒完后两桶水量一样又好比如说父亲与儿子年龄一样大,这是一个荒谬的矛盾,然而却被无误地证明出来了······数学史学家M.克莱因描述第三次数学危机的发生过程指出:“20世纪数学中最为深入的活动,是关于数学逻辑基础的探讨。在这个世纪的前期,首先是矛盾的发现,委婉地被称为悖论,在集合中显得极为突出。这些矛盾的发现显然深深地扰乱了数学家,另外一个逐渐被认识到并在本世纪初显露出来的,是数学的相容性问题。”这就是第三次因悖论导致的数学危机,也是数学史上最严重的一次危机。这一次危机不仅震撼了数学体系的真理基础,而且震撼了传统逻辑关于思维不矛盾的基本信念。

然而关于悖论以及其引发的第三次数学危机,这个问题至今并未得到很好的解决。《马克思主义基本原理概论(2013年修订版)》第47页中说到:“对立统一规律是事物发展的根本规律。”从千年前先哲发现、讨论悖论,到如今人类科学、文化的繁荣发展,可以说无不和悖论有着极大的关系。换一个角度看,谁敢否定悖论在推动人类文明发展进程中起了重要作用呢?

【1】朱保平,《离散数学》,北京理工大学出版社,2014年版

【2】《马克思主义基本原理概论》,高等教育出版社,2013年版

悖论的产生和意义

对于悖论存在及其意义的探究 摘要:悖论的存在已有数千年历史,悖论到底如何定义的?是为什么会存在的?历史上人们又是怎么对待悖论的?悖论能够怎样被解决?悖论的存在又有什么意义?这一切问题都需要我们深入思考研究。 关键词:悖论;逻辑哲学;存在;本体论;形而上学 一、什么是悖论? 在人类思想史上,已经提出了各种各样的谜题与悖论,它们对人类理智构成了严重的挑战,许多大家、巨擘以及无名氏前仆后继地对其进行了艰辛的探索。从古希腊、中国先秦时期到现代数学、逻辑学等众多学科中,已经发现了各种各样的悖论或怪论,悖论已经成为数学、逻辑学、哲学、语言学、计算机科学、思维科学等多学科专家共同探讨的课题,谈论“悖论”几乎成为时髦。那么,到底什么是悖论呢?悖论,亦称为吊诡或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语paradoxos,意思是“未预料到的”,“奇怪的”。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 二、悖论与逻辑哲学 说谎者悖论被认为是世界上最早的悖论,由公元前六世纪的哲学家克利特人艾皮米尼地斯提出:“所有克利特人都说谎,他们中间的一个诗人这么说。”这个悖论最简单的表述形式是:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。这类悖论的一个标准形式是:如果事件A 发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。悖论的存在显然是因为某些命题正在逻辑上存在不合理性从而引起了众多学者的探究。 虽然逻辑不能等同于逻辑哲学,但是逻辑哲学基本上是和逻辑同时产生的,任何逻辑学家都在无形中进行着对逻辑哲学的研究。尤其是对于数学这样的极其讲究严密的逻辑性的研究领域,逻辑哲学的研究根本无法避免。著名的“罗素悖论”的出现甚至引起了第三次数学危机。所谓的罗素悖论是罗素针对当时建立不久的集合论体系提出的一个基础上存在的矛盾:“定义两个集合:P={A∣A∈A} ,Q={A∣A?A} 。问题:Q∈P 还是 Q?P?”。显然,无论是指定哪个判断为真,最后都能够推断出与其相反的结论。为了使其更容易被理解,罗素悖论又被称为“理发师悖论”:“有一个理发师说:‘我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸’”。那么这个理发师要不要给自己刮脸呢?无论他怎么做,最后都一定会违背自己当初的话。 悖论的流行引发了世界上的思想风暴。越来越多的人认识到我们现有社会中存在的不完美,思维方式不能再局限于既定逻辑,而要尝试打破规则,因为悖论的存在充分说明了现有的规则有着无法忽视的漏洞,甚至会动摇社会根基。 三、悖论与本体论 西方哲学从古希腊开始一直以研究世界的本原为己任, 形成了西方哲学的本体论传统。本体论的最主要特征就是研究存在问题, 即关于什么样的实体存在, 以及作为实体在资格

几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析 数学悖论是数学发展过程中的一个重要的存在形态, 它是数学体系中出现的一种尖锐的矛盾, 对于这一矛盾的处理与研究, 丰富了数学的容, 促进了数学的发展。作为一名数学教师, 学习有关这方面的知识, 并进行研究, 既能提高自己的专业水平, 又能使授课容生动有趣; 作为学生了解这方面的容,不但能扩大知识面, 而且能提高学习兴趣 1 芝诺悖论 在西方的数学史上有一个非常有名的数学悖论——芝诺悖论。芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺本人既不是一位科学家, 更不是一位数学家, 芝诺的老师是埃利亚学派的创始人巴门尼德。巴门尼德是个一神论者, 他认为世界的本原是“不生不灭、完整、唯一和不动的”。但世界显然是丰富多彩、复杂纷繁的,怎么会是“唯一” 的呢?一个完全不动的世界怎么可能呢? 于是引起同时代人的反驳。芝诺为了捍为他老师的学说, 提出了一些论述。其中最有名的有四个, 历史上称为芝诺悖论。作为巴门尼德的继承人, 他力图证明, 如果承认“ 多” 和“ 运动” , 就会招致更加荒谬的结果。限于篇幅, 在此只辑录其二。 二分法: 你不能在有限的时间穿过无穷的点。在你穿过一定的距离的全部之前, 你必须穿过这个距离的一半。这样做下去就会陷入无止境, 所以在任何一定的空间中都有无穷个点, 你不能在有限的时间中一个接一个地接触无穷个点。

阿喀琉斯追不上大乌龟: 阿喀琉斯是古希腊《荷马史诗》中一个跑得最快的大英雄, 他怎么会跑不过大乌龟呢? 假定他的速度是乌 龟的10倍, 阿喀琉斯与乌龟赛跑的路程是1千米, 让乌龟先跑1 10 千 米, 然后让阿喀琉斯去追。于是问题来了。当阿喀琉斯追到1 10 千 米的地方, 乌龟又向前跑了 1 100千米, 当阿喀琉斯又追到 1 100 千米时, 乌龟又向前跑了 1 10000千米, … …, 这样一来, 一直追下 去, 阿喀琉斯会追上大乌龟吗? 之所以说这两个论证是悖论, 是因为我们知道, 无论是谁, 不管身高身低, 只要一迈步, 都可以在有限的时间越过无穷多个点; 无论是谁, 都不会相信大英雄阿喀琉斯竟会跑不过大乌龟。然而在当时的人们的知识围, 却找不出芝诺的论证错在什么地方。 1 . 1 芝诺悖论的数学意义 芝诺的“二分法” 和“ 阿喀琉斯追不上大乌龟”的论证, 本意是要用结论的荒谬性来否定其前提关于时空的可无限分割的观点, 该两个论证与另外两个论证(“ 飞箭” 与“ 运动场” ) 组合得出了时空既是不可无限分割, 又是可以无限分割的矛盾结论。“ 芝诺悖论” 促进了以严格的思维规律为研究对象的逻辑学和以严格的求证思想为基础的数学的发展。芝诺论证问题的方法是我们今天数学中仍在使用的反证法。可以说, 这是对反证法的最早的运用。大家知道, 当一个数学命题无法直接证明时, 我们就求助于反证法。

“自由”的悖论-8页文档资料

“自由”的悖论 列夫?托尔斯泰的著名长篇小说《安娜?卡列尼娜》的主人公安娜?卡列尼娜的爱情悲剧历来是学界评论的焦点问题。安娜对自由爱情的执著的、不顾一切的追求,体现了人类对自由理想的热切向往和对本真生存方式的积极探求。 在邂逅贵族军官伏伦斯基之前,安娜与丈夫卡列宁共同生活了8年,并且有一个可爱的儿子。年轻潇洒的伏伦斯基的出现打破了安娜生活的平静,唤醒了她沉睡多年的爱的情愫,掀起了她内心难以遏制的情感的波澜,她决心要寻找她的真爱。安娜在随后的与伏伦斯基的爱中似乎真正领略到了生命的意义,从此便开始义无反顾地追求自己向往的生活。她拒绝丈夫的劝说,反抗丈夫的阻挠,冲破社会舆论的谴责,公然与伏伦斯基生活在一起。安娜对自由爱情的执著追求表现出性格的率直和果敢,展示了生机勃勃的生命对平庸的现实环境的顽强反抗。安娜对爱的“无拘无束”的追求决定了其悲剧性的结局。马克思讲过,人的束缚来自三个方面:自然界、人类社会和人自身。安娜的悲剧命运鲜明地体现了马克思的这一论断。本文以此为基点,试图从文学伦理学的角度对安娜?卡列尼娜的人生悲剧进行剖析。 自身情欲的奴隶 安娜的选择体现出人性的迷误。为了实现狭隘的个人情爱,她不惜抛家离子,做了自我情欲的奴隶。列夫?托尔斯泰通过这篇恢弘巨著深刻地揭示出安娜悲剧命运的根源,即非完整的感性人格决定了安娜的悲剧命运。尽管她的人生探索以实现精神的自我追求为目的,但其生命力的发挥

缺乏理性的配合、支撑与调控,结果使得人生随情欲而漂流落得悲惨的结局。 安娜极力追求感性生命的舒展,努力探求生命原生态的存在方式,热切呼唤人性的回归,这种行为方式和人生理解本无可厚非,但并不意味着要完全抛弃哪怕一丁点理性的束缚。安娜在追求精神自由与实践人性解放的同时,矫枉过正地陷入了纵欲的感性误区。她为摆脱社会的枷锁却又陷入另一桎梏,她所追求的自由,是一种自私的自由,是一种毫无顾忌的自由,是一种情感占有欲望的满足。自由并不是简单意义上的我行我素、随心所欲,而是一种理性意义上的积极的生命舒展。如果抛弃理性原则,只认可个人的自由,那么个人的自由很容易构成对另一个人的自由的侵害,对周遭人群利益的伤害,导致矛盾与冲突,并最终使个人的自由变得不牢靠、不稳固。个人自由的实现正像经济学上的帕累托原理所要求的那样必须受到理性的约束,才能保证整体社会的自由的不降低,即个体自由的增加必须以尊重其他相关个体的自由为前提。只有在理性的指导下,每个人寻求自己的自由才会被社会主体所认可。自由必须与理性相结合来展现与实现,这样才能构成道德自律的完整概念。相反,缺乏理性的自由至多算是一种经验的自我,绝非积极意义上的生命舒展。用理性的力量约束自己,实现感性与理性的统一,建立健全的理想人格,才能达到真正自由的状态,才是人类应该追求的最高境界。 实际上安娜追求自我的自由,代价是包括丈夫、儿子在内的环境人的痛苦感受。甚至,她爱伏伦斯基,但也只把他看做自己的私有财产,面对伏伦斯基日渐淡漠的感情,她妒火中烧、不堪忍受、痛不欲生,为占有欲

数学智力题大全_高难度题目集锦

数学智力题大全_高难度题目集锦 导读:我根据大家的需要整理了一份关于《数学智力题大全_高难度题目集锦》的内容,具体内容:激活高数课堂、唤醒学生学习兴趣的最好的办法是向他们提供有吸引力的数学故事、游戏、智力题、笑话、悖论、口诀、诗文等。数学智力题有哪些的呢?本文是我整理数学智力题的资料,仅供参考。... 激活高数课堂、唤醒学生学习兴趣的最好的办法是向他们提供有吸引力的数学故事、游戏、智力题、笑话、悖论、口诀、诗文等。数学智力题有哪些的呢?本文是我整理数学智力题的资料,仅供参考。 数学智力题【经典篇】 (一) 谁把零钱拿走了? 姐姐上街买菜回来后,就随手把手里的一些零钱放在了抽屉里,可是,等姐姐下午再去拿钱买菜的时候发现抽屉里的零钱没有了,于是,她就把三个妹妹叫来,问她们是不是拿了抽屉里的零钱。 甲说:"我拿了,中午去买零食了。" 乙说:"我看到甲拿了。" 丙说:"总之,我与乙都没有拿。" 这三个人中有一个人在说谎,那么到底谁在说谎?谁把零钱拿走了? 答案:丙说谎,甲和丙都拿了一部分。假设甲说谎的话,那么乙也说谎,与题意不符;假设乙说谎,那么甲也说谎,与题意不符。那么,说谎的肯

定是丙了,只有甲和丙都拿零钱了才符合题意。 (二) 题目: 姐姐和弟弟在做一个游戏:他们在桌上摆10枚硬币,轮流从中取走1枚、2枚或者4枚硬币,谁去最后一枚硬币算输。请问:该怎么做才能获得胜利? (三 ) 题目: 四对夫妇坐在一起闲谈,四个女人中,A吃了3个梨,B吃了2个,C吃了4个,D吃了1个; 四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的2倍,丙吃的是妻子的3倍,丁吃的是妻子的4倍.四对夫妇共吃了32个梨。 问:丙的妻子是谁呢? (四) 每个囚徒发一个答题板,在上面写一个自然数。监狱长检查答题板。首先察看是否有相同的数字,如果有,那么,所有填写这个数字的人都要死。察看其余数字,选出其中最小的,填写这个数字的囚徒释放,其余的死。如是三个囚徒,应该怎样填写数字? (五) U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起过桥,而过桥的时候必须持有手

圣彼得堡悖论概述

圣彼得堡悖论概述 圣彼得堡悖论是决策论中的一个悖论。 圣彼得堡悖论是数学家丹尼尔·伯努利(Daniel Bernoulli)的表兄尼古拉·伯努利(Daniel Bernoulli)在1738提出的一个概率期望值悖论,它来自于一种掷币游戏,即圣彼得堡游戏。设定掷出正面或者反面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2的n次方元,游戏结束。按照概率期望值的计算方法,将每一个可能结果的得奖值乘以该结果发生的概率即可得到该结果奖值的期望值。游戏的期望值即为所有可能结果的期望值之和。随着n的增大,以后的结果虽然概率很小,但是其奖值越来越大,每一个结果的期望值均为1,所有可能结果的得奖期望值之和,即游戏的期望值,将为“无穷大”。按照概率的理论,多次试验的结果将会接近于其数学期望。但是实际的投掷结果和计算都表明,多次投掷的结果,其平均值最多也就是几十元。正如Hacking(1980)所说:“没有人愿意花25元去参加一次这样的游戏。”这就出现了计算的期望值与实际情况的“矛盾”,问题在哪里? 实际在游戏过程中,游戏的收费应该是多少?决策理论的期望值准则在这里还成立吗?这是不是给“期望值准则”提出了严峻的挑战?正确认识和解决这一 矛盾对于人们认识随机现象、发展决策理论和指导实际决策无疑具有重大意义。 圣彼得堡问题对于决策工作者的启示在于,许多悖论问题可以归为数学问题,但它同时又是一个思维科学和哲学问题。悖论问题的实质是人类自身思维的矛盾性。从广义上讲,悖论不仅包括人们思维成果之间的矛盾,也包括思维成果与现实世界的明显的矛盾性。对于各个学科各个层次的悖论的研究,历来是科学理论发展的动力。圣彼得堡悖论所反映的人类自身思维的矛盾性,首先具有一定的哲学研究的意义;其次它反映了决策理论和实际之间的根本差别。人们总是不自觉地把模型与实际问题进行比较,但决策理论模型与实际问题并不是一个东西;圣彼得堡问题的理论模型是一个概率模型,它不仅是一种理论模型,而且本身就是一种统计的“近似的”模型。在实际问题涉及到无穷大的时候,连这种近似也变得不可能了。 实验的论文解释 丹尼尔·伯努利对这个悖论的解答在1738年的论文里,提出了效用的概念以挑战以金额期望值为决策标准,论文主要包括两条原理:1、边际效用递减原理:一个人对于财富的占有多多益善,即效用函数一阶导数大于零;随着财富的增加,满足程度的增加速度不断下降,效用函数二阶导数小于零。 2、最大效用原理:在风险和不确定条件下,个人的决策行为准则是为了获得最大期望效用值而非最大期望金额值。

2.5龟兔赛跑悖论古希腊哲学家(数学家)Zeno提出关于运动的4个悖论

2. 5 龟兔赛跑悖论 古希腊哲学家(数学家)Zeno 提出关于运动的4个悖论,是针对当时的对时空的两种对立观点: 1. 时空无限可分(故运动是连续的平稳的); 2. 时空由不可分的小段组成(故运动是不连续的,跳动的,象放电影似的)。 Zeno 的第二悖论:领先者无法被追上。 Zeno 原话:“Achilles (希腊的神行太保)追不上乌龟”。 演绎成如今的“龟兔赛跑悖论”: 设乌龟跑步速度50 m/分,兔子跑步速度100 m/分,乌龟领先100 m ,现赛跑开始。兔子跑了100 m 追到乌龟的领先点,乌龟已经又领先50 m ,兔子再跑了50 m 追到乌龟的第二领先点,乌龟又领先25 m ,如此一直无限追下去,兔子永远追不上乌龟? Zeno 的上述第二悖论是攻击“时空无限可分”的哲学观点的。 即:若时间无限可分,从而有限时间含无限段,无限段时间无法走完。 或者:若空间(长度)无限可分,从而有限空间含无限段,无限段无法走完。 事实上,兔子追了n 次后, 用时: 11111...2(1)222 n n n t -=+++=-(2)<,2n t →分钟, 行走距离:11001001100...200(1)(200)222 n n n s -=+++=-<,200n s →m 。 将2分钟时段分解成无限段:111{1,,...,,...}22 n -,每时段内追不上。 将200m 长度分解成无限段:1100100{100,,...,,...}22 n -,每段内追不上。 但跨过2分钟时间界限(或跨过200 m 的距离界限),兔子就追上乌龟了。 事实上,有限时间2分钟内可以跨越有限长度200 m 的无限可分的无限段。 Aristotle 在驳斥Zero 时也指出:无限性有两种意义:无限可分与无限宽广。有限时间内是可以接触可分意义上无限的东西。 参考书:《古今数学思想》,第一册,P40-42. ? ? ? ? ? 龟 兔 100m 150m 175m

拥有多个A的概率:又一个条件概率悖论

拥有多个A的概率:又一个条件概率 悖论 概率论给我们带来了很多匪夷所思的反常结果,条件概率尤其如此。网络上每一次有人发帖提出与条件概率有关的悖论时,总会引来无数人的围观和争论,哪怕这些问题的实质都是相同的。 来看两道简单的组合数学问题: 1. 四个人打桥牌。其中一个人说,我手上有一个A。请问他手上有不止一个A的概率是多少? 2. 四个人打桥牌。其中一个人说,我手上有一个黑桃A。请问他手上有不止一个A的概率是多少? 这两个问题看起来很像,实际算法大不相同。在第一题问题中, 手上一个A也没有有 C(48,13) 种情况 手上有至少一个A 有 C(52,13) - C(48,13) 种情况 手上恰好有一个A 有 C(48,12) * 4 种情况 手上有至少两个A 有 C(52,13) - C(48,13) - C(48,12) * 4 种情况 根据条件概率公式,手上有超过一个A的概率为(C(52,13) - C(48,13) - C(48,12) * 4) / (C(52,13) - C(48,13)) = 5359/14498 ≈ 37% 在第二个问题中, 手上有黑桃A 有 C(51,12) 种情况 手上没有其它花色的A 有 C(48,12) 种情况 手上还有其它花色的A 有 C(51,12) - C(48,12) 种情况 根据条件概率公式,手上有超过一个A的概率为(C(51,12) - C(48,12)) / C(51,12) = 11686/20825 ≈ 56% 有趣的事情出来了:如果这个人宣布了手中A的花色,他手中有一个以上A 的概率竟然会大大增加。 这怎么可能呢?难道我们上面的计算结果是错误的?事实上,上面的计算并没有错:

论庄子的自由观及在现实社会中的悖论

论庄子的自由观及在现实社会中的悖论 摘要:庄子作为中国道家思想的集大成者,在中国思想史上占有重要地位。他的思想中,色彩最为鲜明的是追求自由,希望人能从困扰人生的生死之限、世俗之礼、哀乐之情中摆脱出来, “逍遥于天地之间”,实现自由。本文主要探究庄子的自由观,庄子自由观的表达方式,进而论述庄子的自由思想,不能实现对个性和自由的实质性承诺与肯定,从逻辑上都是与现实社会相背离的,与个性自由精神相背离的。 关键词:庄子;自由;现实社会;悖论 庄子在中国思想史上,以一种有别于儒家所强调的群体主义精神,独特的个性主义和自由主义思想而著名,一直被认为是个性自由精神的象征,影响极为深远。哲学大家冯友兰老先生最初将老庄的自由与西方的自由观念相对比,他认为,西洋哲学家所讨论的自由,其义是不受决定;而老庄所说的自由,其义是不受限制。①革命斗士鲁迅先生也曾说过“人必发挥自性,而脱观念世界之执持,惟此自性,即造物主。惟有此我,本属自由。”②李泽厚在其文章《庄玄禅宗漫述》中也提到“庄子是最早的反异化的思想家,反对人为物役,要求个体身心的绝对自由”。③从词源学意义上来看,“自由”的基本意义就是免除束缚、不受限制、按己意行事,《辞海》中将自由解释为从被束缚、被虐待中解脱出来。根据以上的分析,本文所指的自由,也是指免除束缚、不受限制之意。 《庄子》一书中,虽没有直接出现自由这两个字,但确实又通过“摆脱束缚”、“不受限制”、“逍遥游”之类词语表达了自由思想,因此可以说《庄子》书中是有“自由”概念的。那么,究竟什么是庄子意义上的自由,庄子是用什么样的词汇、以什么样的方式来表达其自由观念的,以及在现实社会中的地位如何,认识这些问题是解读庄子的关键。 一、庄子自由观的基本内容 (一)顺乎自然是实现自由的基础 “道”是道家哲学的核心概念,研究庄子思想,必须从道入手。虽然庄子与老子并称道家,但庄子极少论道,并且认为道并不神秘,不可捉摸。东郭子曾问庄子道在何方,庄子说:“无所不在”,并做了“每下愈况”的比喻:“在蝼蚁”、“在稊稗”、“在瓦甓”、“在屎溺”④。言下之意,不要把道看得尊贵无比,道就是自然,自然就是道。由此出发,庄子认为人要想自由,就要顺乎自然,反对人为,主张无为,极力降低人在自然界中的地位。庄子认为,从道的观点来看,“万物齐一”,没有什么高低贵贱之分。人,作为天地中的一物,只不过在宇宙的洪流中偶然遭遇了人形而已。《大宗师》里有一则寓言,某工匠在铸造金属器物,金属突然从熔炉里跳出来大叫:“一定要把我铸成一把良剑!”工匠一定会认为这是块不祥的金属。如果人成了人形以后就大喊“我是人!我是人!”造化者一定认为这是不详之人。庄子用寓言告诉人们,不要以为人多么尊贵,人无非是自然中之一物,与猪马牛羊并无区别。在此基础上,庄子强烈反对破坏自然,“牛马四足,是谓天;落马首, ①冯友兰.冯友兰谈哲学[M].北京:当代世界出版社,2006.278. ②鲁迅.鲁迅杂文全集[Z].河南:河南人民出版社,1994.16. ③李泽厚.中国古代思想史论[M].天津:天津社会科学院出版社,2003.167.

色盲悖论

假设:有一个人,他有一种奇怪的色盲症。他看到的两种颜色和别人不一样,他把蓝色看成绿色,把绿色看成蓝色。 但是他自己并不知道他跟别人不一样,别人看到的天空是蓝色的,他看到的是绿色的,但是他和别人的叫法都一样,都是“蓝色”;小草是绿色的,他看到的却是蓝色的,但是他把蓝色叫做“绿色”。所以,他自己和别人都不知道他和别人的不同。 问:怎么让他知道自己和别人不一样? 注:有人说让他水彩画画,比如说画蓝天绿草,他画出来的肯定是绿天蓝草,而别人的是蓝天绿草。 这个回答是错误的,因为:画蓝天时,他脑中想的是绿色,而他拿起的笔也是他脑中的绿色,也就是别人眼中的蓝色,所以他画出来的仍然是大家眼中的蓝天绿草。———————————————————————————————————————— 下面是我见过的一些的解法,由浅到深一一罗列出来,逐个分析。注:为了方便区分,以下凡是用英语标出的颜色,是脱离概念的,是人眼中感觉到的颜色,例如他听到“蓝色”这个词,脑海中浮现的是Green,然后拿起了蓝笔。

1. 首先,这并不是某些人认为的“低水准问题”,以为拿个绿色的牌牌,告诉他“这是绿色”就OK了?人家本来就把绿色的牌牌叫做“绿色”,还用你告诉?像某安焱那种自以为是又到处鄙视别人的,大家无视。2. 有相当一部分人认为他画的就应该是“绿天蓝草”,认为题目的那个“注”是错的。所以我有必要把那个注解再解释一下: 题目说的很清楚,正常的“蓝色”在他眼中是“Green”,但由于这个倒霉蛋对颜色的认知是从别人得来,所以在他口中依然是“蓝色”。 也就是说,正常的“蓝色”,无论是颜色还是字符,他都称之为“蓝色”,只是在他眼中是Green。 结论来了,蓝色的天空、蓝色的画笔、“蓝”这个概念,在他眼里都是同一种颜色(Green)。 同样也有,绿色的草地、绿色的画笔、“绿”这个概念,在他眼里也是同一种颜色(Blue)。 所以让他画天,他心里想的是Green,当然就会拿蓝笔,口中说的也是“拿蓝笔”这句话。绿草也是一样,他画草的时候会拿绿笔。 3. 然后再排除部分人的那种相当不负责任的做法:“给他个绿色的东西,告诉他,这个其实叫做蓝色” 这根本不可行,他完全不知道自己与常人不同,也无法从眼中观察到。

数学上的悖论谬论

这篇关于数学上的悖论谬论的论证的文章是由北大中文系Matrix67所写,读来感觉很有意思,和大家一起分享,来一场头脑风暴。 1=2?史上最经典的“证明” 设a = b,则a·b = a^2,等号两边同时减去b^2就有a·b - b^2 = a^2 - b^2。注意,这个等式的左边可以提出一个b,右边是一个平方差,于是有b·(a - b) = (a + b)(a - b)。约掉(a - b)有b = a + b。然而a = b,因此b = b + b,也即b = 2b。约掉b,得1 =2。 这可能是有史以来最经典的谬证了。TedChiang在他的短篇科幻小说DivisionbyZero中写到: 引用 There is a well-known “proof” that demonstrates that one equals two. It begins with somedefinitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equalstwo. Hidden inconspicuously in the middle is a division by zero, and at that point the proofhas stepped off the brink, making all rules null and void. Permitting division by zero allowsone to prove not only that one and two are equal, but that any two numbers at all—real orimaginary, rational or irrational—are equal. 这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以a - b的,因为我们假设了a = b,也就是说a - b是等于0的。 无穷级数的力量(1) 小学时,这个问题困扰了我很久:下面这个式子等于多少? 1 + (-1) + 1 + (-1) + 1 + (-1) + … 一方面: 1 + (-1) + 1 + (-1) + 1 + (-1) + … = [1 + (-1)] + [1 + (-1)] + [1 + (-1)] + … = 0 + 0 + 0 + …

悖论大全

老虎悖论是博弈论中一个著名的逻辑悖论。 故事 国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王 对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老 虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在 第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。” 悖论分析 如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步? 1.主张错在第一步 如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。 首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推

理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即 囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门 里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。 然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理: 由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。 A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在 这个前提下不可能知道。囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。 B.如果相信国王是会错的: 囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢? 所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要 打开第一个门。 因此,国王应且只应放到第一个门中,则国王必胜。 推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。 2.主张错在第二步 故事中的囚犯最后决定相信“没有老虎”。但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。 既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。前提二、老虎如果在第五扇门时,可预料。前提三、老虎不在第五扇门时,就一定在第四扇门。前提四、老虎如果在第四扇门时,可预料。结论:前提互相矛盾。 请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、 或是更多: A.老虎可预料。 B.老虎如果在第五扇门时,不可预料。 C.老虎不在第五扇门时,也不一定在第四扇门。 D.老虎如果在第四扇门时,不可预料。 二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往 前门推是错误的,因为前提中包含“已经开了三扇空门”)。所以可能性只有一个:老虎可预料。但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。 这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于 一个可能性,结果帮国王圆谎罢了。 3.主张错在最后一步 如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。可以列成以下状况:

一些很有趣的概率学问题

一些很有趣的概率学问题 说到概率,有些好玩的东西不得不提。比如,你知道吗,23个人中至少两个人生日相同的概率竟然超过了1/2;假如你们班上有50个人的话,那更不得了,至少两人生日相同的概率达到97% !如果你会计算这个概率问题的话,你可以亲自证实这一点。本文适宜的读者是知道上述问题怎么算的高中朋友,上述问题也是高中阶段学的一些基本概率知识。 上面的问题都是简单概率,它包含了一个最基本的原则,即使没有系统地学习过,平常人们也都在无形之中使用它:概率等于你要算的东西除以总的数目。比如。我们要计算23个人中任何两个人都不在同一天生的概率。假设2月29 日与其它日期出现概率相同的话(这是为了便于计算我们做出的假设,它有悖于常理),那么它的概率为A(366,23)/366^23。它约为0.493677。因此,至少两人在同一天生的概率为1-0.493677=0.506323。当然,对于“你要算的东西除以总的数目”的认识是片面的,比如“投两个骰子出现的数字和从2到12共有11种可能,问数字和大于10的概率”这一问题的答案并不是2/11,因为这11个点数和出现的概率不是相等的,我们只能从投出的两个数字共6*6=36种情况中进行统计,可能的情况只有(5,6)、(6,5)和(6,6) (不会有人说还有(6,7)之类的吧),答案应该是3/36=1/12。这些都是废话,我不细说了。 但是,你有想过这个问题吗:要是这些数目是无穷的怎么办?换句话说,统计的东西不是“离散”的怎么办?比如看这样一个问题。明天早上我要和MM约会,但是具体见面时间我忘了,好像是8:00-9:00的某个时候。那么我随便在这个时段中选一个时间去等MM,最多等她半个小时,正好能见到MM的概率是多少(假设MM先到的话不会等我)。这个问题和我们平时见到的问题不同的地方在于,它的“情况”是连续的,不是离散的,不能逐一统计数目。咋办呢?我们注意到,我的时间随机取一个,MM的时间随机取一个,对于某些组合我们是有缘分的(这些组合无穷多)。这些组合正好对应了平面区域上的点。就是说,搞一个横坐标表示我的时间,纵坐标表示MM的时间,那么肯定能画出那么一块区域,区域里的所有点(x,y)对应所有我和MM可能相见的组合。任何一个时间组合有多大的可能落在这个区域呢?由于在矩形区域内点(x,y)是均匀分布的,我们只需要计算一个面积之比就行了。下图中显而易见,答案是3/8。 一个类似的问题是Buffon投针实验。有一个人,叫Buffon。他在地板上画了很多间隔相同的平行线,然后叫了一帮狐朋狗友来,把一些长度相同的针扔在地上。然后,他统计有多少针和地板上的线相交,并宣称可以得到圆周率π的值。换句话说,一根针投到间隔相同的平行线中,与平行线相交的概率和π有关。我们时常感到数学的神奇之处,比如当这个π在很多不该出现的场合莫明

布雷斯悖论

在一个交通网络上增加一条路段后,这一附加路段不但没有减少交通延滞,反而所有出行者的旅行时间都增加了,这种出力不讨好且与人们直观感受相背的现象就是所谓布雷斯悖论。最近一项新的研究认为,当交通流量很高的时候,新增一条路线并不会增加出行时间,因为人们都不会走那条新路线。 在交通繁忙的市区,建一条新路,分流拥挤的交通似乎是一个不错的想法,但根据布雷斯悖论,结果正好相反:对于出行的个体来说,往交通网络中增加一条新路线会增加他们所有人的出行时间(如果他们都想通过这条新路抄近道)。这个理论是由迪特里希. 布雷斯于1968年提出,虽然不是一个严格的“悖论“,但针对我们日常生活的情况来说,却是一个非常反常识的发现。 然而,在过去几年里面,科学家们重新分析了布雷斯悖论,发现了如果交通流量进一步增加的话,悖论中提到的现象不会再出现。科学家们推测,在更高的交通流量需求下,由于“群众的智慧”是无穷,新路不会再被使用。 现在,美国马萨诸塞州Amherst大学的教授安娜,则第一次证明了该假设。她推导出的公式标明,交通需求量增加到一定程度会造成新路线的不再使用而不会增加出行时间。换句话来说,就是布雷斯悖论仅仅适用于特定的交通需求量下。 尽管布雷斯悖论本身就是反常识的,那么在更高的交通流量需求下,此悖论的结果会消失掉则是更加反常识的。纳格尼解释到,在交通需求更高的时候,人们通常会想,交通会更加拥挤,于是乎大家应该走走其他更多的路线来分流。 纳格尼说,也许这个结果可以由“群众的智慧”来解释解释。研究普遍认为出行者的行为可以分成两类:第一类是用户自行优化,这类出行者会独立选择他们认为最优的路线;第二类是系统优化,存在一个中央控制器统一指挥交通。仅仅当“用户自行优化”时(换句话说就是“自私”),布雷斯悖论和其相反结论才会发生。但“自行优化“和”自私“结合到一起的时候,一个足够多的人群都在自行优化出行路线,那么所有出行者的的出行时间就被莫名其妙的全局优化了。 纳格尼说:“我觉得,因为交通流量的高需求,出行经过某条特定的路就会增加很多出行时间(因为交通网络的设计和其拓扑结构),久而久之,人们就会在出行时换条路线走走,所以就到达了这个“均衡临界点”,而本来是该布雷斯悖论起作用,结果却正好相反。出行者们也发现了这种“群众的智慧”,当交通流量需求更高的时候,某些十字路口甚至没啥车”。 纳格尼还解释到,和布雷斯悖论相反的结论也是正常的:当交通流量需求足够低的时候,布雷斯悖论就不再成立了。 纳格尼说:“也有其他人研究了交通需求量非常低时候的情况”纳格尼先前的研究也对关于该情况的分析做出了贡献,“布雷斯悖论问题中的新路是设定为吸引人去走,那么在低交通流量需求下,所有出行的人都会

MOOC管理学精要答案

管理学课程简介(一) 1 管理学研究的四大职能不包括()。 A、计划 B、组织 C、控制 D、反馈 正确答案:D 2 德鲁克的管理学思想是以()为导向的。 A、目标 B、过程 C、控制 D、综合 正确答案:A 3 应用型管理学的内容有管理学历史、管理学流派、管理学前沿。()正确答案:× 管理学课程简介(二) 1 管理学所要培养的四个能力不包括()。 A、科研能力 B、应用能力 C、阅读能力 D、沟通能力

正确答案:C 2 问题导向的课堂中以()为主体。 A、教师 B、教材 C、教具 D、学生 正确答案:D 3 下面哪一项不是导向性课程的课程要求()。 A、个人意见 B、课前预习 C、课堂参与 D、多项沟通 正确答案:A 4 问题导向的课堂讨论重点在于逻辑分析。() 正确答案:√ 5 普华永道变革整合小组编著的《管理悖论》是管理学的入门教材。()正确答案:× 管理学课程简介(三) 1 ()是我们组织的基本的社会单元。 A、政府 B、家庭 C、学校

D、军队 正确答案:B 2 下面不属于读书报告内容的是()。 A、著作基本信息 B、作者主要观点 C、问题描述 D、个人心得 正确答案:C 3 政府、企业、慈善机构和学校都是组织。()正确答案:√ 4 成员目标是共同目标的实现基础。() 正确答案:× 组织及其机理(一) 1 创建组织的根本目的是()。 A、达成共同目标 B、单纯盈利 C、对抗其他组织 D、行使行政职能 正确答案:A 2 组织低效、混乱的表现不包括()。 A、资源浪费 B、内部消耗

C、精诚合作 D、争权夺利 正确答案:C 3 研究归纳推理的逻辑被称为归纳逻辑。() 正确答案:√ 4 组织的形成完全依赖于外部环境。() 正确答案:× 组织及其机理(二) 1 影响公司创业的关键因素不包括()。 A、销售渠道 B、共同目标 C、创业团队 D、组织规范 正确答案:A 2 最先开创组织管理理论研究的美国著名管理学家是()。 A、法约尔 B、巴纳德 C、泰罗 D、德鲁克 正确答案:B 3一个组织形成的外围促成因素不包括()。 A、领导人

关于贝特朗悖论

关于贝特朗悖论 从法国学者贝特朗(JoSePh Bertrand)提出贝特朗悖论"至今,已经过了一个多世纪。在这漫长的一百多年中,贝特朗悖论得到了各层次数学爱好者的热切关注,人们穿越时空,从不同的角度对此悖论进行了争论、辨析及交流…… 首先来看一下贝特朗悖论: 在圆内任作一弦,求其长超过圆内接正三角形边长的概率?此问题可以有三种不同的解答: ⑴由f???可预先指定弦的方向???Sf此方 向的直径,只有交直径f 1/4点与3/4点间的弦J 其长才大于内接正三角形边也所有交点是等可能的 '则所求概率为1/2 * (3)弦被其中点位置唯一确定. 只有当弦的中 (2〕由干对■称性T可预先固定弦 的—端"仅当弦与过此端点的切线的 交角在60°?120°之间,其长才合乎 要求?所有方???可能的,则所求 概率为1/3 * 点落在半径缩小了—半的同心圆(圆内接正三 角形的内切凰)内,其长才合乎要求?设中点 位置都是等可能的'则所求概率为H 面对同一问题的三种不同的答案。人们往往这样 来解释: 得到三种不同的结果,是因为在取弦时采用了 不同的等可能性假设:

在第一种解法中则假定弦 的中点在直径上均匀分布;在第二种解法中假定端点在圆周上均匀分布,而第三种解法中又假定弦的中点在圆内均匀分布。这三种答案是针对三种不同的随机试验,对于各自的随机试验而言,它们都是正确的。 三个结果都正确!一一这就是让老师和学生感到迷惑不解的原因。 显然这样的解释是不正确的。 上述解法看似是用了严密的理论来论述,但有的解法与问题的本质是脱节的,即理论是正确的, 但却不合题意:因为不同的解法所阐述的相应点的均匀分布只是一个必要条件,而此问题的条件是在圆内任作一条弦(或是从圆内任取一条弦),所以只有任取的弦与这些相应的均匀分布的点一一对应时,才能使整个的随机试验过程具有等可能性,否则,运用几何概型思想方法求出的结果一定是错误的。找到了问题的本质,我们就容易分析上面三种解法中,哪种解法是错误的了,实际上,找出错误,只要举出一个反例即可,下面我们把目光指向圆心: 第一种解法中,除了圆心外,圆内的点都和唯一的一条弦(与相应的直径垂直)对应,即一一对应。但是,圆心却与无数条弦(即与直径垂直的任何方向都有过圆心的弦,其长度满足题意)对应。这样,圆心一一这个圆内的点与相应的弦就不是一一对应了,为此,用此种思想所构造的试验过程中的基本事件就不是等可能的了,所以运用几何概型思想方法求出的结果也一定是错误的。 有了这种认识,大家会马上发现第三种解法也是不正确的。 而第二种解法,所构造的均匀分布的点是在圆周上,没有圆心,用此种思想所构造的试验过程 中的基本事件是等可能的,所以结果是正确的。

贝特朗概率悖论的解释

贝特朗概率悖论的解释 贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。 我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。 这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下载下来,大家可以自己看:百度百科词条解释 虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。 首先我们看第一种“解法”。 解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。弦与PQ的交点肯定就是落在PQ上的,而NM=1/2PQ,所以此时概率为1/2.

这个解法其实有一个重要前提,那就是弦与PQ的交点在PQ上是均匀分布的。正正是题目中所缺乏的条件,因为圆中任意的弦,这到底怎么个做法?是像这种解法所说的,使其与PQ 交点在PQ上均匀分布么?还是使弦与圆周的交点是任意分布?如果满足后者,就不可能满足前者,满足前者,就不可能满足后者。一个比较明显的说法就是:做几条平行弦,使其在PQ上均匀分布,也就是相互之间的距离相等,我们可以看见,这些弦之间的弧长并不相等,也就是说,在PQ上均匀分布,一定不会在圆周上均匀分布。原题中没有给出这样的条件,解法1加了这么一个条件,显然就有不一样的结果了。 再看解法2. 解法2的思路是,链接OA,在OA两边做弦AM和AN,使其和AO的夹角为30°。在圆中所有的弦中,只有当B点落在弧MN上时,才满足条件,而MN的弧长占据整个弧长的1/3,所以概率为1/3 看了解法1,你就知道这个解法的原因所在了,他正是采用了在圆周上均匀分布这一条件得出的结果。 最后看解法3

世界十大著名悖论

世界十大著名悖论。 来自: 哔。黑猫警嫂。(Dream maker, heart breaker.) 2011-11-30 18:34:34 十个著名悖论的最终解答 (一)电车难题(The Trolley Problem) 引用: 一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 引用完毕。 Das曰: 人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么? 承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。 人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。 那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。 今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应

相关文档
最新文档