玻璃钢力学性能测试

玻璃钢力学性能测试
玻璃钢力学性能测试

玻璃钢板层间剪切强度试验

r

o

玻璃钢板层间剪切强度试验只包括玻璃纤维织物增强玻璃钢板材的层间剪切

强度试验。其方法是首先把试样固定于夹具中间,再将其放在试验机上,使试样

受层间单面剪力的作用,直至使试样破坏,根据测量破坏时的载荷,然后计算破

坏时单位剪切面上所承受的载荷值,即为材料的层间剪切强度。

1.试样

(1)试样的形状和尺寸如图2-10 所示。

(2)试样加工时应保证 A、B C、三面相互平行,并与布层垂直。 D面应为

加工面,且D E、F 、面与布层严格平行。受力面A 、C 要不光滑。

(3)试样数量:每组不少于5 个。

2.试验条件

(1)试样制备、试验环境条件和试样状态调节按《试验方法总则》规定。

(2)试验设备接《试验方法总则》规定。

(3)层间剪切夹具见图2-11 。

(4)加载速度为5-15mm/min 。

3.试验步骤(1)试样制备、外观检查和状态调节按《试验方法总则》规定。

(2)将合格试样编号。测量试样受剪面三处的宽度和高度,取算术平均值。

测量精度按《试验方法总则》规定。

(3)将试样装入层间剪切夹具中, A面向上,夹持时以试样能上下滑动为宜,不可过紧。然后把夹具放在试验机上,使受力面A 的中心对准试验机上压板中心。压板的表面必须平整光滑。

(4)对试样施加均匀、连续的载荷,直到破坏。记录破坏载荷。

(5)有明显内部缺陷或不沿剪切面破坏的试样,应予作废。同批有效试样不

足5个时应重作试验。

4.计算

层间剪切强度按式(2-12 )计算:

e

i n 5.试验结果和试验报告按《试验方法总则》规定

玻璃钢板弯曲性能试验

中国玻璃钢综合信息网 日期: 2010-11-20 阅读: 201

 字体:大 中 小 双击鼠标滚屏

玻璃钢板弯曲性能试验包括玻璃纤维织物增强玻璃钢板材弯曲性能试验和短

切纤维增强玻璃钢的弯曲性能试验。

其方法是将试样放在试验机上,采用三点中心加载法,使试样受弯曲,载荷逐渐增加,直到使试样破坏或变形达到规定的挠度,根据测量的载荷及试样弯曲

挠度,可以测定以下弯曲性能:

①在挠度小于或等于规定挠度下呈现最大载荷或破坏的材料,测定其最大载荷下或破坏时的弯曲应力(即弯曲强度)及其挠度。

②在挠度等于规定挠度下不呈现破坏的材料,测定其规定挠度下的弯曲应力。 ③弯曲弹性模量。

④绘制弯曲载荷 挠度曲线。

以上测定的弯曲弹性模量为近似值。

规定挠度下的弯曲应力为:挠度等于1.5 倍试样厚度时的弯曲应力。 1.试样

(1)试样的形状图,如图2-8 和表2-5 所示。

采用矩形截面的条状试样,试样最小长度按下式计算:

2.试验条件

3.试验步骤

(1)试样制备、外观检查及状态调节按《试验方法总则》规定。

(2)将合格试样编号、划线和测量试样中间的工 /3跨距l 内任意三点的宽度和厚度,取算术平均值。测量精度按《试验方法总则》规定。

(3)调节跨距及加载上压头位置,准确至0.5mm 。加载上压头位于支座中间,且使上压头和支座的圆柱面轴线相平行。

跨距l可按试样厚度h 换算而得:l=(16±1)h

①对很厚的试样,为避免层间剪切破坏,跨厚比了l/h 可以取大于16 ,如

32、40.

②对很薄的试样,为使其载荷落在试验机许可的载荷量程范围内,跨厚比

l/h 可以取小于16 ,如取10

(4)将试样放于支座中心位置上(单面加工的试样,加工面朝上),试样的长度方向与支座和加载上压头相垂直。

(5)将测量变形的仪表置于跨距中点处,与试样下表面接触。施加初载(约为破坏载荷的5%),检查和调整仪表,使整个系统处于正常状态。

(6)测定弯曲载荷挠度曲线和弯曲模量时,分级加载,级差为破坏载荷的5%-10% (测定弯曲弹性模量时,至少分5 级加载,所施加载荷不宜超过破坏载荷的50% 。一般至少重复测定3 次,取2 次比较稳定的变形增量)。记录各级载荷和相应的挠度。有自动记录装置时,可以连续加载。

(7)测定弯曲强度时,连续加载。在挠度小于或等于倍试样厚度下1.5倍试样厚度下不呈现破坏的材料,记录该挠度下的载荷。在挠度等于1.5试样厚度下不呈现最大载荷或破坏的材料,记录最大载荷或破坏载荷。

(8)试样呈层间剪切破坏,有明显内部缺陷或在试样中间的1/3 跨距l以外破坏的应予作废。同批有效试样不足 5个时,应重做试验。

4.计算

(1)绘制弯曲载荷挠度曲线。

5.试验结果和试验报告按《试验方法总则》规定

玻璃钢板压缩性能试验

中国玻璃钢综合信息网 日期: 2010-11-20 阅读: 301 字体:大中小 双击鼠标滚屏

玻璃钢板压缩性能试验包括玻璃纤维织物增强玻璃钢板材压缩性能试验和短切玻璃纤维增强玻璃钢板材的压缩性能试验。其方法是将试样放在试验机上,使试样在轴向载荷作用下受到轴向压缩,并使载荷逐渐增加直至破坏。根据测量的载荷及试样的变形,然后计算材料的压缩强度和压缩弹性模量。

1.试样

(1)试样有两种类型,其形状和尺寸见图2-7 和表2-4 。

①Ⅰ型试样为矩形截面的棱柱体。试样厚度h 小于10mm 时,宽度b 均取10±0.2mm ;试样厚度h大于10mm 时,宽度b 取厚度尺寸。Ⅱ型试样为圆柱形,直径不大于16mm 。

②测定压缩强度时,长细比λ取10 。若试验过程中有失稳现象可取6 。

③测定压缩弹性模量时,长细比λ取15 或根据测量变形的仪表而定。

(2)Ⅰ型试样采用机械加工法制备;Ⅱ型试样采用模塑法制备。并要保证试样上下端面互相平行,且与轴线垂直,不平行度应小于试样高度的0.%。

(3)试样数量每组不少于5 个。

2.试验条件

(1)试验环境条件、试验设备按《试验方法总则》规定。

(2)试验机的加载压头应平整、光滑,并具有可调整上下压板平行度的球形支座。

(3)测定压缩强度时、加载速度为1.5-6mm/min 。

(4)测定压缩弹性模量时,加载速度一般为2mm/min 。

3.试验步骤

(1)试样制备、试样外观检查和试样状态调节按《试验方法总则》规定。

(2)将合格试样编号,测量试样任意三处的宽度和厚度,取算术平均值。测量精度按《试验方法总则》规定.

(3)安放试样,使试样的中心线与试验机上、下压板的中心对准。

(4)加载速度按上述规定调好。

(5)测定压缩弹性模量时,在试样高度中间位置安放测量变形的仪表,施加初载(约5% 的破坏载荷),检查并调整试样及变形测量系统,使整个系统处于正常工作状态以及使试样两侧压缩变形比较一致。然后以一定的间隔施加载荷,记录相应的变形值。至少分五级加载,所施加的载荷不宜超过破坏载荷的50%。一般至少重复3 次,取2 次稳定的变形增量。

(6)测定压缩强度时,对试样施加均匀、连续的载荷,直到破坏(或达到最大载荷),记录破坏载荷(或最大载荷)。

(7)有明显内部缺陷或端部挤压破坏的试样,应予作废。同批有效试样,不足5 个时,应重做试验。

计算

4.

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

玻璃钢基本性能

玻璃钢基本性能 概述 玻璃钢是一种用途广泛的纤维复合材料,是以玻璃纤维为增强材料,以合成树脂为基体复合而成的新型工程材料. 玻璃钢的基本性能十分复杂.不同的玻璃纤维和不同的合成树脂所组成的玻璃钢的性能是不相同的,即使采用同一牌号的玻璃纤维和同一牌号的树脂,只要其间的配比不同,其性能(包括力学、物理、化学方面的性能和静态、动态方面的性能)就不会相同.充分了解玻璃钢的基本性能,才能合理地进行玻璃钢结构设计,用其所长,避其所短.玻璃钢的基本力学性能(包括静态和动态的力学性能)是进行玻璃钢结构设计的重要依据.静态力学性能一般是指玻璃钢在某一初始阶段的力学性能,其中最重要的是强度和弹性性能,动态力学性能与时间有关,例如蠕变、疲劳等是玻璃钢材料随着时间延续,在持久载荷或交变载荷作用下所反映出来的特性;冲击性能则是材料在极短的时间内承受载荷的特性.一般玻璃钢工程结构设计大都是选用静态力学性能参数进行设计.但如果不考虑动态力学性能的影响,很可能十分危险.在选用静态力学性能参数的同时,必须充分考虑动态力学性能对实际结构的影响,选择合适的安全系数. 玻璃钢的主要力学性能大致有如下特点: (1)强度和弹性性能的可设计性.因玻璃钢是由玻璃纤维和合成树脂组成的,所以人们可以通过改变这两个组分材料的配比,和改变玻璃纤维的分布方向,在一定范围内获得不同强度和弹性性能的玻璃钢.例如,对于单向受结构,可以采用单向铺层方式,即可将单向玻璃布或玻璃纤维沿受力方向铺设.这种单向铺层方式能够在纤维方向获得很高的强度,而在垂直于纤维方向,则没有多余的强度储备.又如,对于双向受力的结构;可以采用双向铺层和多向铺层方式,并根据双向受力的大小,采用不同双向纤维量分布.对不同方向选用适当的纤维用量,不仅可以使玻璃钢在不同方向具有不同的强度值,也可以使其具有不同的弹性模量. 上述特点所表现出来的强度和弹性的可设计性,使得从事结构设计的研究者也同时参与到材料的设计中去了,这对于结构设计是十分重要的. (2)各向异性性能,玻璃钢在不同方向上具有不同的力学性能,因此是一种各向异性材料. 玻璃钢是由若干个单层板层合起来,构成一个多层的层合板(壳)结构.每一个单层板在

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

力学性能检测试验仪器

力学性能检测试验仪器 一、力学性能检测试验仪器技术参数:最大试验力:5KN负荷传感器容量:0.5T(5KN)(能加配1个或多个其他容量的负荷传感器) ?精度等级:0.5级试验力测量范围:0.4%~100%FS(满量程)试验力分辨率:最大试验力的±1/300000,全程不分档,且分辨率不变。力控制:力控控制速度范围:0.001%~5%FS/s。力控速度控制精度:0.001%~1%FS/s 时,±0.2%;1%~5%FS/s时,±0.5力控保持精度: ±0.002%FS。变形控制:变形控控制速度范围:0.001%~5%FS/s。变形控速度控制精度:0.001%~1%FS/s时,±0.2%;1%~5%FS/s时,±0.5%。变形控保持精度:±0.002%FS。位移控制:位移控控制速度范围:0.0001~1000mm/min。位移控速度控制精度:±0.2%;位移控保持精度:无误差。有效试验宽度:120mm、360mm、410mm三种规格有效拉伸空间:800mm有效压缩行程:800mm控制系统:全微机自动控制。单位选择:g/Kg/N/KN/Lb多重保护:系统具有过流、过压、欠流、欠压等保护;行程具有程控限位、极限限位、软件限位三重保护。出现紧急情况可进行紧急制动。主机结构:门式,结构新颖,美观大方,运行平稳电源:220V 50Hz功率:0.4Kw主机重量:95,130Kg主机外型尺寸:650*360*1600,800*410*1600 ?二、力学性能检测试验仪器使用范围及技术说明:1、适用范围QX-W400 微机控制电子万能试验机为材料力学性能测量的试验设备,可进行金属线材与非金属、高分子材料等的拉伸、剥离、压缩、弯曲、剪切、顶破、戳穿、疲劳等项目的检测。可根据客户产品要求按GB、ISO、ASTM、JIS、EN等标准编制,能自动求取最大试验力,断裂力,屈服力,抗拉强度,抗压强度,弯曲强

材料力学性能检测实训报告

浙江工贸职业技术学院材料工程系实训室 材料力学性能检测实 训报告 院系:材料工程系 专业:机电一体化 班级:1304班 姓名: XXX 学号: 年月日

一、力学拉伸性能检测实训 试验条件:GB/T228 – 2002国家标准金属拉伸试验试样GB 6397-86 试验数据及结果:如表1所示。 表1 低碳钢拉伸试验表 试验数据及结果:如表1-1所示。 表1-1 低碳钢拉伸试验表 试 样材料 试验前断裂后屈服强 度σs (Mpa) 抗拉强 度σb (Mpa) 延伸率 δ 断面收 缩率ΨL0 (mm) D0 (mm) S0 (mm2) L1 (mm) D1 (mm) S1 (mm2) 铸 铁 99.38 9.93 77.40 100.26 9.94 77.36 210.5 184.5 0.9% 0.1% 低碳钢100.16 9.99 78.34 130.30 5.91 27.41 455.1 190.8 30% 65.9% 试样材料 试验前断裂后屈服强 度σs (Mpa) 抗拉强 度σb (Mpa) 延伸 率δ 断面 收缩 率ΨL0 (mm) D0 (mm) S0 (mm2) L1 (mm) D1 (mm) S1 (mm2) 铝合 金 60.49 12.22 117.22 59.9 12.10 114.93 207.1 179.2 1% 2%

低碳钢拉伸试验图 铸铁拉伸试验图 低碳钢、铸铁拉伸试验对比图

二、硬度性能检测实训 (一)维氏硬度 试验条件:GB/T4340 – 1999 (试验力1.98N 加载时间10S ) 试验数据及结果:如表2所示。 表2 维氏硬度值记录 (注:第一次拉伸试验用的铝合金,为下面固溶时效用) (二)布氏硬度 试验条件:(GB/T 231 – 1984)压头直径为5mm 加载时间为15s 62.5kg 试验力 试验数据及结果:如表2-1所示。 表2-1 压痕直径与布氏硬度值记录 试验 材料 试验 次数 硬度值 HV 硬度范围 HV 铝 合 金 1 142.7 139.5 - 143.4 2 143.4 3 139.5 试验 材料 试验 次数 压痕直径 (mm ) 硬度值 HB 硬度范围 HB 镁 合 金 1 2.70 40. 2 39.2 - 40.2 2 2.72 39.6 3 2.73 39.2 试验 材料 试验 次数 压痕直径 (mm ) 硬度值 HB 硬度范围 HB

钢筋力学性能检测报告

00000000000R 有效期限至:2016-04-05 xxx建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第2页共2页) 委托单位/ 委托编号15000697-2 委托日期2015-04-27 施工单位/ 钢材种类热轧带肋钢筋检测日期2015-04-28 结构部位/ 牌号HRB400 报告日期2015-04-29 见证单位/ 见证人/ 证书编号/ 检验性质委托检验 样品编号 公称 直径 (mm) 技术指标要求 序 号 屈服 强度 Re(MPa) 极限 强度Rm (MPa) 伸长 率 A(%) 最大力 下总伸 长率(%) 冷弯实测强度比值 重量 偏差 (%) 生产 厂别 炉号 出产合 格证编 号 代表 数量 (t) 弯心直 径d (mm) 弯曲 角度 a() 结果Rm/Re Re/Re K 屈服 强度 (MPa) 极限 强度 (MPa) 伸 长 率 (%) 最大力 下总伸 长率(%) 重量 偏差 (%) BZ11500392 18 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 475 600 27.0 / 72.0 180 合格 1.26 1.19 -4 三钢/ / 60 2 470 595 27.0 / 72.0 180 合格 1.27 1.18 BZ11500393 20 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 470 600 26.5 / 80.0 180 合格 1.29 1.18 -4 三钢/ / 60 2 475 605 26.0 / 80.0 180 合格 1.27 1.19 BZ11500394 16 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 460 595 27.0 / 64.0 180 合格 1.29 1.15 -4 三钢/ / 60 2 465 590 27.5 / 64.0 180 合格 1.27 1.16 检验依据GB1499.2-2007《钢筋混凝土用热轧带肋钢筋》GB/T228.1-2010《金属材料室温拉伸试验方法》 主要仪 器设备仪器名称:油压万能材料试验机管理编号:YQ-03 规格型号: WI-100 有效期至:2016-01-14 结论样品编号:BZ11500392 样品编号:BZ11500393 样品编号:BZ11500394 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求备注 声明1、报告未盖检测单位“检测报告专用章”无效。 2、复制报告未重新加盖检测单位“检测报告专用章”无效。 3、对报告若有异议,应及时向检测单位提出。 地址 地址:xxxxxxxxxxxxxxxxx(xxx建设工程质量安全监督 站) 邮编:000000 电话:0000-00000000 传真:0000-00000000 批准:审核:校核:检验:

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

玻璃钢的基本性能物理性能

玻璃钢具有密度小,良好的介电绝缘性能和良好的隔热性能以及吸水性、热膨胀性能等。 一、密度: 玻璃钢密度介于1.5~2.0之间,只有普通碳钢的1/4~1/5,比轻金属铝还要轻1/3左右,而机械强度却很高,某些方面甚至能接近普通碳钢的水平。例如某些环氧玻璃钢,其拉伸、弯曲和压缩强复均达到400MPa 以上。按比强度计算,玻璃钢不仅大大超过普通碳钢,而且可达到和超过某些特殊合金钢的水平。
  玻璃钢与几种金属的密度、抗伸强度和比强度比较见表2-6所示. 材料名密度 拉伸强度(MPa ) 比强度 高级合金钢 8.0 1280 160 A3钢 7.85 400 50 L Y12铝合金 2.8 420 160 铸铁 7.4 240 32 环氧玻璃钢 1.73 500 280 聚酯玻璃钢 1.8 290 160 酚醛玻璃钢 1.8 290

160 *比强度:即单位密度下的拉伸强度,也就是材料的抗拉强度与密度之比,用以说明其轻质高强的程度. 二、电性能: 玻璃钢有优良的电绝缘性能,可作为仪表、电机及电器中的绝缘零部件,在高频作用下仍然保持良好的介电性能。在绝缘材料中,用玻璃纤维布代替纸及棉布,可提高绝缘材料的绝缘等级,在用相同树脂的情况下,至少能提高一个等级。玻璃钢占绝缘材料用量的1/3~1/2,。在一些大型电机中,如12.5万KW 电机,要用几百千克玻璃钢作绝缘材料。此外玻璃钢不受电磁影响,而且有良好的透微波性能. 下表几种玻璃钢的介电性能: 玻璃钢种类 介电常数 介电损失角正切 丁苯玻璃钢 3.5~ 4.0 (3.5~5.0)*10-3 DAP玻璃钢 4.0~4.8 (0.9~105)*10-2 聚丁二烯玻璃钢 3.5~ 4.0 (4.5~5.5)*10-3 307聚酯玻璃钢 4.0~4.8 (0.9~1.5)*10-3 6101环氧玻璃钢 4.7~ 5.2 (1.7~2.5)*10-2 三、热性能 玻璃钢有良好的热性能,它的比热大,是金属的2~3倍,导热系数比较低,只是金属材料的1/100~1/1000。

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

玻璃钢力学性能测试

玻璃钢板层间剪切强度试验 玻璃钢板层间剪切强度试验只包括玻璃纤维织物增强玻璃钢板材的层间剪切强度试验。其方法是首先把试样固定于夹具中间,再将其放在试验机上,使试样受层间单面剪力的作用,直至使试样破坏,根据测量破坏时的载荷,然后计算破坏时单位剪切面上所承受的载荷值,即为材料的层间剪切强度。 1.试样 (1)试样的形状和尺寸如图2-10 所示。 (2)试样加工时应保证 A、B C、三面相互平行,并与布层垂直。 D面应为加工面,且D E、F 、面与布层严格平行。受力面A 、C 要不光滑。 (3)试样数量:每组不少于5 个。 2.试验条件 (1)试样制备、试验环境条件和试样状态调节按《试验方法总则》规定。(2)试验设备接《试验方法总则》规定。 (3)层间剪切夹具见图2-11 。 (4)加载速度为5-15mm/min 。 3.试验步骤(1)试样制备、外观检查和状态调节按《试验方法总则》规定。(2)将合格试样编号。测量试样受剪面三处的宽度和高度,取算术平均值。测量

精度按《试验方法总则》规定。 (3)将试样装入层间剪切夹具中, A面向上,夹持时以试样能上下滑动为宜,不可过紧。然后把夹具放在试验机上,使受力面A 的中心对准试验机上压板中心。压板的表面必须平整光滑。 (4)对试样施加均匀、连续的载荷,直到破坏。记录破坏载荷。 (5)有明显内部缺陷或不沿剪切面破坏的试样,应予作废。同批有效试样不足5个时应重作试验。 4.计算 层间剪切强度按式(2-12 )计算:

5.试验结果和试验报告按《试验方法总则》规定 玻璃钢板弯曲性能试验 中国玻璃钢综合信息网日期: 2010-11-20 阅读: 201 字体:大中小双击鼠标滚屏 玻璃钢板弯曲性能试验包括玻璃纤维织物增强玻璃钢板材弯曲性能试验和短切纤维增强玻璃钢的弯曲性能试验。 其方法是将试样放在试验机上,采用三点中心加载法,使试样受弯曲,载荷逐渐增加,直到使试样破坏或变形达到规定的挠度,根据测量的载荷及试样弯曲挠度,可以测定以下弯曲性能: ①在挠度小于或等于规定挠度下呈现最大载荷或破坏的材料,测定其最大载荷下或破坏时的弯曲应力(即弯曲强度)及其挠度。 ②在挠度等于规定挠度下不呈现破坏的材料,测定其规定挠度下的弯曲应力。 ③弯曲弹性模量。 ④绘制弯曲载荷挠度曲线。 以上测定的弯曲弹性模量为近似值。 规定挠度下的弯曲应力为:挠度等于1.5 倍试样厚度时的弯曲应力。 1.试样 (1)试样的形状图,如图2-8 和表2-5 所示。 采用矩形截面的条状试样,试样最小长度按下式计算:

材料力学性能实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___ 指导教师签字:成绩: 实验一金属拉伸实验 Metal Tensile Test 一、实验目的Experiment Objective 1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率 φ的测定方法。 2、掌握金属材料屈服强度σ0.2的测定方法。 3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。 4、简单了解万能实验拉伸机的构造及使用方法。 二、实验概述Experiment Summary 金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。 三、实验用设备The Equipment of Experiment 拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力

实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。液压式万能实验机是最常用的一种实验机。它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。 (一)加载部分The Part of Applied load 这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。其加载方式是液压式的。在机座上装有两根立柱,其上端有大横梁和工作油缸。油缸中的工作活塞支持着小横梁。小横梁和拉杆、工作台组成工作框架,随工作活塞生降。工作台上方装有承压板和弯曲支架,其下方为钳口座,内装夹持拉伸试样用的上夹头。下夹头安装在下钳口座中,下钳口座固定在升降丝杆上。 当电动机带动油泵工作时,通过送油阀手轮打开送油阀,油液便从油箱经油管和进入工作油缸,从而推动活塞连同工作框架一起上升。于是在工作台与大横梁之间就可进行压缩、弯曲等实验,在工作台与下夹头之间就进行拉伸实验。实验完毕后,关闭送油阀、旋转手轮打开回油阀,则工作油缸中的油液便经油管泄回油箱,工作台下降到原始位置。 (二)测力部分The Part of Measuring Force 加载时,油缸中的油液推动工作活塞的力与试样所承受的力随时处于平衡状态。如果用油管和将工作油缸和测力油缸连同,此油压便推动测力活塞,通过连杆框架使摆锤绕支点转动而抬起。同时,摆锤上方的推板便推动水平齿杆,使齿轮带动指针旋转。指针旋转的角度与油压亦即与试样所承受的载荷成正比,因此在测力度盘上便可读出试样受力的量值。 四、试样Sample 拉伸试样,通常加工成圆型或矩形截面试样,其平行长度L0等于5d或10d (前者为长试样,后者为短试样),本实验用短试样,即L0=5d。本实验所用的试样形状尺寸如图1—1所示。 图1-1圆柱形拉伸试样及尺寸

金属材料的力学性能及其测试方法

目录 摘要 (1) 1引言 (1) 2金属材料的力学性能简介 (2) 2.1 强度 (2) 2.2 塑性 (2) 2.3 硬度 (2) 2.4 冲击韧性 (3) 2.5 疲劳强度 (3) 3金属材料力学性能测试方法 (3) 3.1拉伸试验 (3) 3.2压缩试验 (6) 3.3扭转试验 (8) 3.4硬度试验 (11) 3.5冲击韧度试验 (16) 3.6疲劳试验 (19) 4常用的仪器设备简介 (20) 4.1万能试验机 (20) 4.2扭转试验机 (23) 4.3摆锤式冲击试验机 (28) 5金属材料力学性能测试方法的发展趋势 (30) 参考文献 (30)

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend 1引言 材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。 在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且

玻璃钢力学性能

玻璃钢的基本性能——力学性能 玻璃钢的力学性能突出的一点是比强度高,这是金属材料和其它材料无法相比的。 这里,我们要提一下强度的概念。强度通常是指单位面积所能承受的最大荷载,超过这个荷载,材料就破坏了。强度又分为拉伸强度、压缩强度、弯曲强度和剪切强度。例如说聚酯玻璃钢抗拉强度290MP a,是指每平方厘米截面可承受2900Kg的拉力。 玻璃钢轻质高强的性能,来源于较低的树脂密度(浇铸体密度左右)以及玻璃纤维的高抗伸强度(普通钢材的5倍以上)。玻璃钢的密度随着树脂含量的不同而有所不同。从高树脂含量的玻璃毡制品到低树脂含量的玻璃钢缠绕制品(密度),玻璃钢的密度只有普碳钢的1/4-1/5,比铝还轻1/3左右。 玻璃经高温熔融、快速拉成细丝时,由于比表面积增大,玻璃纤维内部及表面就难以存在大缺陷,所以玻璃纤维的强度就非常高,常用的是无碱铝硼硅酸盐纤维,其一般性能如表下所示。 性能:密度(g/cm3 ) 性能数据:性能:折射率(25℃) 折射率(25℃) 性能数据:性能:拉伸强度(MPa)) 性能数据: 100-300 性能:介电常数 102赫兹 性能数据:赫兹 性能:拉伸弹性模量(MPa) 性能数据: 7000 性能:介电常数 106赫兹 性能数据: 性能:断裂时的伸长率(% ) 性能数据: 性能:介电常数 1010赫兹 性能数据: 性能性能数据性能性能数据 泊松比(块玻璃)正切损失 102赫兹 线膨胀系数℃-1 *10-4 正切损失 1010赫兹 比热〔KJ/(Kg/.K)〕 体积电阻(Ω·cm ) 体积电阻(Ω·cm ) 1011-1013 导热系数〔W/m·K)〕 声速m/s 声速m/s 5500

玻璃钢的物理性能.doc

玻璃钢的物理性能 玻璃钢具有密度小,良好的介电绝缘性能和良好的隔热性能以及吸水性、热膨胀性能等。 一、 密度: 玻璃钢密度介于1.5~2.0之间,只有普通碳钢的1/4~1/5,比轻金属铝还要轻1/3左右,而机械强度却很高,某些方面甚至能接近普通碳钢的水平。例如某些环氧玻璃钢,其拉伸、弯曲和压缩强复均达到400MPa 以上。按比强度计算,玻璃钢不仅大大超过普通碳钢,而且可达到和超过某些特殊合金钢的水平。玻璃钢与几种金属的密度、抗伸强度和比强度比较见表2-6所示. 表2-6 *比强度:即单位密度下的拉伸强度,也就是材料的抗拉强度与密度之比,用以说明其轻质高强的程度. 二、电性能:

玻璃钢有优良的电绝缘性能,可作为仪表、电机及电器中的绝缘零部件,在高频作用下仍然保持良好的介电性能。在绝缘材料中,用玻璃纤维布代替纸及棉布,可提高绝缘材料的绝缘等级,在用相同树脂的情况下,至少能提高一个等级。玻璃钢占绝缘材料用量的1/3~1/2,。在一些大型电机中,如12.5万KW 电机,要用几百千克玻璃钢作绝缘材料。此外玻璃钢不受电磁影响,而且有良好的透微波性能. 下表几种玻璃钢的介电性能: 三、热性能 玻璃钢有良好的热性能,它的比热大,是金属的2~3倍,导热系数比较低,只是金属材料的1/100~1/1000。 此外,某些品种玻璃钢的耐瞬时高温性能也十分突出,如酚醛型高硅氧布玻璃钢,在遇极高温度时,产生碳化层,可有效地保护火箭、导弹及宇宙飞船在穿过大气层时需要承受的5000~10000K 高温及高速气流的作用。 表2-8列出了几种材料的热性能。

由表2-8可以看出,玻璃钢具有良好的热绝缘性能,这是金属材料无法比拟的。 四、耐老化性能 任何材料都存在老化问题,玻璃钢也不例外,只是速度和程度不同而已。玻璃钢在大气曝晒、湿热、水浸泡及腐蚀介质等作用下,性能有所下降,在长期使用过程中会使光泽减退、颜色变化、树脂脱落、纤维裸露、分层等现象。但随着科学技术进步,人们可以采取必要的防老化措施,改善使用性能,提高产品的使用寿命。例如玻璃钢放在哈尔滨地区进行自然老化试验,板材拉伸强度下降最少,小于20%;弯曲强度次之,一般不超过30% ;压缩强度下降最多,波动也最大,一般为25%~30% 。见下表所示。

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

玻璃钢化学成分

玻璃钢化学成分 玻璃钢的种类较多,其化学成分和力学一物理性能不同,那它有什么化学成分呢?以下是本人要与大家分享的:玻璃钢化学成分,供大家参考! 玻璃钢化学成分一 玻璃纤维对各种腐蚀介质(水、蒸汽、弱碱溶液及化学试剂等)的抵抗能力是玻璃纤维化学稳定性的标志.玻璃纤维除氢氟酸(HF)、浓碱(NaOH)、浓磷酸外,对所有化学药品和有机溶剂都有良好的化学稳定性.化学稳定性在很大程度上决定了各种纤维的使用范围. 1.腐蚀介质对玻璃纤维制品的腐蚀情况 根据网络结构假说可知,二氧化硅四面体相互连结构成玻璃纤维结构的骨架,是很难与水、酸(H~P03,HF除外)起反应的.同时在玻璃纤维结构中还有Na+,ca2·L,K+等金属离子及SiO:与金属离子结合的硅酸盐部分.当腐蚀介质与玻璃纤维制品作用时,大多是溶解玻璃纤维结构中的金属离子或破坏硅酸盐部分;但在浓碱溶液、氢氟酸、磷酸等作用下,将导致玻璃结构的全部溶解。 2.影响玻璃纤维化学稳定性的因素 (1)玻璃纤维的化学成分. 中碱玻璃纤维对酸的稳定性是较高的,但对水的稳定性较差;无碱玻璃纤维和中碱玻璃纤维,从弱碱液对玻璃纤维强度的影响看,二者的耐碱性相近.中碱纤维中所含的Na:O 和K:O,比无碱纤维高二十多倍.受酸作用后,一开始从表面上有较多的碱金属氧化物浸析出来,但主要是Na:O和K:O 的离析与溶解;同时酸与玻璃纤维中的硅酸盐作用生成硅酸,

硅酸又能迅速聚合并凝成胶体,在玻璃表面上形成一层极薄的氧化硅保护膜.这层膜使酸的浸蚀与离子交换过程迅速减缓, 强度下降也缓慢,实验证明Na:O和K:O有利于这层保护膜 的形成.所以,中碱纤维比无碱纤维的耐酸性好,水与玻璃纤 维作用,首先是浸析玻璃纤维表面的碱金属氧化物,主要是Na:O,K:O的溶解,使水呈现碱性.随着时间的增.加,玻璃 纤维与碱液继续作用,直至使二氧化硅骨架破坏.由于无碱玻 璃纤维的碱金属氧化物含量较低,因此其对水的稳定性较高. 无碱纤维与中碱纤维受到NaOH溶液侵蚀后,几乎所有玻璃成 分(包括Si02)都均匀溶解,使纤维变细,但随浸碱时间的增加,各化学成分的相对含量基本不产生变化,即内部结构并未破坏,因而强度基本不变.例如测试100根单丝在11—17~C温度下,在5gG的NaOH溶液中浸泡后直径的变化发现无碱纤维 单丝直径平均值从10.97gtm降为10.48[tm;中碱单丝直径从11,54[tm降为11.1[tm.两种纤维强度下降幅度相接近.总之,玻璃纤维的化学稳定性主要取决于其成分中的二氧化硅及碱金属氧化物的含量. (2)纤维表面情况对化学稳定性的影响. 玻璃是一种非常好的耐腐蚀材料,但拉制成玻璃纤维后,其化学稳定性远不如块状玻璃,这主要是由于玻璃纤维的表面积大所造成的.例如,一克重的2mm厚的玻璃,只有5,lcm2表面积,而一克玻璃纤维的表面积则有3100cm2,表面积增大608倍,也就是说玻璃纤维受侵蚀介质作用的面积比块状玻璃大608倍,因此,玻璃纤维的耐腐蚀性能比块玻璃差很多. (3)侵蚀介质体积和温度对玻璃纤维化学稳定性的影响. 温度对玻璃纤维的化学稳定性有很大影响,在100~C

(完整word版)玻璃钢的制备及力学性能测试

玻璃钢的制备及力学性能测试 姓名:他雪峰学号:130242119 手糊成型工艺属于低压成型工艺,所用设备简单,投资少,见效快,有时还可以现场制作某些制品,方便运输,所以在经常被用来解决一些临时的﹑单件的生产问题。 手糊成型工艺的最大特点是灵活,适宜于多品种﹑小批量生产,复合材料专业的学生掌握手糊工艺技术很有必要。 一.实验目的 1.选择适合的树脂配方; 2.掌握手糊成型工艺的技术要点﹑操作流程和技巧; 3.合理剪裁玻璃布和铺设玻璃布; 4.进一步理解不饱和聚酯树脂和胶衣树脂配方﹑凝胶﹑脱模强度﹑富树脂层等物理概念和实际意义; 5.复合材料的结构表征与力学性能测试; 二.实验内容 1.选择适合的树脂配方; 2.按制作要求剪裁玻璃布; 3.手糊工艺操作; 4.脱模并修毛边,如有可能还可装饰美化; 5.对自己手糊制品进行力学性能测试; 三.实验原理 实验学习选择合理的配方﹑合理的固化制度。不饱和聚酯树脂中的苯乙烯既是稀释剂又是交联剂,在固化过程中不放出小分子,所以手糊制品几乎90%是采用不饱和聚酯树脂。四.实验仪器和药品 1.手糊工具:辊子﹑毛刷﹑刮刀; 2.模具制作:盒子﹑刮本﹑砂纸﹑木工工具;

3.树脂﹑引发剂﹑促进剂﹑颜料﹑脱膜膏等; 五.实验步骤 1.选择一个合理的树脂配方和固化制度 (1)对所用树脂配方最重要的要求有两条:一是在加热过程和固化反应中不挥发或不放出可挥发的小分子;二是温度在Tg 下它的粘度较小,或随温度逐渐升高粘度变大缓慢,否则,得不到好的树脂浇注体样品。 (2)配方:不饱和聚酯树脂100份(质量份),固化剂3份(质量份),促进剂2份(质量份)。 (3)固化制度:手糊完成以后,固定好固化模具,放在室温条件下固化一周使其成型。 2.固化模具、脱模剂、表面粘、玻璃布的准备 我们此次手糊成型采用两块正方形钢板作为模具,脱模具采用聚酯薄膜,裁剪聚酯薄膜时比钢板宽1~2cm ,而表面粘和玻璃布跟钢板宽度相当。 3.手糊成形试验操作 (1)在一片钢板上铺上聚酯薄膜。 (2)配制胶衣树脂(按不饱和聚酯树脂常规配方,胶衣树脂也是不饱和聚酯树脂的一种),首先在模具表面涂刷一层胶衣树脂,保证400g/m 2—500g/m 2的用量,稍候,观察胶衣树脂即将凝胶时,将表面毡轻轻铺放于模具表面,注意不要使表面毡过分变形,以贴合为宜。 (3)取引发剂(1.38g )与不饱和聚酯树脂(46g )按比例配合搅匀,然后再加入促进剂(0.92g ),搅匀,马上淋浇在表面毡上,并用毛刷正压(不要用力刷涂,以免表面毡走样),使树脂浸透表面毡,观察不应有明显气泡。这一层是富树脂层,一般应保证65%以上的树脂含量。 (4)待表面毡和树脂凝胶时马上铺上第一层玻璃布,并立即涂刷树脂,一般树脂含量约50%:紧接着第二层﹑第三层依次重复操作,注意玻璃布接缝错开位置,每层之间都不应有明显气泡,即不应有直径1mm 以上的气泡。 (5)最后外层是否需要使用表面毡应视制品要求。 (6)手糊完毕后需待玻璃钢达一定强度后才能脱模,这个强度定义为能使脱模操作顺利进 46g m 400g/S )(m 2=?=(模具)胶衣树脂

相关文档
最新文档