正确选择减速调速电机额定功率的方法

正确选择减速调速电机额定功率的方法

正确选择减速调速电机额定功率的方法

减速调速电机的额定功率大小必须根据被驱动的负载所需的功率来决定.如果减速调速电机的额定功率选得过小,就会导致减速调速电机起动困难,如果勉强起动工作,也会由于电流超过额定值而会导致减速调速电机过热甚至烧毁.如果减速调速电机的额定功率选得过大,形成“大马拉小车”,虽然能保证生产机械正常运行,但由于减速调速电机长期处于轻载状态,不仅会造成资金和材料的浪费,而且减速调速电机的效率和功率因数都较低,从而白白浪费了电力.

三相异步减速调速电机功率因数和效率随负荷变化情况负荷空载1/4负载1/2负载3/4负载满负载

功率因数0.2 0.5 0.77 0.85 0.89 效率0 0.78 0.85 0.88 0.875

有表可知,减速调速电机带3/4负载时的效率和功率因数都较高.因此,减速调速电机额定功率选得比负载功率稍大较好.目前生产的大部分生产机械都注明了需要配用多大功率的减速调速电机,可以直接按其要求选用.

减速调速电机的额定功率是根据它的发热情况来选择的.在容许的温度范围以内,减速调速电机的绝缘材料的使用寿命一般约为15~25年.如果温度超过了容许值范围,就会使减速调速电机的使用寿命缩短.由于减速调速电机发热情况与负载的大小及运行时间的长短有关.

RV减速机选型的具体方法

关于RV减速机选型的具体方法 机械、电子电器、筑路机械、化工机械、食品机械等行业中,主要起到降低转速,增加转矩的作用,由于减速机的种类繁多,型号各异,很多顾客在购买减速机时很头疼的问题,就是不知道如何选择,东莞台机作为专业生产各种类型减速机的公司,在减速机选型方面拥有颇多经验,所以台机减速机就分享一下关于rv减速机的如何选型: 第一步:根据需求确定减速机类型 减速机的类型很多,如果齿轮传动的类型可分为:蜗杆减速机、圆柱齿轮减速机等。如果按传动级数可分为:双级减速机与单级减速机以及多级减速机。按安装方式可为分:卧式与立式。如按铸造类型可以分为铸铁式与铝合金两种。你的减速机将用到什么地方、需要具备什么功能首先要搞清楚,然后确定自己要的是蜗轮蜗杆减速机、铝合金减速机、还是RV减速机,级数是单级还是双级。 第二步:了解减速机的基本参数 减速机在选型过程中需要知道的几个系数分别是:工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数、电机功率、电机转速、减速机速 第三步:确定减速机的传动比 按照公式:电机转速/工作机转速,根据用户要求的传动比选取接近的公称传动比。

第四步:确定减速机具体参数 计算减速机的中心距、扭矩、键长以及所需电机功率、工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数等等。 第五步:校核减速机的热功率能否通过 热功率=负载功率*环境温度系数*负荷功率系数*公称功率利用系数小于等于减速机功率(没有冷却措施的前提下)。对于圆柱齿轮减速机,只有采用盘状管冷却时,计算减速机功率(盘状管冷却或循环油润滑)大于热功率。因此可以选的减速机的型号,采用油池润滑,盘状水管通水冷却润滑油。如果不采用盘状管冷却,则需另选较大规格的减速机。 以上就关于RV减速机选型的具体要求,台机减速机建议购买减速机首先确定自己是需要什么类型什么型号,才能选择合适的减速机。切忌乱选、盲选,否则会带来严重后果。

(整理)圆柱齿轮减速机减速机的选用

圆柱齿轮减速机减速机的选用 一、概述 执行国家标准JB/8853-2001,硬齿面圆柱齿轮减速机。 适用范围: 1、高速轴转速不大于1500转/分 2、齿轮传动圆周速度不大于20米/秒 3、工作环境温度为-40~45度,如果低于0度,启动前润滑油应预热至0度以上,本减速机可用于正反两个方向运转。 二、特点: 1、齿轮采用高强度低碳合金钢经渗碳淬火而成,齿面硬度达到HRC58-62,齿轮均采用磨齿工艺,要求精度高,接触性好。 2、传动效率高:单级大于96%、双极大于93%、三级大于90% 3、传动平稳,噪音低 4、体积小、重量轻,使用寿命长,承载能力高。 5、便于拆检、便于安装。 三、减速机型号、规格及其表示方法 1、型号:ZDY、ZL Y、ZSY、ZFY圆柱齿轮减速机 2、规格:单级80——560 两级:112——710 三级:160——710 四级:180——800 3、表示方法: 型号—低速级中心距(mm)—公称传动比—装配型式标准号 D表示单级、L表示单级、S表示单级、F表示单级、Y表示采用硬质齿面齿轮 4、转向规定:配置逆止器的减速机只允许单向运转,转向规定为:面对输出轴,输出轴顺时针运转为“S”,逆时针运转为“N”。 四、外形及安装尺寸: 五、减速机承载能力: 减速机输入功率P:为计算功率或台架试验功率,配套电机是必须考虑工况系数和安全系数。减速机转速一般指的是输入轴转速。 六、减速机齿轮的润滑 1、减速机齿轮的润滑,冷却一般采用油池润滑,自然冷却。 当减速机承载功率超过发热功率时,可采用循环油润滑,或采用油池润滑加盘状管冷却,对采用循环油润滑的减速机在停歇时间超过24小时且满载启动时,应在启动前给润滑油。润滑油的牌号(粘度),按高速级齿轮圆周速度或润滑方法选择: 当V小于2.5m/s或当环境温度在35-50度之间时,选中级压齿轮油N320(或VG320,Mo-bi632)。 当V大于2.5m/s,或采用润滑油时,选中级压齿轮油N220(或VG220,Mo-bi630)。 2、轴承的润滑 采用飞溅油润滑,轴承的润滑油品与齿轮润滑油品相同。 七、安装、使用与维护: 1、减速机的输入轴轴线和输出轴轴线,与连接部分的轴线保证同轴,其误差不得大于允许值。对采用三角皮带传输的动力时,三角带轮应通过金切加工以减少不平衡质量。宜采用高强度窄形带传动为佳,这样可以降低振动噪声和提高使用寿命。 2、安装好后,箱体油池内必须注入润滑油,油面应至于油尺规定高度(油标上、下限刻线之间)。 3、减速机在正式使用前,用手转动,必须灵活,无卡住现象,然后进行空载操作,时间不

常用减速器的类型

常用减速器的类型及其应用范围 一、常用减速器的分类 (1)圆柱齿轮减速器(2)圆锥、圆锥——圆柱齿轮减速器(3)蜗杆、齿轮——蜗杆减速器(4)行星减速器(5)摆线轮减速器。 二、减速器的形式 1.按减速级数分:(1)单级减速(2)两级减速〔3〕三级减速 2.按装配形式分:(1)平行轴式(2)垂直轴式(3)同轴式 其中我刚蜗杆、齿轮——蜗杆减速器的装配形式有:蜗杆下置式、蜗杆上置式、蜗杆侧置式、蜗杆——蜗杆式和齿轮——蜗杆式。 SEW减速器的分类 根据承载能力分为:M系列(重型)和MC系列(紧凑型); M系列适用于重载设备选型设计,MC系列是考虑经济性和功能性选型设计; SEW减速器不同规格型号的含义: 1.M3PSF50减速器型号含义 2.MC2PLSF05减速器型号含义 减速器的装配形式 1.M..PSF..、M..PHF..、M..PHT..和MC..PL..02-09减速器的装配形式: 2. M..RSF..、M..RHF、M..RHT.. 和MC..RL..02-09减速器的装配形式: 3. M..PV..10-90和MC..PV..02-09减速器的装配形式: 4. M..RV..10-90和MC2RV..02-09减速器的装配形式: 减速器的选型 1.传动比通过(1)i=n1/n2计算,选择与公称比i N相近的减速器型号; 2.运行功率P k1、P k2和运行扭矩M k2;(2) P k1= P k2/η; (3) P k1= M k2*n2/9550*η;传动效率η,单极η=0.985, 二极η=0.97, 三极η=0.955, 四极η=0.94, 五极η

MWD在煤层气定向井施工中的应用

MWD 在煤层气定向井施工中的应用 郝登峰 (河南省煤田地质局,河南 450053) 摘 要:采用MWD 无线随钻测斜仪施工煤层气定向井,对井眼轨迹的控制以及钻井效率的提高效果十分明显,在做好施工设计的同时要加强钻井参数和实际操作的配合。关键词:MWD 煤层气 定向井 MWD Applications in CBM Construction of Directional Well Hao Dengfeng (Henan Bureau of Coal Geological Exploration,Henan 450053) Abstract:Adopted wireless NWD to directional coalbed methane drilling well,it is obvious to control the well trajectory and improve drilling efficienc y.The co-ordination between drilling parameters and practical opera tion should be enhanced. Keywords:MWD;CB M;directional well MWD 无线随钻测斜仪是通过钻井液的压力脉冲传递井下仪器测取的参数,取消了有线随钻仪的起下电缆作业,大大缩短了测斜时间。主要用于定向井定向造斜、扭方位中随钻监控井眼轨迹,直井段和稳斜段转盘钻井的井眼轨迹控制,大斜度井、水平井井眼轨迹控制。普通煤层气定向井一般采用电子单、多点进行定向,为了加快工程进度,缩短建井周期,缩短钻井液对煤层的浸泡时间,同时有效控制井眼轨迹,就要优选施工措施,采用MWD 无线随钻测斜仪进行定向。现以山西某区块的定向井为例,对该仪器在煤层气井施工中的应用进行分析和研究。 1 地质概况 所施工的煤层气定向井,位于山西省吉县,其构造位置处于鄂尔多斯盆地东南缘晋西挠褶带与渭 北隆起交汇处延川南区块。地层自上而下为:第四系(Q),三叠系中统纸坊组(T 2z),三叠系下统和尚沟组(T 1h)及刘家沟组(T 1l),二叠系上统孙家沟组(P 2s)及上石盒子组(P 2sh),石炭系上统太原组(C 3t),石炭系中统本溪组(C 2b)。 2 主要设备机具 (1)钻机:TSJ-2000 (2)柴油机:12V135/380HP 、6135/150HP 各1台(3)泥浆泵:TWB1200、兰石1000各1台(4)测斜仪器:MWD 系统(技术参数见表1)。主要是通过井下探管测量井下数据,转换成电压脉冲码给功率驱动器,功率驱动器驱动旋转阀脉冲器产生泥浆压力脉冲,泥浆压力脉冲通过压力传感器转换成0~20m A 电流传到数据采集仪,数据采集仪降噪、解码,还原成井斜、方位、工具面等具体数据。 作者简介 郝登峰,男,工程师,毕业于焦作工学院,水文地质与工程地质专业。现从事煤层气钻井施工与技术管理工作。 第7卷第5期 中国煤层气 Vol 7No 52010年10月 CHINA COALBED METHANE October 2010

如何选择减速机

我们需要了解一定的减速机参数,到底哪些参数需要知道呢?这里将详细的说明。决定减速机中热功率的校核的是什么?是周围环境的温度。这是我们需要分析的一个数据,作为减速机,它的内部应该有一个电机,这个电机的级数究竟是多少,合适不合适,它的功率又是什么,也需要我们来做深入的分析,此外,减速机的安全系数如何,大家的安全性可不可以得到可靠保证,更是重中之重,决不可忽视。还有就是减速机在什么设备上来使用,以及使用它可能的一些结果,也是绝对不可以马虎的事项。减速机输出轴的径向力和轴向力的校核,也是需要注意的一点。 电动机的功率.应根据生产机械所需要的功率来选择,而减速机则是根据所要传递的功率或者扭矩,以及工作所需要的转速来选择的。 电动机的功率.应根据生产机械所需要的功率来选择,尽 量使电动机在额定负载下运行。选择时应注意以下两点: (1)如果电动机功率选得过小.就会出现“小马拉大车”现 象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动 机被烧毁。 (2)如果电动机功率选得过大.就会出现“大马拉小车”现 象.其输出机械功率不能得到充分利用,功率因数和效率都不 高(见表),不但对用户和电网不利。而且还会造成电能浪 费。 要正确选择电动机的功率,必须经过以下计算或比较: (1)对于恒定负载连续工作方式,如果知道负载的功率 (即生产机械轴上的功率)Pl(kw).可按下式计算所需电动机 的功率P(kw): P=P1/n1n2 式中n1为生产机械的效率;n2为电动机的效率。即传动效 率。 按上式求出的功率,不一定与产品功率相同。因此.所选 电动机的额定功率应等于或稍大于计算所得的功率。 例:某生产机械的功率为3.95kw.机械效率为70%、如 果选用效率为0.8的电动机,试求该电动机的功率应为多少 kw? 解=P1/ n1n2=3.95/0.7*0.8=7.1kw 由于没有7.1kw这―规格.所以选用7.5kw的电动机。 (2)短时工作定额的电动机.与功率相同的连续工作定额的电动机相比.最大转矩大,重量小,价格低。因此,在条件许可时,应尽量选用短时工作定额的电动机。 (3)对于断续工作定额的电动机,其功率的选择、要根据负载持续率的大小,选用专门用于断续运行方式的电动机。负载持续串Fs%的计算公式为 FS%=tg/(tg+to)×100% 式中tg为工作时间,t。为停止时间min;tg十to为工作周期,而减速机的作用就是来提高力矩,想选好电机必须要知道启动最大力矩

定向井中常用计算方法

定向井施工中常用计算方法 钻井一公司赵相泽编 内部资料..讲课用,错误难免,请误外传 一.定向井剖面专业术语 1.井深:井眼轴线上任一点,到井口地井眼长度,称为该点地井深,也称该点地测量井深或斜深. 2.垂深:井眼轴线上任一点,到井口所在水平面地距离. 3.水平位移:井眼轨迹上任一点,与井口铅垂线地距离.也称该点地闭合距. 4.井斜角:井眼轴线上任一点地井眼方向,与通过该点地重力线之间地夹角. 5.最大井斜角:全井井斜角地最大值. 6.方位角:在以井眼轨迹上任一点为原点地平面坐标系中,以通过该点地正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上地投影线为终边,其所转过地角度称为该点地方位角. 7.造斜率:在定向井中,开始定向造斜地位置叫造斜点.通常以开始定向造斜地井深来表示. 8.井斜变化率:单位井段内井斜角地变化值.通常以两测点间井斜角地变化量与两测点间地井段地长度地比值表示. 9.方位变化率:单位井段内方位角地变化值.通常以两测点间方位角地变化量与两测点间地井段地长度地比值表示. 10.造斜率:表示造斜工具地造斜能力. 11.全角变化率:在单位井段内井眼前进地方向在三维空间内地角度变化. 12.增斜率:井斜角随井深增加地井段. 13.稳斜段:井斜角保持不变地井段. 14.降斜段:井斜角随井深增加而逐渐减小地井段. 15.目标点:设计规定地必须钻达地地层位置.通常以地面井口为坐标原点地空间坐标系地坐标来

表示. 16.靶区半径:允许实钻井眼轨迹偏离设计目标点地水平距离. 17.靶心距:在靶区平面上,实钻井眼轴线与目标点之间地距离. 18.工具面:在造斜钻具组合中,由弯曲工具地两个轴线所决定地那个平面. 19.反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前地工具面与启动后且加压钻进时工具面之间地夹角.反扭角总是工具面逆时针转动. 20.高边:定向井地井底是一个呈倾斜状态地圆平面,称为井底圆.井底圆上地最高点称为高边.从井底圆心至高边之间地连线所指地方向,称为井底高边方向.高边方向上地水平投影称为高边方位,即井底方位. 21.工具面角:是表示造斜工具下到井底后,工具面所在地位置参数.有两种表示方法:一种是以高边为基准,一种是以磁北为基准.高边基准工具面,简称高边工具面,是指高边方向线为始边,顺时针转到工具面与井底圆平面地交线上所转过地角度.磁北基准工具面等于高边工具面角加上井底方位角. 1 / 9 ,示角表,用工具面,工具面所处地位置之角地简称.在定向造斜时,当启动井下马达后22.定向角:是定向工具面. 示角表北工具面面角表示,也可用磁可即为定向工具面角.定向角用高边工具.表示工具面角,工具安置地位置以定向时,当启动井下动力钻具之前,将具23.安置角:是安置工面角地简称.在. 扭角向角加反角在数值上等于定即为安置工具面角.安置处理二.数据. 现场适用于确度较高,特别角角法,平均法计算简单,并且准测1.根据规定,斜数据计算方法为平均法:计算方平均角法;井斜角平平均值,称均是1点井斜角与2点井斜角地式中:αc;方位角值,称为平均方位角与2点方位角地平均是1点φc);(M长(斜深)L是1.2点间地段)(M;长(垂深)H 是1.2点间地垂)(M平位移;S是1.2点间地水)(M上地投影;N是S在北轴)(M地投

电机、减速器的选型计算实例

电机减速机的选型计算 1参数要求 配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s 。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 惯惯2121F F G G F h ++-= 其中: 115009.84900G m g N ==?= 223009.82940G m g N ==?= 110.55002501F m a N ==? =惯 120.53001501 F m a N ==?=惯 所以: 49002940250150 2360h F =-++=

合力产生的力矩: 0.16409 23602 193.6262h M F r Nm =?=? = 其中:r 为链轮的半径 链轮的转速为: 0.5 6.1/0.082 v w rad s r === 6.1 (1/60)58.3/min 22w n r ππ === 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 300051.558.3 d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 44193.62 5.9500.9 d M T Nm i η===? 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

电机减速器的选型计算实例

电机减速器的选型计算 实例 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机减速机的选型计算1参数要求 配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 其中: 所以: 合力产生的力矩: 其中:r为链轮的半径 链轮的转速为: 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为 7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

转换到电机轴的转动惯量为: 惯量比为: 电机选型手册要求惯量比小于15,故所选电机减速器满足要求 减速机扭矩计算方法: 速比=电机输出转数÷减速机输出 ("速比"也称"传动比")知道电机功率和速比及,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

减速机的选型与使用

减速机的选型与使用 一、选型指南 为了选到合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数Fb,使用系数Fb. 减速电机的选用首先应确定一下技术参数:每天工作小时数;每小时启停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件; 减速机通常是根据恒转矩、启停不频繁及常温的情况设计的,其许用输出转矩T由下式确定: T=T出X FB使用系数 T出----------减速电机输出扭矩,FB-------减速电机使用系数 传动比i i=n 入/ n出电机功率P(KW) P=T出*n出/9550*η输出转矩T出(N.m)T出=9550*P*η/n 出式中:n入—输入转速η—减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件:1、T出≥T工作机 2、T=FB总*T工作机式中:FB总—总的使用系数,FB总=FB*FB1*KR*KW FB—载荷特性系数,KR—可靠度系数 FB1—环境问的系数; 二、减速机安装注意事项 安装减速机时,应重视传动中心轴线对中,其误差不得大于所用联轴器的使用补偿量。对中良好能延长使用寿命,并获得理想的传动效率。在输出轴上安装传动件时,不允许用锤子敲击,通常利用装配夹具和轴端的内螺纹,用螺栓将传动件压入,否则有可能造成减速机内部零件的损坏。最好不采用钢性固定式联轴器,因该类联轴器安装不当,会引起不必要的外加载荷,以致造成轴承的早期损坏,严重是甚至造成输出轴的断裂。 减速机应牢固地安装在稳定水平的基础或底座上,排油槽的油应能排除,且冷却空气循环流畅,基础不可靠,运转时会引起振动及噪音,并促使轴承及齿轮受损,当传动联件有凸出物或采用齿轮、链条传动时,应考虑加装防护装置,输出轴上承受较大的径向载荷时,应选用加强型。 按规定的安装装置保证工作人员能方便地靠近油标,通气塞、排油塞。安装就位后,应按次序全面检查安装位置的准确性,各紧固件压紧的可靠性,安装后应能灵活转动。减速机采用油池飞溅润滑,在运行前用户需将通气孔的螺栓取下,换上通气塞。按不同安装位置,并打开油位塞螺钉检查有为线的高度,从油位塞处加油至润滑油从油位塞螺孔溢出为止,拧上油位塞确定无误后,方可进行空载试运转,时间不得少于2小时。运转应平稳,无冲击、振动、杂音及渗油漏油现象,发现异常应及时排除。 经过一定时期应再检查油位,以防止机壳可能造成的泄漏,如环境温度过高或过低时,可改变润滑油的牌号。 三、轴装式减速机的安装 1、减速机与工作机的联接 减速机直接套装在工作机主轴上,当减速机运转时,作用在减速机箱体上的反力矩,又安装在减速机箱体上的反力矩支架或由其他方法来平衡,机直接相配,另一端与固定支架联接 2、反力矩支架的安装 反力矩支架安装在减速机朝向工作机的那一侧,以减小附加在工作机轴上的弯矩。 反力矩支架与固定支撑联接端的轴套使用橡胶等弹性体,以防止发生挠曲并吸收所产生的转矩波动 3、减速机与工作机的安装关系 为了避免工作机主轴挠曲及在减速机轴承上产生附加力,减速机与工作机之间的距离,在不影响正

减速电机的选择

减速电机的选择 由于整个装置的总质量约我60KG,由3个减速电机带动,每个电机所要承载大概20KG的重量,设整个装置向上爬的时速为0.25米每秒,用220V的电源 根据P=F*V 可知要求功率P=20*9.8*0.25=49瓦 所以建议采用功率为49瓦以上的电机 所以选用D140TYD-S60 ,功率56W,转速每分钟60转,电压380V/220V可选,盘式永磁低速电动机 1.滚子链链轮的主要尺寸 链轮的主要尺寸摘自GB1244—85《传动用短节距精密滚子链和套筒链链轮齿形和公差》,适用于与GB1243.1—83《传动用短节距精密滚子链》配用的链轮;等效于ISO606—1982《传动用短节距精密滚子链和链轮》。链轮的基本参数为:链轮的齿数Z,链条的节距P,滚子外径dr,排距Pt。 2.滚子链传动的设计计算 滚子链传动的设计计算步骤及计算式: 已知传动功率P=56W,主动轮转速n1=60r/min,大链轮轴孔直径DK2=80mm与小链轮轴孔直径dK1=40mm 2.1 链轮齿数 小链轮的齿数Z1=9 大链轮的齿数Z2=12 2.2 实际传动比i i=Z2/Z1=12/9=1.33 2.3 计算功率P C P C=K A P/K Z=1×0.056/1.23=0.0455KW 查表11-9[2],K A=1;齿数系数: Kz=(Z1/19)1.08=(9/19)1.08=0.446 2.4 链条节距P 按P C=56W,n1=60r/min,查图9-11],得链节为08A,即P=12.7mm。 2.5 初定中心距a =50mm a o a0p=a0/p=50/12.7=3。937 2.6 链节数 L P=2×a0/p+(Z1+Z2)/2+P/a0(Z2-Z1/2π)2

2直流无刷减速电机的选择.

1.电机的种类与性能分析 1.1、直流电动机 有刷直流电动机的主要优点是控制简单、技术成熟。具有交流电机不可比拟的优良控制特性。在早期开发的电动汽车上多采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。鉴于直流电动机存在以上缺陷,在新研制的电动汽车上已基本不采用直流电动机 1.2、交流三相感应电动机 交流三相感应电动机的基本性能 交流三相感应电动机是应用得最广泛的电动机。其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件。结构简单,运行可靠,经久耐用。交流感应电动机的功率覆盖面很宽广,转速达到12000~15000r/min。可采用空气冷却或液体冷却方式,冷却自由度高。对环境的适应性好,并能够实现再生反馈制动。与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。 1.3、永磁无刷直流电动机 永磁无刷直流电动机的基本性能 永磁无刷直流电动机是一种高性能的电动机。它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景。 永磁无刷直流电动机的不足 永磁无刷直流电动机受到永磁材料工艺的影响和限制,使得永磁无刷直流电动机的功率范围较小,最大功率仅几十千瓦。永磁材料在受到振动、高温和过载电流作用时,其导磁

钻井工程验收标准

Q/B 中国石油化工股份有限公司西北油田分公司企业标准 Q∕SHXB 0022—2015 代替Q∕SHXB0022—2010 钻井工程验收标准 2015-03-30 发布2015-03-30 实施 中国石油化工股份有限公司西北油田分公司发布

前言 本标准是对Q/SHXB0022-2010《钻井工程质量验收标准》第四次修订,修订的主要内容如下: ——将3.1井身质量评定项目中“水平位移”修订为“井底水平位移”。 ——在3.4固井质量评定项目中增加“水泥浆返高”评定内容。 ——将3.5取心质量评定项目中“取心进尺”修订为“全井取心进尺率”。 ——对4.1.1.2井斜角评定标准做出如下规定:以甲方电子多点测量数据为准,无甲方电子多点数据时参考电测数据。 ——对4.1.1.4全角变化率进行修订:全角变化率符合设计要求,全井最大全角变化率应不大于3°/30m,否则井身质量评定为不合格。 ——对表1、表2、表3中明确只对开发井(评价井)、探井(预探井)两大类进行评价,并对各井段井斜角、井底水平位移、各井段井径评价标准进行修订。 ——对4.1.2定向井井身质量评价指标进行了细化。 ——对4.4固井质量评定中细化了环空水泥浆返高的要求,增加了分级箍上下100m封固质量的要求,细化了全井固井质量评定标准。 ——对4.5取心质量评定中,取消对破碎地层的评定内容。 ——对4.6 钻井效率中钻井周期缩短率的考核指标进行调整:井深大于6000m的井优秀等级标准由e ≤-10%调整为e≤-15%;井深小于6000m的优秀等级标准由e≤-15%调整为e≤-20%。 ——对4.7 钻井故障时间率各等级指标进行调整。 ——对5钻井工程验收等级评定标准表9优秀井一项中的“固井质量”栏“≥良好”修订为“优秀”。 本标准由中国石油化工股份有限公司西北油田分公司标准化委员会提出并归口。 本标准由中国石油化工股份有限公司西北油田分公司钻井完井工程管理处起草修订。 本标准主要修订人:刘爱民刘彤张红卫伊尔齐木万长根苟虹朱春林 王沫邹书强赵志国杜欢张厚源 本标准审核人:何伟国马新中李伟杰 本标准所代替标准的历次版本发布情况为: ——Q/SHXB 0022-2005 ——Q/SHXB 0022-2008 ——Q/SHXB 0022-2009 ——Q/SHXB 0022-2010

步进电机选型的计算方法[1]

步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 ◎驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离× 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒]

(2)加/减速运行方式 加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小, 所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 驱动脉冲速度[Hz]= 定位时间[秒]-加/减速时间[秒] ◎电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(T L) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动

减速器的承载能力和选用方法资料

减速器的承载能力和选用方法 选择的减速器必需满足传动比的要求,然后按承载能力选择减速器的型号,再校核起动 转矩和热功率。方法如下: (1) 选用型号 计算功率 式中P1——传递的功率(kW); K A——工况系数; ——要求的输入转速(r/min);

——对应于 时的许用输入功率(kW); n1——承载能力表中靠近的转速(r/min);

P p1——n1时的许用输入功率(kW)。 (2 ) 校核启动转矩 (3) 校核热功率 当减速器不附加冷却装置时 式中P G1——减速器的热功率(kW),对DBZ型DCZ型无需校核; f w——环境温度系数; f A——功率利用系数。 如果满足不了时,则必须增大减速器的型号或增设冷却装置。

例题带式输送机,运搬大块岩石,重型冲击。电机功率P=75 kW,转速n1=1500 r/min。启动转矩T man=955 N·m;所需输入功率P1=62 kW,滚筒转速n2=60 r/min,每天连续 工作24 h露天作业,环境温度40℃, 解(1) 需要的传动比 选择DCY型减速器 (2) 选择型号 根据载荷特性为H0,查表得K A =2.0,每天连续工作24 h,K A应加大10%即K A =2.2。

查表选用DCY280,P1P=160 kW。 (3) 校核启动转矩 (4) 校核减速器的热功率

查表得P G1=124 kW 查表得f W =0.75由 查表得f A =0.79 124×0.75×0.79=73.5 kW>P1=62 kW,符合要求。 锥面包络圆柱蜗杆减速器的承载能力和选用 KWU、KWS型减速器的额定输入功率P P1和额定输出转矩T P2 列于后续表。其条 件是:工作载荷平稳,每日工作8 h,每小时启动10次,启动转矩为输出转矩

减速机选型条件参考

为了选到最合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术 特性,就必须确定一个使用系数f B。 使用系数f B 减速电机的选用首先应确定以下技术参数:每天工作小时数;每小时起停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件。 减速机通常是根据恒转矩、起停不频繁及常温的情况设计的。其许用输出转矩T由下式确定:T=T 出 X f B T出————减速电机输出转矩。 传动比i i=n入/ n出 电机功率P(kw):P=T 出* n 出 / 9550 * η 输出转矩T出(N.m)T 出 =9550* P*η/n出式中:n入——输入转速η——减速机的传动效率。速比=电机输出转数÷减速机输出转数("速比"也称"传动比") 1.知道电机功率和速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式: 电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

减速器是指原动机与工作机之间独立封闭式传动装置,用来降低转速并相应地增大转矩。在某些场合,也有用作增速的装置,并称为增速器。减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成,其基本结构有三大部分:1)齿轮、轴及轴承组合;2)箱体;3)减速器附件。 其常用术语如下: 减速比i:减速器输入转速与输出转速之比。 级数:减速器所含齿轮的套数。采用单套齿轮的称为单级,减速比一般小于10:1, 采用多套齿轮的称为多级,以满足较大的传动比的要求。 效率:指在额定负载情况下,减速器输出功率与输入功率的比值。 额定寿命:指减速器在额定负载下,以额定输入转速运转时的连续工作小时数。 额定转矩:在某一确定输入转速下,可保证减速器额定寿命的安全输出转矩。 极限转矩:减速器可承受的瞬时最大输出转矩。 抗扭刚度:反映整机在额定负载时弹性扭转变形的大小。 回差:也称为“回程间隙”或“背隙”。主要是由齿轮啮合侧隙造成的运动滞后量, 通常在换向时产生。回差反映了齿轮加工和装配的精度水平。 噪音:此数值是在距离减速器一米,输入转速为3000转/分钟,减速器空载正常运行 时的测量值。 如何选用理想减速器: 1、尽量选用接近理想减速比: 减速比=输入转速/输出转速; 2、扭矩计算:对减速机的寿命而言,扭矩计算非常重要,并且要注意加速度的最大 转矩值(TP),是否超过减速机之最大负载扭力; 3、减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以根据自己的 需要来决定; 4、输入轴径不能大于提供的最大使用轴径; 5、根据选择的机型号、负载转距、传动比、输出转速确定所需的电机规格; 6、我公司可承接特殊规格产品的订货,并可为客户提供专用设计服务。

化工反应釜搅拌罐减速机选型说明

化工反应釜搅拌罐减速机选型说明 目前种分罐(∮3500*7000mm(搅拌叶片∮2700,三组叶片,每组3片,正常液位高度6100,底部叶片距离釜底500,顶部叶片距离高液位1000;搅拌轴转速29rpm,搅拌轴直径∮150,)拌采用M10蜗杆减速器(配置7.5kw-6级电机)传动带到搅拌轴搅拌,存在减速器发热、振动大、故障率高、电机电流过载等问题。在目前每罐加8吨晶种的条件下还可基本保持正常运行,若按教授改进意见,每罐晶种加入量提高到18吨(提高125%),将大幅度提高罐内料液粘稠度,增大搅拌时料液内部摩擦阻力和功率消耗,目前配套的M10减速器和7.5kw6级电机将远不能满足加18吨晶种搅拌要求,需要加大搅拌减速器和电机。 氧化铝种分罐有一台从铬铁酸洗搅拌池拆卸的M12减速器(配置7.5kw电机),相对比其他灌上M10减速器的温度低、故障少,可以满足目前加8吨晶种搅拌的需要,但满负荷搅拌时电机电流也达到13安左右。若继续采用M12减速器配置7.5kw电机在加18吨晶种的搅拌罐上搅拌,其承载能力和有效传递功率也将达到极限(M12蜗杆减速器配置电机功率为7.5-11kw,因其传动效率低,有效传递功率5.5-9kw),因此,不建议配置M12和摆线针轮减速器,建议配置承载功率达到11kw的锥齿轮减速器(氯化铬搪瓷反应釜即配置7.5kw锥齿轮减速器)。 齿轮减速器、摆线针轮减速器、蜗杆减速器减速器能耗比较。齿

轮减速器因良好的滚动啮合,其传动效率可以达到95-98%,而蜗杆减速器由于自身滑动摩擦传动的结构,传动摩擦力大,决定了其传动效率只能达到70-82%,摆线针轮减速器由于传动主要为滚动摩擦,传动效率也可达到95-97%。齿轮减速器比蜗杆减速器节能16-40%,对长期连续运转的搅拌罐来说,节能量(节电量)还是很可观的。以一台配置7.5kw电机的蜗杆减速器,每年按300天工作日,每天按平均16小时运转,电机满载率按60%计算,年消耗电21600kwh,若更换为可满足需要的齿轮减速器,平均按20%节电率可节约4320kwh,因此有必要逐步选用传动效率更高、可靠度更好的新型釜用锥齿轮减速机代替部分蜗杆减速机和摆线针轮减速机。摆线针轮减速机的传动效率也可达到95%以上,但由于结构相对比蜗杆减速机和齿轮减速机复杂,内部滚针、滚销、销盘等加工精度较高,维修较困难,维护保养要求高,传递相同功率条件下价格比锥齿轮和蜗杆减速器都高。 因此,从综合以上分析比较,本次氧化铝种分罐减速器尝试采用锥齿轮减速器代替M型蜗杆减速器和摆线针轮减速器。 为适应搅拌罐内加晶种后不同时段、不同晶种量对搅拌转速和功率的需要,以及降低搅拌长期停机后物料沉降到罐底、冷却后粘度增大、或结晶物析出启动阻力增大造成直接启动时电流高电机过载烧毁的问题,可由电气管理部论证增加变频器变频启动及调速的必要性,同时可避免搅拌压住(实际是上述情况下物料阻力增大,电机和减速器过载)人工盘搅拌发生皮带挤伤手指的安全事故。 另外,我公司的所有搅拌罐的搅拌轴在上部都直接和减速器输出

减速器选用的方法

2、减速机的选用: 标准规定减速机的承载能力受机械强度和热平衡许用功率两方面的限制,因此减速机的选用必须通过两个功率表,并校核输入、输出轴伸的径向荷载。 1)减速机的选用系数: 工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数(负载功率/公称功率X100%) 2)减速机的选用 标准规定减速机的承载能力受机械强度和热平衡许用功率两方面的限制,因此减速机的选用必须通过两个功率表。 首先按减速机机械强度许用公称功率选用,如果减速机的实用输入转速与承载能力表中的三档(1500、1000、750)转速之某一档转速相当误差不超过4%,可按该档转速下的公称功率选用相当规格的减速机;如果转速相对误差超过4%,则应按实际转速折算减速机的公称功率选用。然后校核减速机热平衡许用功率。 按机械功率或转矩选择规格(强度校核) 通用减速器和专用减速器设计选型方法的最大不同在于,前者适用于各个行业,但减速只能按一种特定的工况条件设计,故选用时用户需根据各自的要求考虑不同的修正系数,工厂应该按实际选用的电动机功率(不是减速器的额定功率)打铭牌;后者按用户的专用条件设计,该考虑的系数,设计时一般已作考虑,选用时只要满足使用功率小于等于减速器的额定功率即可,方法相对简单。 通用减速器的额定功率一般是按使用(工况)系数KA=1(电动机或汽轮机为原动机,工作机载荷平稳,每天工作3~10h,每小时启动次数≤5次,允许启动转矩为工作转矩的2倍),接触强度安全系数S H≈1、单对齿轮的失效概率≈1%,等条件计算确定的。 所选减速器的额定功率应满足 PC=P2KAKSKR≤PN 式中PC———计算功率(KW); PN———减速器的额定功率(KW); P2———工作机功率(KW); KA———使用系数,考虑使用工况的影响,见表1-1-6; KS———启动系数,考虑启动次数的影响,见表1-1-7; KR———可靠度系数,考虑不同可靠度要求,见表1-18。 目前世界各国所用的使用系数基本相同。虽然许多样本上没有反映出KS\ KR两个系数,但由于知己(对自身的工况要求清楚)、知彼(对减速器的性能特点清楚),国外选型时一般

减速电机的选择方法

减速电机介绍: 交流减速电机采用交流单项电容运转电机,配上一种合适的齿轮减速器,达到某种需要的输出,适合于在低速传动装置中作驱动元件,能起到简化机械结构和降低能耗的作用,按其功能分YY型感应电动机和YN型可逆电动机两种,每种还可以增加无极变速的速度控制功能。部分电机还可配带微型电磁制动器。YY型感应电机适用于按一个方向连续运转的工作场合,如生产流水线、自动机床、印刷机械等。YN型可逆电动机适合于频繁启动或换向运转的场合,如自动售货机、包装机、电压调整器、电动升降机、电动执行器等。 G系列小型齿轮减速电机 产品说明 全封闭全寿命机电一体化设计 硬齿面斜齿传动,低噪声、高效率。 整体结构、重量轻,适应性强。 可附加电磁制动器。 功能说明 输出转速:6.9~460r/min 输出转矩:高至1500Nm 电机功率:0.12~4Kw 安装形式:底脚安装法兰安装 ■微型直流(交流)减速电机 本系列产品是由JB系列微型齿轮减速器、电子调速器、可正反向运行的微型电动机三部分组成的机电一体化产品。整机通过对三大部分的不同组合,可获得不同使用性能的产品。整机既可利用齿轮减速箱获得任意固定转速,也可通过电子调速器达到无级调速的目的。本系列产品由于具备减速范围宽广、力能指标高、使用方便、运行可靠等特点,而被广泛应用于各类小型轻工机械、包装、食品、纺织、化妆(美容)机械、印刷设备、仪器及各种自动化设备、生产流水线上。 JB系列微型齿轮减速器采用高精度齿轮,并配油封,O型环密封式齿轮箱,采用润滑脂浴润方式,具有噪音低,使用寿命长、体积小、功率大等特点。减速范围宽广,减速比1:3~1:1500还可根据用户对转速的特殊要求,另行制作。配用的微型电动机分为:微型交流电动机(单相:220V、110V;三相:220V、380V)ZYT(SZ)系列微型直流电动机(机座号:55~110;电压:12V、24V、48V、110V、220V)。WZJ系列无刷直流电动机。 配用调速器分为:TDK系列交流电子调速器;WK、SK系列直流无级调速器。调速平稳、无爬行现象,且能保证电动机的频繁正反转。 ■YTC齿轮减速电机 本产品是为驱动低速转动机械而设计的,具有出轴转速低、力矩大、效率高、噪声小、振动小、结构紧凑牢固、可靠性强、使用方便等特点。广泛应用于矿山、冶金、制糖、造纸、化工、橡胶、粮油、水泥、陶瓷机械等工厂及基建工地。本产品可借联轴器或正齿轮与传动机构相连接。电动机采用满压直接起动。 产品特点及使用范围: YTC系列减速电动机设计优良、结构紧凑、减速方便、运行可靠、防尘防腐、节能省电、易安装维修。适用于轻工、化工、纺织、矿山、冶金、建材、医疗器械。材料加工、造纸、水泥、化肥、塑料、橡胶、纤维制糖、食品、机械等工业部门作驱动减速的机械设备、仪器之用。

相关文档
最新文档