医学图像融合算法的应用与研究

医学图像融合算法的应用与研究
医学图像融合算法的应用与研究

参考文

[1]Jr.McCrackenGH.Aminoglycosidetoxicityininfantsandchildren[J].AmJMed,1986,80(6):172-178.[2]中华人民共和国国家药典委员会.中华人民共和国药典,二部[M].北京:化学工业出版社,2005.737.[3]

湛海粼,胡小莉,江

虹.伊文思蓝光度法测定硫酸阿米卡星的

含量[J].分析科学学报,2004,20(2):169-171.

[4]胡小莉,安兰香,刘绍璞,等.同多钨酸-阿米卡星相互作用的共振瑞利散射光谱及其分析应用[J].应用化学,2009,26(5):587-592.[5]

Sánchez-MartínezML,Aguilar-CaballosMP,Gómez-HensA.Selectivekineticdeterminationofamikacininserumusinglong-wavel-engthfluorimetry[J].J.PharmBiomedAnal,2004,34(5):1021-1027.[6]

RamosFernándezJM,Bosque-SendraJM,García-Campa觡aAM,etal.Chemiluminescencedeterminationofamikacinbasedontheinhibitionoftheluminolreactioncatalyzedbycopper[J].PharmBiomedAnal,2005,36(5):969-974.

[7]翟海云,路新卫,吴燕红,等.硫酸阿米卡星的毛细管电泳法快速测定[J].分析测试学报,2008,27(7):769-771.[8]

PappEA,KnuppCA,BarbhaiyaRH.High-performanceliquid

chromatographicassaysforthequantificationofamikacininhumanplasmaandurine[J].Chromatogr,1992,574(1):93-99.[9]

CaturlaMC,CusidoE,WesterlundD.Solid-phaseextractionforthe

high-performanceliquidchromatographicdeterminationofindomethacin,suxibuzone,phenylbutazoneandoxyphenbutazoneinplasma,avoidingdegradationofcompounds[J].Chromatogr,1992,581(1):101-107.[10]王明娟,胡昌勤,金少鸿.硫酸阿米卡星注射液及有关物质的HPLC法分析[J].中国抗生素杂志,2001,26(5):345-347.

[11]

LuW,FernándezBandBS,YuY,etal.Resonancelightscatteringandderivedtechniquesinanalyticalchemistry:past,present,andfuture[J].MicrochimActa,2007,158:29-58.[12]

AntonovL,GergovG,PetrovV,etal.UV-Visspectroscopicandchemometricstudyontheaggregationofionicdyesinwater[J].Talanta,1999,49(1):99-106.

[13]李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用[J].分析化学,1998,26(12):1508-1515.[14]

刘绍璞,蒋治良,孔

玲,等.[HgX2]n纳米微粒的吸收光谱、

Rayleigh散射和共振Rayleigh散射光谱[J].中国科学:B辑,2002,32(6):554-560.

(责任编辑:张学颖)

医学图像融合算法的应用与研究

彬1,郑永果1,马

芳2,东野长磊1

(1.山东科技大学信息科学与工程学院,青岛266510;2.山东电力中心医院内科,济南250001)

【摘

要】目的:不同的医学影像为医生提供不同的医学信息,图像融合技术逐渐成为临床诊断和医学研究的重要手段。方法:

本文采用了一种基于不可分离小波框架的图像融合算法。算法首先对已配准的医学图像进行非分离小波分解,把图像分解成低频和高频子图像,针对高频分量和低频分量不同的特点,采用不同的融合规则对其进行融合,最后进行小波逆变换,得到最终的融合图像。

此外,文中引入了熵、平均梯度,融合均匀度对融合图像进行评价。结果:实验结果表明,本文算法获得的融合图像包含更丰富、更全面的细节信息,优于传统的小波变换方法。结论:采用基于不可分离小波框架的图像融合算法是一种有效的医学图像融合方法,提高了疾病诊断的准确性和正确性。【关键词】小波变换;梅花形采样;医学图像;效果评价【中国图书分类法分类号】TP 391.4

【文献标志码】A

【收稿日期】2010-09-26

Research and application of medical image fusion algorithm

ZHANG Bin ,et al

(College of Information Science and Engineering ,Shandong University of Science and Technology )

【Abstract 】Objective :Doctors can get different details from different medical images because of the different imaging theory of medical

instruments and application ,image fusion become a key means in clinic diagnose and medical research.Methods :This paper adopted an image fusion method based on non-separable wavelet frame transform.Firstly ,having finished the registration ,medical image was decomposed with non-separable wavelet decomposition ,and into low and high frequency sub-image.According to the

作者介绍:张

彬(1981-),男,博士,

研究方向:医学图像融合、图形图像处理等。

基金项目:国家高技术研究与发展计划(“863”计划)项目(编号:2009

AA0627018);

山东省教育厅计划资助项目(编号:J08LJ 10);山东科技大学研究生科技创新基金项目(编号:YCA 100208

)。文章编号:0253-3626(2011)02-0188-04

技术与方法

different characteristics of high frequency and low frequency components,the paper acquire different fusion rule to fuse the images,then through the inverse wavelet transform,we can acquire the fused image.In addition,the paper introduced the entropy,average gradient,uniformity of fusion to evaluate the fused image.Results:The results showed that this method could enhance the detail and brightness information of fused image,which is superior to traditional wavelet transform.Conclusion:It is an effective method of medical image fusion based on the non-separable wavelet framework image fusion algorithm,which could improve the accuracy and validity of disease diagnosis.

【Key words】wavelet transform;quincunx sampling;medical image;evaluate measures

医学图像融合作为信息融合的一个重要领域,已受到学术界的广泛重视。它是当代信息科学、医学影像科学与计算机技术相交叉的一个研究课题,是医学图像处理技术的一个新的研究热点[1]。医学成像模式可分为解剖成像和功能成像两类。前者主要描述人体的形态信息,后者主要描述人体血液流动和人体代谢方面的信息。它们为医学诊断提供了不同模态的图像,各有优缺点。因此,当单一模态的图像所提供的医学信息不能满足辅助诊断与治疗的需求时,可以考虑将不同模态的医学图像进行适当融合,使得解剖信息与功能信息有机结合,在一幅融合图像中同时表达不同模态图像的信息[2]。融合后的图像可以获得比单幅图像更全面、更实用的信息。医学图像融合就是对多幅不同模态的医学图像进行处理,使它们的信息有机结合,提高图像置信度,降低模糊度,最大限度发掘图像的信息资源,为医学诊断、人体的功能和结构等方面的研究提供更充分的信息[3,4]。

近年来,随着小波理论的发展和应用,小波变换在时域、频域突出信号局部特征的能力已被越来越多的人所认可,各种类型的小波变换得到了广泛的应用和发展[5]。小波变换在医学图像融合中的应用也得到了领域学者的普遍重视。目前基于小波变换的融合方法中讨论的多是可分离小波[6]。但是,可分离小波有很多缺点:第一,基于可分离小波分析的方法具有各向异性,使得融合图像中部分边缘信息丢失和某些细节模糊[7];第二,可分离小波的子带分析只局限于水平、垂直和对角3个方向上,方向性较差[8]。

本文针对CT及M RI影像的特征,采用基于梅花形采样离散小波框架变换的方法,克服了基于传统小波变换融合方法的不足。针对高、低频子图像的不同特点,采取不同的融合规则:低频分量采用基于区域能量的融合规则;高频分量采用基于区域平均梯度的融合规则。实验结果表明,采用本文方法可以达到比较好的融合效果。

1梅花形采样离散小波框架

1.1梅花形采样离散小波框架

与图像的可分离小波变换相似,图像的不可分离小波变换也是对图像的低通部分重复进行滤波已经重采样,从而产生新的低通和细节信号[9]。但与其隔行隔列重采样的方式不同,不可分离小波变换利用采样矩阵进行重采样。本文采用一种基于梅花形采样离散小波框架(Quincunx-sampled dis-crete wavelet frame,QSDWF)的融合算法[10],梅花形抽样矩阵如下:

D=

11

1-

1

(1)

它是通过去掉不可分离小波变换中的重采样过程,并且修改滤波器的系数得到的,与传统小波变换相比,它具有近似的平移不变性和较低的冗余度,将其应用到医学图像融合方案中可以快速的得到高质量的融合效果。

1.2QSDWF的特性

QSDWF的具有以下2个特性。第一,具有移不变性。对等尺度下QSDWF的时域分辨率高于DWT,因而移不变性更好[11]。第二,其冗余度及计算复杂度较少。设输入图像大小为N,分解级数为I,相同的图像,基于无下采样离散小波变换的分解系数比离散小波变换多31倍,而QSDWF多出不到2倍,甚至低于双树复小波变换。

2图像融合算法

图1以医学图像为例给出QSDWF算法融合示意图[12]。设A为CT源图像、B为M RI源图像,F为融合后的图像。CT 图像密度分辨率高,显示骨质结构和钙化最佳[13]。M RI图像软组织分辨率比较高,如果对CT图像和M RI图像进行融合,就可以得到骨骼和软组织信息都比较清晰地图像,为临床诊断提供可靠地信息[14]。在图像融合过程中,融合规则及融合算子的选择是图像融合中的关键,规则的好坏直接影响融合图像的速度和质量。本文采用不同的融合规则对高频子图像和低频子图像进行融合处理。

2.1低频系数的融合规则

图像的低频部分包含的平滑概貌信息,也就是大尺度特征[15]。本文采用了基于区域能量的融合规则,选择区域能量较大者作为融合图像的低频信息,即:

LF(i,j)=

LA(i,j)LAE(i,j)≥LBE(i,j)

LB(i,j)LAE(i,j)

)1≤i≤m,1≤j≤n

式中区域能量定义为:

LXE(i,j)=

p

-p

Σq

-q

Σω(p,q)LX(i+p,j+q)(3)

其中X 代表源图像A 或B 。2.2

高频系数的融合规则

高频信息代表了图像边缘等突变的细节信息,对它处理主要是保留边缘等细节信息[16]。平均梯度可以反映图像的细节反差,体现了图像的清晰度。本文采用基于平均梯度的融合准则,选择区域平均梯度较大者作为融合后图像的高频信息,即:

L F B (x ,

y )=L I

i

(x ,y )G I

(R B

)≥G V

(R B

L V i

(x ,y )G I

(R B

)<G V

(R B

(4)

式中平均梯度G 的计算公式如下:G (R )=1

N

x ,y ∈R

Σ△f 2

x

(x ,y )+△f 2y (x ,

y )2

(5)

3

融合评价指标及实验结果分析

3.1

图像融合效果的客观评价准则

本文采用熵、平均梯度和融合均匀度3个指标,从不同

角度客观评价图像融合效果。融合性能评价的准则是:熵值的大小表示图像所包含的平均信息量的多少,熵值越大,融合效果越好[17];

平均梯度具备反映图像细节反差程度和纹理变化特征的功能,同时也反映了图像的清晰度,平均梯度值越大,表明图像越清晰[18];图像融合均匀度的值越小表明融合效果越好[19]

表1图像融合结果的客观性能评价

图像/评价准则熵平均梯度融合均匀度

图2A 1.6672

B 1.3775

C 2.41307.32580.1091

D 2.94367.42800.0857

E 2.95417.59630.0763

F 2.97657.84120.0574

3.2融合实验结果

为了验证本文算法的效果,采用M atlab编程环境,对医学诊断过程中常见的CT与M RI图像进行了融合实验,如图2所示。其中A为CT图像;B为经过严格配准的相应的M RI 图像。对这2幅CT和M RI图像分别采用:基于加权平均融合算法,融合结果如C所示;基于Laplacian塔形融合算法,融合结果如D所示;基于普通小波变换融合算法,融合结果如E所示;本文算法的融合结果如F所示。

CT/M RI图像融合结果的定量评估如表1所示。从视觉效果和评价指标的计算结果来看,本文算法取得了更好的融合效果。

4结论

本文采用的基于梅花形采样离散小波框架的图像融合算法是一种低冗余的融合算法,它具有近似移不变性和较好的频率响应特性等优点,本文将其运用到医学图像融合中,同时应用基于区域能量取大和基于区域平均梯度取大的融合规则。实验结果表明,本文算法有效地保留了原始图像的边缘和纹理特征,避免了融合图像的平均化,从而获得了骨组织和软组织都十分清晰的图像,并且融合后的图像强化了图像的纹理特征,明显改善了图像的视觉效果,为医学诊断提供了更完善的信息。

参考文献

[1]杨立才,刘延梅,刘欣,等.基于小波包变换的医学图像融合方法[J].中国生物医学工程学报,2009,28(1):12-16.

[2]李振华,敬忠良,孙韶媛,等.基于不可分离小波框架变换的多聚焦图像融合算法[J].上海交通大学学报,2005,39(4):557-560.[3]葛雯,高立群.基于非分离小波的多模态医学图像融合算法[J].计算机应用研究,2009,26(5):1965-1967.

[4]刘坤,郭雷,陈敬松.基于区域分割的序列红外图像融合算法[J].红外与激光工程,2009,38(3):553-558.

[5]邓谦,熊邦书,吴开志.基于小波帧变换的多聚焦图像融合算法[J].南昌航空大学学报:自然科学版,2009,23(2):68-72.

[6]陶观群,李大鹏,陆光华基于小波变换的不同融合规则的图像融合研究(英文)[J].光子学报,2004,33(2):221-224.

[7]龙燕,姜威,涂春美.基于正交小波变换的CT/PET医学图像融合[J].计算师工程与应用,2007,43(30):239-241.

[8]徐国荣,刘金涛.基于多小波基的医学图像融合[J].现代电子技术,2009,28(8):112-114.

[9]葛雯,高立群.基于模糊熵和非分离小波变换的图像融合算法[J].计算机科学,2009,36(9):287-289.

[10]李树涛,王耀南.基于树状小波分解的多传感图像融合[J].红外毫秒波学报,2006,28(7):431-434.

[11]陶冰洁,王敬儒,许俊平.基于小波分析的不同融合规则的图像融合研究[J].红外技术,2006,28(7):431-434.

[12]杨波,敬忠良.梅花形采样离散小波框架图像融合算法[J].自动化学报,2010,36(1):12-22.

[13]傅鹂,王丹,吕海翠.一种基于提升小波变换的图像融合新算法[J].微电子学与计算机,2009,26(4):64-66、69.

[14]陈浩,刘艳滢.基于提升小波变换的红外图像融合算法研究[J].激光与红外,2009,39(1):97-100.

[15]顾勇,龙在云,赵艳秋.基于快速整数提升小波变换的医学图像融合[J].数据采集与处理,2008,23(5):575-579.

[16]文明,彭志平,柏玮,等.PET/CT融合图像在体部转移性肿瘤中的诊断价值-与CT、SPECT或PET的比较研究[J].重庆医科大学学报,2006,31(5):742-746.

[17]曾基兵,陈怀新,王卫星.基于改进局部方差的小波图像融合方法[J].计算机工程与应用,2007,43(32):72-74.

[18]李伟,朱学峰.基于第二代小波变换的图像融合方法及性能评价[J].自动化学报,2007,33(8):817-822.

[19]杨粤涛,朱明,贺柏根,等.基于区域分割和非采样Contourlet变换的红外和可见光图像融合[J].激光与红外,2010,40(11):1250-1257.

(责任编辑:冉明会)

谈医学影像的融合(一)

谈医学影像的融合(一) 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。 2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT 检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT 检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 3医学影像融合的关键技术 信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

基于小波变换的图像融合算法研究

摘要 本文给出了一种基于小波变换的图像融合方法,并针对小波分解的不同频率域,分别讨论了选择高频系数和低频系数的原则。高频系数反映了图像的细节,其选择规则决定了融合图像对原图像细节的保留程度。本文在选择高频系数时,基于绝对值最大的原则,低频系数反映了图像的轮廓,低频系数的选择决定了融合图像的视觉效果,对融合图像质量的好坏起到非常重要的作用。图像融合是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。 MATLAB小波分析工具箱提供了小波分析函数,应用MATLAB进行图像融合仿真,通过突出轮廓部分和弱化细节部分进行融合,使融合后的图象具有了两幅或多幅图象的特征,更符合人或者机器的视觉特性,有利于对图像进行进一步的分析和理解,有利于图像中目标的检测和识别或跟踪。 关键词小波变换;融合规则;图像融合

Image Fusion Algorithm Based on Wavelet Transform Abstract In this paper, the image fusion method based on wavelet transform, and for the wavelet decomposition of the frequency domain, respectively, discussed the principles of select high-frequency coefficients and low frequency coefficients. The high-frequency coefficients reflect the details of the image, the selection rules to determine the extent of any reservations of the fused image on the original image detail. The choice of high-frequency coefficients, based on the principle of maximum absolute value, and consistency verification results. The low-frequency coefficients reflect the contours of the image, the choice of the low frequency coefficients determine the visual effect of the fused image, play a very important role in the fused image quality is good or bad. MATLAB Wavelet Analysis Toolbox provides a wavelet analysis function using MATLAB image fusion simulation, highlight the contours of parts and the weakening of the details section, fusion, image fusion has the characteristics of two or multiple images, more people or the visual characteristics of the machine, the image for further analysis and understanding, detection and identification or tracking of the target image. Keywords Wavelet transform; Fusion rule; Image Fusion

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

医学图像融合技术及运用

医学图像融合技术及使用 1医学图像融合技术 1.1图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合 成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多 的有用信息,即1+1>2,这就是图像信息的融合2。 1.2医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。因为融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式 不同,可分为同类方式融合和交互方式融合。同类方式融合(也称单模 融合,mono2mo2dality)是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方式融合(也成多模融合,multi2mo2dality)是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏 器所做的同种检查图像实行融合,可用于对比以跟踪病情发展和确定该检查对该疾病的特异性;单样本空间融合:将某个病人在同一时间内(临床上将一周左右的时间视为同时)对同一脏器所做几种检查的图像 实行融合,有助于综合利用多种信息,对病情做出更确切的诊断;模板融合:是将病人的检查图像与电子图谱或模板图像实行融合,有助于研究某些疾病的诊断标准。另外,还能够将图像融合分为短期图像融合(如 跟踪肿瘤的发展情况时在1~3个月内做的检查图像实行融合)与长期图像融合(如治疗效果评估时实行的治疗后2~3年的图像与治疗后当时的图像实行融合)。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应用中,临床医师还能够根据各种不同的诊断与治疗目的 持续设计出更多的融合方式。

数字图像处理(matlab版)第八章 图像融合算法

第八章图像融合算法 8.1 图像融合技术的发展过程 随着科学的发展和技术的进步,采集图像数据的手段不断完善,出现了各种新的图像获取技术。如今,图像融合方法已经运用于社会的很多领域,像遥感卫星图像,光图像,红外图像,医学图像,尤其是多传感器图像融合应用以来,它已成为计算机视觉,目标识别,机器人以及军事等方面研究的重要方面。

8.2基于小波变换图像融合的基本原理 如果一个图像进行L 层小波分解,我们将得到(3L +1)层子带,其中包括低频的基带和层的高频子带。用代表源图像,记为,设尺度系数和小波函数对应的滤波器系数矩阵分别为,则二维小波分解算法可描述为: j C 3L ,h v d D D D 和(,)f x y 0C ()x Φ()x ΨH G 与11 1 j h j j v j j d j j C HC H D GC H D HC G D GC G +++′ =??′=??′=??′=?j+1(0,1, (1) j J =?(8-1)

小波重构算法为: 基于二维DWT 的融合过程如图1.1所示,ImageA 和 ImageB 代表两幅源图像A 和B ,ImageF 代表融合后的图像,具体步骤如下:(1)图像的预处理: 1h v d j j j j j C H C H G D H H D G G D G ?′′′′=+++(,1, (1) j J J =?(8-2) 图8.1 基于DWT 图像融合过程

①图像滤波 ②图像配准 (2)对ImageA和ImageB进行二维DWT分解,得到图像的低频和高频分量。 (3)根据低频和高频分量的特点,按照各自的融合算法进行融合。 (4)对以上得到的高低频分量,经过小波逆变换重构得到融合图像ImageF。 8.3 融合效果性能评价指标 8.3.1均值和标准差

浅谈多源图像融合方法研究

浅谈多源图像融合方法研究 图像融合已成为图像理解和计算机视觉领域中的一项重要而有用的新技术,多源遥感图像数据融合更是成为遥感领域的研究热点,其目的是将来自多信息源的图像数据加以智能化合成,产生比单一传感器数据更精确、更可靠的描述和判决,使融合图像更符合人和机器的视觉特性,更有利于诸如目标检测与识别等进一步的图像理解与分析。遥感图像融合的目的就在于集成或整合多个源图像中的冗余信息和互补信息,利用优势互补的数据来提高图像的信息可用程度,同时增加对研究对象解译(辨识)的可靠性。 标签:遥感图像图像融合几何纠正空间配准图像去噪 1前言 多源遥感图像融合就是将多个传感器获得的同一场景的遥感图像或同一传感器在不同时刻获得的同一场景的遥感图像数据或图像序列数据进行空间和时间配准,然后采用一定的算法将各图像数据或序列数据中所含的信息优势互补性的有机结合起来产生新图像数据或场景解释的技术。 2多源图像融合的预处理 预处理的主要目的是纠正原始图像中的几何与辐射变形,即通过对图像获取过程中产生的变形、扭曲和噪音的纠正,以得到一个尽可能在几何和辐射上真实的图像。 2.1图像的几何纠正 图像几何校正一般包括两个方面,一是图像像素空间位置互换,另一个是像素灰度值的内插。故遥感图像几何校正分为两步,第一步是做空间几何变换,这样做的目的是使像素落在正确的位置上;第二步是作像素灰度值内插,重新确定新像素的灰度值,重采样的方法有最临近法、双线性内插法和三次卷积内插法。数字图像几何校正的主要处理过程如图1所示。 2.2图像的空间配准 图像数据配准定义为对从不同传感器、不同时相、不同角度所获得的两幅或多幅影像進行最佳匹配的处理过程。其中的一幅影像是参考影像数据,其它图像则作为输入影像与参考影像进行相关匹配。图像配准的一般过程是在对多传感器数据经过严密的几何纠正处理、改正了系统误差之后,将影像投影到同一地面坐标系统上,然后在各传感器影像上选取少量的控制点,通过特征点的自动选取或是计算其各自间的相似性、配准点的粗略位置估计、配准点的精确确定以及配准变换参数估计等的处理,从而实现影像的精确配准。

医学图像融合技术及运用

医学图像融合技术及运用 1医学图像融合技术 图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多的有用信息,即1+1>2,这就是图像信息的融合[2]。 医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。由于融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式不同,可分为同类方式融合和交互方式融合。同类方式融合是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方

式融合是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏器所做的同种检查图像进行融合,可用于对比以跟踪病情发展和确定该检查对该疾病 的特异性;单样本空间融合:将某个病人在 同一时间内对同一脏器所做几种检查的图 像进行融合,有助于综合利用多种信息,对 病情做出更确切的诊断;模板融合:是将病 人的检查图像与电子图谱或模板图像进行 融合,有助于研究某些疾病的诊断标准。另外,还可以将图像融合分为短期图像融合与长期图像融合。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应 用中,临床医师还可以根据各种不同的诊断与治疗目的不断设计出更多的融合方式。 医学图像融合的主要技术方法与步骤 医学图像融合的过程是一个渐进的过程,不同的融合方法有各自具体的操作和处理,但是,不管应用何种技术方法,图像融合一般

基于MATLAB的图像融合算法

基于MATLAB的图像融合算法

基于MATLAB的图像融合算法 摘要 图像融合能够将不同类型传感器获取的同一对象的图像数据进行空间配准。并且采用一定的算法将各图像数据所含的信息优势或互补性有机的结合起来产生新的图像数据。这种新数据具有描述所研究对象的较优化的信息表征,同单一信息源相比,能减少或抑制对被感知对象或环境解释中可能存在的多义性、不完全性、不确定性和误差,最大限度的利用各种信息源提供的信息。 图像融合分为像素级、特征级、决策级三个层次,其中像素级图像融合能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理和理解,它在整个图像融合技术中是最为复杂、实施难度最大的融合处理技术。本文的研究工作是围绕像素级图像融合展开的,针对像素级图像融合技术中需要解决的关键问题,研究了多种像素级图像融合方法。 本论文的主要的研究内容有: 首先介绍了图像信息融合的概念、优势、发展历史和应用领域,并介绍了图像融合的三个层次及常用的空域图像融合方法,空域融合方法有像素平均法、像素最大最小法、像素加权平均法,频域融合方法包括图像的多尺度分解、图像的小波变换、基于小波变换的 图像融合方法。图像的预处理有滤波(邻域平均滤波法、中值滤波法)和图像配准。最后,对于图像融合系统来说,融合图像质量的评价显得特别重要,本文探讨了图像融合质量的评价问题,总结了融合效果的主、客观评价标准,作为本课题性能分析的判断标准。 关键词:图像配准;图像融合;空域融合法;小波变换;评价标准

MATLAB-based image fusion algorithm Abstract The same object gotten from different sensors can be registered spatially by mage fusion. The information advantages or the complements of all the image data can be combined to produce new image data using some fusion algorithms. The new data can describe the optimized information of the studied object. Compared with single information source, the new data can reduce or restrain the ambiguity, the incompleteness, the uncertainty and the error, which may appears in the explanation of the studied object or the environment, and make full use of the information provided by all kinds of resources. Image fusion consists of such three levels as the Pixel level,the feature level and the decision level,among which the Pixel level image fusion can Provide more abundant, accurate and reliable detailed information tha t doesn’t exist on the other levels and It is the most complicated in the whole image fusion techniques and also is the most difficult to implement in the fusion Processing techniques. this dissertation Progresses mainly around the Pixel level image fusion and proposes a variety of Pixel level image fusion techniques according to the key Problems in the Pixel level image fusion techniques. The major research and findings are as follows: First we introduce the concepts,advantages,developments and applications. Three levels of image fusion and image fusion techniques in common use are also reviewed. Airspace Image Fusion such as simple fusion method (pixel average, maximal or minimal pixel selection), Frequency-domain image fusion methods include the multiresolution image fusion techniques based on multi-scale pyramid decomposition, and the image fusion method based on wavelet transform Image Pre-processing like Filter processing (neighborhood average filter, median filtering method) and Image Registration. in the end, evaluation for fusion image is vital to fusion system. This dissertation probes into the image fusion quality assessment and deduces a set of indexes as the criteria to analyze the performances of this discussion. Keywords: Image Registration;Image Fusion;Airspace integration method;Wavelet Transform;Evaluation criteria

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

谈医学影像的融合

科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 [!--empirenews.page--] 3医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的

图像融合的方法研究

东北大学 研究生考试试卷 考试科目:现代信号处理理论和方法______________ 课程编号:_______________________________ 阅卷人:_________________________________ 考试日期:_________ 2011年11月24日________________ 姓名:________________ 朱学欢 _______________________ 学号:____________ 1101139 ___________________ 注意事项 〔?考前研究生将上述项目填写清楚 2?字迹要清楚,保持卷面清洁 3?交卷时请将本试卷和题签一起上交 东北大学研究生院

基于MATLAB的图像融合方法 姓名:朱学欢学号:1101139 一、图像融合算法 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把多个不同模式的图像传感器获得的同一场景的多幅图像或同一传感器在不同时刻获得的同一场景的多幅图像合成为一幅图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术得到的合成图像则可以更全面、更精确地描述所研究的对象。正是由于这一特点,图像融合技术现已广泛地应用于军事、遥感、计算机视觉、医学图像处理等领域中。 数字图像融合是图像分析的一项重要技术,其目的是将两幅或多幅图像拼接起来构成一副整体图像,以便于统一处理,该技术在数字地图拼接、全景图、虚拟现实等领域有着重要应用。虽然Photoshop等图像处理软件提供了图像处理功能,可以通过拖放的方式进行图像拼接,但由于完全是手工操作,单挑乏味,且精度不高,因此,有必要寻找一种方便可行的图像融合方法。Matlab具有强 大的计算功能和丰富的工具箱函数,例如图像处理和小波工具箱包含了大多数经典算法,并且它提供了一个非常方便快捷的算法研究平台,可让用户把精力集中在算法而不是编程上,从而能大大提咼研究效率。 在图像融合中,参加融合的源图像是由不同的传感器或者是同一传感器在不同时刻得到的,所以在进行融合之前需要对图像进行配准和一些预处理操作。在本实验中所提到的参加融合的图像都是经过了配准了的,图像融合的过程可以发生在信息描述的不同层。 聚九左边杵范It (b) 寓M用僱竝舍技倉遵胯于勲钟机 (?) AW CT图倬ex詹M阳图偉側玄乌b的*售丼髭 圈1-5图俅融令校*摩匿単上的庭周 1、图像融合算法的层次分类 图像融合系统的算法按层次结构划分可分为信号级、像素级、特征级和决策级。 信号级融合: 是指合成一组传感器信号,目的是提供与原始信号形式相同但品质更高的信号。

医学图像处理综述参考模板

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

相关文档
最新文档