激光光学 激光束的传输变换和光束质量控制1-50

激光光学 激光束的传输变换和光束质量控制1-50
激光光学 激光束的传输变换和光束质量控制1-50

(完整word版)基于ZEMAX的激光扩束镜的优化设计

光学软件设计 实验报告: 基于ZEMAX的激光扩束镜的优化设计 姓名: 学号:2011146211

一、实验目的 学会使用ZEMAX软件对多重结构配置的激光束扩大器进行优化设计。 二、实验要求 1、掌握使用多重结构配置。 2、进一步学习构建优化函数。 三、实验内容 设计一个激光扩束器,使用的波长为1.053um,输入光束直径为100mm,输出光束的直径为20mm,且输入光束和输出光束平行。要求只使用两片镜片,设计必须是伽利略式的(没有内部焦点),在镜片之间的间隔必须不超过250mm,只许使用1片非球面,系统必须在波长为0.6328um时测试。 1、打开ZEMAX软件,关闭默认的上一个设计结果,然后新建一个空白透镜。 2、在IMA面(像平面)前使用insert插入4个面,输入相关各面的厚度、曲率半径和玻璃类型值。 3、点击Gen设置入瞳直径为100,点击Wav设置波长为 1.053微米。

4、在主菜单Editors里构建一个优化函数,将第一行操作数类型改为REAY,surf输入5,Py输入1,taiget输入10,weight输入1。 5、在评价函数编辑窗中选工具—默认优化函数。选reset,将“开始在”的值设置为2,

确定。 6、点击Opt进行优化,优化后生产OPD图。

7、将第一面的conic设置为变量(control+z)。再次进行优化,重新生产OPD图并观察。 8、将三个曲率和圆锥西数的变量状态去掉。 9、点击Wav重新配置光波长,将之前的1.053改为0.6328,确定后再次更新OPD图并分析。

10、将第二面的厚度250mm设为可变,然后再次点击Opt优化,重新生成OPD图。此时去掉第二面的可变状态。 11、从主菜单—编辑中调出多重结构编辑窗,在这个窗口的编辑菜单中选“插入结构”来插入一个新的结构配置,双击第一行第一列,从下拉框中选wave,在同样的对话框里为wavelength选择1,确定。在config1下输入 1.053,在config2下输入0.6328。

拉盖尔高斯光束经透镜传输光场计算

成绩评定表 学生姓名吴宪班级学号1109020117 专业光信息科学 与技术课程设计题目拉盖尔高斯光束经 透镜传输光场计算 评 语 组长签字: 成绩 日期20 13 年12 月 27 日

学院理学院专业光信息科学与技术 学生姓名吴宪班级学号1109020117 课程设计题目拉盖尔高斯光束经透镜传输光场计算 实践教学要求与任务: 要求: 1)角向节线0,径向节线2的拉盖尔高斯光束(共焦参数=12000倍波长)通过薄透镜; 2)薄透镜(前置圆形光阑)焦距=1500倍波长,光腰在透镜处; 3)光阑半径=120倍波长。 任务: 1)计算该拉盖尔高斯光束经过薄透镜后时的轴上光强变化,分析焦点变化; 2)计算该拉盖尔高斯光束经过薄透镜前时的径向光强变化,计算截断参数; 3)计算该拉盖尔高斯光束经过薄透镜后的径向–轴向光强变化; 4)撰写设计论文。 工作计划与进度安排: 1. 第一周教师讲解题目内容、任务和论文要求,学生查阅资料,星期四提出设计方案; 2. 第一周星期四到第二周星期三(包括星期六星期日)完成设计; 3. 第二周星期四上交论文; 4. 星期四教师审查论文,合格者星期五论文答辩。 指导教师: 2013年月日专业负责人: 2013年月日 学院教学副院长: 2013年月日

目录 摘要 (4) 设计原理 (5) 一.普通球面波的传播规律 (5) 二.高斯光束的基本性质及特征参数 (6) 三.柯林斯(Collins)公式 (7) 四.基模高级光束的特征参数 (6) 计算结果10 一. 计算该拉盖尔高斯光束经过薄透镜前时的轴上光强变化,分析焦点变化 (10) 二. 计算该拉盖尔高斯光束经过薄透镜前时的径向光强变化,计算截断参数 (11) 三.计算该拉盖尔高斯光束经过薄透镜后的径向–轴向光强变化 (12)

激光二极管光束整形技术

文章编号:100123806(2003)0420357205激光二极管光束整形技术 郭明秀1 沈冠群2 陆雨田1 (1中国科学院上海光学精密机械研究所,上海,201800) (2上海市激光技术所,上海,200233) 摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。 关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类号:TN24814 文献标识码:A The technology of laser diode beam shaping Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1 (1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800) (2Shanghai Institute of Laser Technology ,Shanghai ,200233) Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD );laser diode array (LDA );beam shaping ;Lagrange invariant 作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。 收稿日期:2002212219;收到修改稿日期:2003201222 引 言 激光二极管LD (laser diode )及其阵列LDA (laser diode array )的主要特点是高效、稳定、结构简单,可制成小体积全固化器件。广泛应用于LD 泵浦的固体激光器、光纤激光器、材料处理、医药、航空航天等各个领域。 LD 由于其特殊的工作原理,其光束质量在垂直与平行于p 2n 结两个方向上相差很大。通常把垂直于p 2n 结方向称为快方向,平行于p 2n 结方向称为慢方向。快方向上的光束接近衍射极限(M 2≈1),发散角大;而慢方向上的光束质量则极差(M 2>1000),发散角小。正是由于这两个方向上的光束质量的极不均衡性使得LD 应用起来比较困难。而且这样的快慢两个方向上光束质量相差很大的光束无法用一般的光学系统直接改善而达到高功率密度输出。因此,LD 要获得更广泛的应用,必须采用光束整形方法,解决光束质量差、功率密度低的问题。 1 光束整形技术的原理、关键技术 1.1 LDA 光束整形技术的原理 假设d 为光源的尺寸,θ为其发散角,n 为所在 介质的折射率,一个光源无论经过什么样的光学成 像系统的变换,乘积L =d × θ×n 始终保持不变,称之为拉格朗日不变量。光束质量的评价一般采用M 2来表征,但通常也可采用拉格朗日不变量来表征。由于通常的光学成像系统不能改变光束的拉格朗日不变量,因此,必须将LD 光束分割、旋转、重排,即光束整形,把慢方向上的拉格朗日不变量减小,同时使快方向上的拉格朗日不变量增加,达到均衡拉格朗日不变量,提高光束质量的目的 。 图1 LDA 光束重组的几种结果 图1表示光束重排的几种结果(P 1~P 4)[1]。 CSA 是LDA 发光区排列方式。采用按微镜分割时,LDA 的发光区排列可看成像CS 一样,即在光束 第27卷 第4期 2003年8月 激 光 技 术 LASER TECHNOLO GY Vol.27,No.4August ,2003

扩束整形系统设计

发明名称: 基于组合透镜组的光线扩束与整形系统设计 摘要 本发明涉及一种用于光束整形的光学系统,所述的光学系统包含抛物面镜,凸面镜,凹面镜,柱面镜,且系统具有光轴。利用抛物面良好的无相差特性,将光源置于抛物面的焦点上,将产生平行的入射光线,因为球面镜本身不可避免的存在球差,凸面镜产生负的球差,凹面镜产生正的球差,采用凸凹面镜胶合的方法可以消除在某个方向上消除球差,使得光束的聚焦效果更好;柱面镜仅在一个方向具有汇聚作用,类似于,用于对光束在一个方向进行压缩或扩展,采用一组正交的柱面透镜,用于实现光束不同方向的挤压。由于柱面镜不具有空间的的轴对称特性,将柱面镜旋转 角度,得到光斑也将旋转一定的角度,从而满足不同方向的光斑需求。基于各种透镜的基本作用,本文得到正方形,横矩形,竖矩形,圆形,动态倾斜,以满足不同的生产需求。

权利要求书 1.一种用于光束扩束整形的光学系统,所述光学系统包含光源,透镜组,接收器,系统 整体具有光轴,其特征在于,所述的透镜组包含: 阵列反射形抛物面,其阵列几何中心关于光轴对称,用以将点光源变为平行光束,模拟激光的准直特性。 球面凸镜和凹镜组成的胶合透镜组合,凸面镜有负的球差,凹面镜会有正的球差,利用凹面镜可以进行补偿,抵消球差,使得光束的聚焦效果更好。 柱透镜采用一组正交的空间位置组合,通过日常生活,很容易看出,柱透镜在沿母线方向没有放大率,在垂直于母线的方向,由于厚度的变化,对光线有汇聚作用,用于对光束尺寸进行以维压缩或者放大。 2.根据权利要求1所述的阵列抛物面,其特征在于,基于数学模型的创建,得到过焦点的点光源平行出射这一重要结论,用于将点光源转化为一束平行光线,且根据阵列的形状,第一次将光源从一个点调节为阵列形状。 3.根据权利要求1所述的球面凹凸镜组成的胶合子镜组,其特征在于,可以在消除轴向球差的优势下将平行光束汇聚到一点,因为球面镜的轴对称特性,可以实现以及光斑的尺寸缩放(长宽缩放比例相同),只需要将接收器置于不同的位置,根据相似原理,尺寸动态变化,用于聚焦。 4.根据权利要求1所述的柱面镜,其特征在于,是一种短焦距镜头,沿着一个方向光束尺寸不变,沿着另一个与之垂直方向,表现为光束的压缩(凸柱面镜),导致光束最终呈现形式为压缩或放大(长宽非等比例) 5.根据权利要求1所述的胶合镜组与柱面镜,其特征在于,柱面镜位于胶合透镜组后,几何距离上等于胶合组合镜与柱面镜焦距之和,但是柱面镜为短焦镜头,远小于胶合镜组焦距,可以忽略不计。 6.根据权利要求1所述的柱透镜,其特征在于,通过绕着Z轴旋转角度α,光斑也旋转α,通过柱透镜的旋转,用于实现光倾斜角度的动态变化。

高斯光束的透镜变换实验免费哦

实验三 高斯光束的透镜变换实验 一 实验目的 1.熟悉高斯光束特性。 2.掌握高斯光束经过透镜后的光斑变化。 3.理解高斯光束传输过程. 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 22()[] 2()00,() r z kr i R z A A r z e e z ωψωω---=? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: ()z ωω=(7) 000()Z z R z Z Z z ?? =+ ??? (8) 1 z tg Z ψ-= (9) 其中,2 00Z πωλ =,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数22() r z e ω-的形式从中心向外平滑的减小, 因而光斑半径()z ω随坐标z 按双曲线:

22 00 ()1z z Z ωω-= (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z = 时,00()Z ω。在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。 (D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为: 00 () lim z z z ωθλ πω→∞ == (12) 高斯光束可以用复参数q 表示,定义2111i q R πω =-,由前面的定义,可以得到0q z iZ =+,因而(6)式可以改写为

(完整版)激光扩束望远镜设计

激光扩束望远镜设计 一、 项目研究背景 在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角.这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点.此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、 项目研究内容 1、望远镜系统激光扩束原理 激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为 11221M l f f f M f ττ???+ ? ? ???-+ ??? 式中12,f f 分别表示两镜的焦距,两镜间距 12l f f =++?,其中?表示失调量,2 1f M f τ=-为放大镜的放大率。 设入射光束束腰为0w ,焦参数为 20w f πλ=,物距为s ,经望远镜系统后变为束腰为'0w ,像距为' s 的高斯光束。 其中对于调焦系统有: 2' 12()s M f f M s ττ=-+- '00 w M w τ= 远场发散角0θ与束腰0w 间有反比关系,即 02011M τθθ=,远场发散角被压缩M τ倍,且与物距和像距均无关。当1s f =时,'2s f =,即像方激光束腰位于第二透镜2 L 的后

焦面上;当12s f f >>+时,'2s M s τ≈-,该望远镜系统的扩束比'00w M M w τ==。 2、几种激光扩束望远镜的性能分析 2.1折射式扩柬组远镜系统 使用透镜作物镜的望远系统称为折射式望远镜,根据不同的目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。 伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。 2.2反射式扩束望远镜系统 反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用.在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统 反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标 强脉冲激光发射系统的工作波长为10.6m λμ=,入射光束口径050D mm ≤, 要求出射光束口径200D mm =,在距离激光器100m 范围内,激光光束的口径250D mm ≤,在100m 的目标距离处光斑大小具有一定的可调节性。

激光束的特征参数与测量方法

激光束的特征参数与测量方法 专业:学号: 学生姓名:指导教师: 摘要 自我国自主研发出第一台激光器后,我国的激光技术得到了快速发展,由于激光具有独特的特性使其得以在许多行业被应用及发挥着重要作用。如:科学研究、军事应用、日常生活等。在研发激光的时我们很关心激光的参数及测量方法。研究激光的基本参数有光斑的大小、激光功率、发散角、2 M因子等。 光束质量是衡量激光光束优劣的一项重要指标。历史上光束质量有多种定义,曾针对不同的应用目的提出过不同的评价方法。而光束传输(2 M)因子在无光阑限制的近轴光学系统中由光束自身的分布特性唯一确定,与光学系统参数无关,且同时反映光束的近场和远场特性,在数学上又具有严密性,所以在某些情况下,它是评价激光光束质量的一个重要参数。 本文通过对激光的特征参数及质量评估参数的定义和测量方法做系统的介绍,帮助日常生活中进行激光器的选择应用,同时对激光的质量评价有了更深的了解。 关键词:光束质量;M2因子;基本参数;测量方法

The characteristic parameters of laser beams and its measurement methods Abstract With the increasing development of laser, the application of laser has penetrated intoavariety of fields such as scienc,technology,military and social development .how to define and measure its parameters is a popular and significant topic for scholars to discuss and study .Such as the light optical spot area,laser power ,angle of divergence beam, propagation factor. Beam quality is an important index. There are many definitions of beam quality. Also there are some different evaluating ways based on different applications. While passing through a paraxial optical system without aperture, beam propagation factor is only determined by the distributing characteristics of beam itself. Beam propagation factor has nothing to do with the optical system parameter. It reflects the features of near-field and far-field and is mathematically tight. So in certain circumstances, it is an important parameter to evaluate the beam quality. This article give a reasonable guide on the choice of laser device by elaborating the definition and measure methods of the feature parameters and quality evaluation parameters of laser.as the same time,helping us have a deeper understanding on quality evaluation of laser. Keyword: beam quality; M2factor; parameter; measurement methods

光束整形器的分类

光束整形器的分类 光束整形器又称为激光整形器,是衍射光学元件(DOE)中的最常用的透镜。光束整形器的作用是把激光光束转化为一个能量均匀分布的平顶光斑,光斑形状可以是正方形、圆形或其它形状。评价光束整形器好坏的标准是光斑能量分布是否均匀、边沿是否锐利、效率是否足够高。 光束整形器(Beam Shaper/Top-Hat)——平顶光斑 1.平顶光束整形器(Top hat) 1)带聚焦镜的光束整形器(Focal Beam Shaper);2)平顶光束整形元件(Angular Beam Shaper) 2.M-Shape光束整形器,M形光束整形透镜(Beam Shaper_M Shape),维尔克斯光电技术支 持 3.圆环激光发生器,圆环光束整形器,激光圆环衍射光学元件(Ring generator, Multi-Circles)

4.螺旋相位板,涡旋透镜,激光轴棱镜,漩涡镜头,涡旋相位板(Diffractive Axicon, Vortex Lens) 5.激光扩散器(使激光均匀地扩散成一个平面),均匀片,激光匀束元件,匀化光束整形 器(Homogenizers,Diffusers)维尔克斯光电选型支持

光束整形器——激光分束(Beam Splitters) 1.激光分束器(Beam Splitter) 1)一维激光分束镜,一维激光光束分束元件(1D Beam Splitter) 2)二维激光分束器,激光二维分束透镜(2D Beam Splitter) 2.客制化激光光束分束器,随机点阵激光分束镜,定制图形激光分束器(Custom Beam Splitter)

激光扩束望远镜设计

激光扩束望远镜设计 一、项目研究背景在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角、这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点、此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、项目研究内容 1、望远镜系统激光扩束原理激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为式中分别表示两镜的焦距,两镜间距,其中表示失调量,为放大镜的放大率。设入射光束束腰为,焦参数为,物距为s,经望远镜系统后变为束腰为,像距为的高斯光束。其中对于调焦系统有:远场发散角与束腰间有反比关系,即,远场发散角被压缩倍,且与物距和像距均无关。当时,,即像方激光束腰位于第二透镜的后焦面上;当时,,该望远镜系统的扩束比。 2、几种激光扩束望远镜的性能分析2、1折射式扩柬组远镜系统使用透镜作物镜的望远系统称为折射式望远镜,根据不同的

目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。2、2反射式扩束望远镜系统反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用、在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标强脉冲激光发射系统的工作波长为,入射光束口径,要求出射光束口径,在距离激光器100m范围内,激光光束的口径,在100m的目标距离处光斑大小具有一定的可调节性。

激光扩束

题目:基于MATLAB的简易激光扩束系统设计

一、实习要求: 1、理解高斯光束q 参数; 2、能够熟练使用CCD 采集光强度图样并用MATLAB 分析信号; 3、学生可以讨论编写MATLAB 仿真程序; 4、能够使用MATLAB 软件分析光强图样; 二、实验仪器: 计算机、CCD 、偏振片、透镜、接收屏、氦氖激光器 三、实验原理: 1)普通球面波在自由空间的传输: 2)普通球面波通过透镜的变化规律: 3)描述高斯光束的方法 ①fz 参数:q(z)=z+if ②WR 参数: 1/q(z)=1/R(z)-i(λ/πw 2 (z)) R2=R1+L 1/R2=1/R1-1/F

q 参数: z f z z R f z f z w /2^)() /2^()(+=+= π λ (f=πw 0^2 /λ) 4)gaussian beam 的复参数q 表示: 复参数q 的定义为: 1/q(z)=1/R(z)-i(λ/πw 2(z)) 将波前的曲率半径R(z)和光斑半径w(z)代入上式: ] 2)^z /2^0w (1[)(2)^2 ^w0(10)(λππλ+=+=z z R z w z w z f z z R f z f z w /2^)()/2^(/)(+=+=πλ 5)高斯光束通过薄透镜的变换 : Q1 ?? ? ???D C B A q2 高斯光束经过透镜矩阵传输方程 D Cq B Aq q ++= 112 ]202 2020 0202 02202 02)(1[])( 1[)(])(1[])(1[])( 1[)(z z z z w z z R z z z z z w w z w z w +=+=+=+=+=λππλπλ 6)双凸透镜扩束法: 设透镜的焦距为F ,物距和象距分别为s01和s02,它们之间 的关系为: 1/s01+1/s02=1/F

第13课带有衍射光学元件的激光扩束器

第13课.带有衍射光学元件的激光扩束器 在第11课中,您了解了如何使用普通球面透镜设计激光扩束器,并了解到需要多个透镜元件才能获得良好的性能。第12课采用相同的设计,使用两个非球面元件,效果极佳。本课程将证明您可以使用DOE(衍射光学元件)。 to within10%.目标是将腰半径为0.35mm的HeNe激光器转换成直径为10mm且均匀至10%以内的光束 这是我们初始的输入文件: RLE!Beginning of lens input file.。 ID KINOFORM BEAM SHAPER WA1.6328!Single wavelength UNI MM!Lens is in millimeters OBG.351!Gaussian object;waist radius-.35mm;define full aperture=1/e**2point. 1TH22!Surface2is22mm from the waist. 2RD-2TH2GTB S!Guess some reasonable lens parameters;use glass type SF6from Schott catalog SF6 3TH20!Surface3is a kinoform on side2of the first element 3USS16!Defined as Unusual Surface Shape16(simple DOE) CWAV.6328!Zones are defined as one wave phase change at this wavelengt HIN1.798855!Assume the zones are machined into the lens.You can also apply!a film of a different index. RNORM1 4TH2GTB S SF6 4USS16 CWAV.6328 HIN1.798855 RNORM1!The first side of the second element is also a DOE 5CV0TH50!Start with a flat surface 7!Surfaces6and7exist AFOCAL!because they are required for AFOCAL output. END!End of lens input file. 我们给第2个表面指定了一个合理RD值。这是现阶段还没有DOE的非球面系数的系统:

激光二极管光束整形技术讲解

文章编号:100123806(20030420357205激光二极管光束整形技术 郭明秀1沈冠群2陆雨田1 (1中国科学院上海光学精密机械研究所,上海,201800(2上海市激光技术所,上海,200233 摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。 关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类 号:TN24814文献标识码:A The technology of laser diode beam shaping Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1 (1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800 (2Shanghai Institute of Laser Technology ,Shanghai ,200233 Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD ;laser diode array (LDA ;beam shaping ;Lagrange invariant 作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。

激光扩束镜选择指南

激光扩束器选择指南 消色差系列伽利略式激光扩束镜 高功率系列伽利略式激光扩束镜 低功率系列伽利略式激光扩束镜 可变倍率系列伽利略式激光扩束镜 紫外波段伽利略式激光扩束镜 大光束大倍率开普勒式激光扩束镜

消色差系列伽利略式激光扩束镜 该设计使用一片平-凹单透镜来提供所需的发散度,以及经过优化设计的空气间隔透镜组来平衡像差和重准直光束。调节单透镜控制发散透镜的调节,分度为50微米。所有的设计均提供A (400-650纳米),B(650-1050 纳米)或C(1050-1620纳米)宽带增透膜。 ● 降低光束发散度 ● 提供衍射极限性能,引入的波前误差小于λ/4 ● 光洁度:20-10 ● 增透膜: R avg < 0.5% ● 抗损伤阈值:100W/cm 2 CW 2倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB ) BE02M-A ?8mm 350 - 650 1.035”-40 ¥2240 BE02M-B ?8mm 650 - 1050 1.035”-40 ¥2240 BE02M-C ?8mm 1050 - 1620 1.035”-40 ¥2240 典型波前畸变网格线图

3倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE03M-A?8mm 350 - 650 1.035”-40 ¥2650 BE03M-B?8mm 650 - 1050 1.035”-40 ¥2650 BE03M-C?8mm 1050 - 1620 1.035”-40 ¥2650 5倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE05M-A?4.5mm 350 - 650 1.035”-40 ¥2820 BE05M-B?4.5mm 650 - 1050 1.035”-40 ¥2820 BE05M-C?4.5mm 1050 - 1620 1.035”-40 ¥2820

激光光束发散角的测量

激光光束发散角的测量 一、高斯光束 由激光器产生的激光束既不是平面光波,也不是均匀的球面光波。虽然在特定位置,看似一个球面波,但它的振幅和等相位面都在变化。从理论上来讲,光在稳定的激光谐振腔中进行无限次的反射后,激光器所发出的激光将以高斯光束的形式在空间传输。而且反射(衍射)次数越多,其光束传输形状越接近高斯光束。从另一方面讲,形状越接近高斯光束的激光束,在传播、偶合及光束变换过程中,其形状越不易改变,在高斯光束时,不论怎样变换,其形状依然是高斯光束。 在激光器产生的各种模式的激光中,最基本、应用最多的是基模高斯光束。在以光束传播方向z 轴为对称轴的柱面坐标系中,基模高斯光束的电矢量振动可以表示为 222[()arctan ()2()000(,,)()r r z i k z i t w z R z f E E r z t e e e w z ω-+--=?? (1) 式中,E 0为常数,其余各符号意义表示如下: 222r x y =+ 2k πλ = ()w z w =2 ()f R z z z =+ 20w f πλ = 其中,0(0)w w z ==为基模高斯光束的束腰半径,f 称为高斯光束的共焦参数或瑞利长度,R (z )为与传播轴线交于z 点的基模高斯光束的远场发散角为高斯光束等相位面的曲率半径,w (z ) 是与传播轴线相交于z 点高斯光束等相位面上的光斑半径。 图1 高斯光束的横截面

图2 高斯光束的纵剖面,按双曲线的规律扩展 基模高斯光束具有以下基本特点: 1)基模高斯光束在横截面内的电矢量振幅分布按照高斯函数规律从中心向外平滑下降,如图1所示。由中心振幅值下降到1/e 点所对应的宽度,定义为光斑半径,光斑半径是传播位置z 的函数 ()w z w =(1) 由(1)式可见,光斑半径随着传播位置坐标z 按双曲线的规律展开,即 22 220()1w z z w f -= (2) 如图2所示,在z =0处,0()w z w =,光斑达到极小值,称为束腰半径。由(2)式可知,知道束腰半径和瑞利长度,即可确定任何位置处的光斑半径。束腰半径w 0是由激光器谐振腔决定的,改变激光器谐振腔的结构设计,即可改变w 0值。 2)由(1)式,基模高斯光束的相位因子为 200(,)()arctan 2()r z r z k z R z f ?=+- (3) 其中2()2()r k z R z +描述了高斯光束的几何相移,arctan z f 描述了高斯光束在空间z 处,相对于几何相移的附加相移。因子2 2() r k R z 表明高斯光束的相移还与横向位置有关,只考虑几何相移时的高斯光束的等相位面是以R (z )为半径的球面。R (z )随z 的变化规律为 2 ()f R z z z =+ (4) 对(4)式分析可知 (1)当z =0时,()R z →∞,表明束腰处的等相位面为平面。 (2)当z →±∞时,()R z z →,表明离束腰很远处的等相位面是球面,曲率中心在

高斯光束的传输变换

2.7 高斯光束的传输 本节利用高斯光束的复参数表示法和ABCD 定律简洁地处理基模高斯光束在自由空间和通过近轴光学元件的传输变换。 2.7.1 光线传输矩阵 光线传输矩阵法就是以几何光学为基础,用矩阵的形式表示光线的传输和变换的方法。该方法主要用于描述几何光线通过近轴光学元件和波导的传输,也可用来处理激光束的传输。 任一旁轴光线在某一给定参考面内都可以由两个坐标参数来表征,光线离轴线的距离r 及光线与轴线的夹角θ。将这两个参数构成一个列阵,各种光学元件或光学系统对光线的变换作用可用一个二行二列的方阵来表示,变换后的光线参数可写成方阵与列阵乘积的形式。 1. 近轴光线通过距离L 均匀空间的变换 我们分析近轴光线在均匀空间通过距离L 的传输,如图2-22所示,假定光线从入射参考面P 1出发,其初始坐标参数为r 1和θ1,传输到参考面P 2时,光束参数变为r 2和θ2,由几何光学的直进原理可知 图2-22 近轴光线通过长度L 均匀空间的传输 1 2112θθθ=+=L r r (2.7.1) 这个方程组可表示成下述矩阵形式 ???? ?????? ? ?=???? ??1122101θθr L r (2.7.2) 即可用一个二阶方阵来描述光线在均匀空间中传输距离L 时所引起的坐标变换 ??? ? ??=???? ??101L D C B A (2.7.3) 2. 近轴光线通过薄透镜的变换 如图2-23所示,近轴光线通过一个焦距为f 的薄透镜。设透镜的两个主平面(此处为两参考面P 1和P 2)间距可忽略,入射透镜前光束参数为r 1和θ1,出射后变为r 2和θ2,由透镜成像公式,可写成如下关系式

激光扩束镜设计

一、激光扩束镜设计 一、设计要求: 设计一个激光扩束镜,扩束倍数为三倍,入射孔径为3mm,斜入射角1°,同时要求几何尺寸合适。 二、设计思路: 1.确定第一面透镜 由于激光能量较高,所以光线追迹时,尽量使光束不在镜筒中汇聚,如果采用两面透镜来完成设计,就要保证第一面透镜为凹凸镜,先将光线发散,第二面为凸透镜再将光线汇聚,平行光出射。 2.确定第二面透镜: 在第一面透镜后放置凸透镜才能满足对无限远处对焦的要求。3.几何参数的确定: 由于要求几何尺寸合适,不妨将总尺寸设为160mm,由应用光学知识可以计算,则第一面透镜的焦距应该取-80mm,第二面透镜焦距取为240mm,筒长为160mm(也就是两透镜的几何距离)。 4.做到了平行光出射,并扩束三倍的要求后,下一步需要做的便是减少像差,这个里面可以调整的有透镜的材质,在几何尺寸允许的条件下还可以再对相对距离等参数做出微调,以求能调出像差较小的设计。同时为增加可调自由度,还可以考虑再增加一面或者两面透镜,来达到消像差的目的。 三、设计过程 (1)第一面透镜 在设计第一面透镜时,先大致利用应用光学知识进行计算,估算透镜两个面的曲率半径,这里,大约可以取R1=-50mm,R2=200,材质使用BK7玻璃。这时,可以先看看这一面透镜的相关参数,探究下像差与单面透镜的一些参数的关系,这里,发现,当透镜的曲率半径取得越大时,透镜显示的球差和慧差越大,所以,在实验和实际工程中,建议使用曲率合适的透镜。 同样,根据设计思路,这时需要解决的另一个问题便是确定第一面透镜的焦距,这里可以使用SYNOPSYS软件中的edit solves 功能来确定其焦距,最后,经过调试,选择的是R1=-55,R2=150,选用BK7玻璃。(2)第二面透镜 下一步便是确定第二面透镜的相关参数,根据设计思路中的计算,可以知道两面透镜之间的距离,所以需要确定的是透镜在像差比较小的情况下,能使光纤平行出射的焦距,也就是设计思路里面所确定的240mm。 这时,如何能确定出合适的参数便是需要解决的问题,这里所选用的方法还是利用SYNOPSYS

激光扩束系统设计

光学设计 Optical design 题目名称:准直扩束系统的设计学校:长春理工大学 学院:光电工程学院 专业:光电信息工程 学号: 姓名:魏松岩 目录 第一章绪论 (1) 引言 (1) 激光束及其准直扩束的原理 (1) 折射型扩束器基本结构 (4) 开普勒扩束镜 伽利略扩束镜 第二章光学设计软件ZEMAX概述 (5) 第三章激光准直扩束系统设计 (9) 准直扩束系统的参数确定 (9) 确定激光扩束系统的初始结构 (9) ZEMAX的优化 (11)

第一章绪论 引言 激光扩束系统是激光干涉仪、激光测距仪、激光雷达等诸多仪器设备的重要组成部分,其光学系统多采用通过倒置的望远系统,来实现对激光的扩束,其主要作用是压缩激光束的空间发散角,使扩束后的激光束口径满足其他系统的要求。 激光器发出的光束直径很细小,通常只有零点几到几毫米,激光束的这些特性在某些方面是很有用的。然而在一些应用领域中需要的确是宽光束,如激光全息、光信息处理、激光照明、激光测距等。例如在激光干涉仪的应用中,它要照射比激光束口径大得多的被测物体,然后通过光束的干涉来实现测量。又如在激光的全息应用中,它要照射比激光束口径大得多的全息记录介质,以实现信息的记录和重现。因此需要使用激光扩束系统来实现激光束的准直扩束。 激光束及其准直扩束的原理 激光束的性质是由激光共振腔的几何形状和尺寸决定的,激光束具有特殊的结构,光束呈双曲线形,光束的截面上最小处称束腰(见图,其半径为 其中,b为共振腔的共振参数。共振腔的共焦参数b可由下式求得: 其中,R为共振腔球面镜的曲率半径,d为共振腔二镜面之间的距离。 最通用的扩束镜起源于伽利略望远镜,通常包括一个输入负透镜和一个输出正透镜。输入镜将一个虚焦点光束传送给输出镜,两个透镜是虚共焦结构。一般小于20倍的扩束镜都用该原理制造,因为它简单、体积小、价格也低。尽可能的该扩束镜设计成小的球面相差、低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。

激光束加工技术

激光束加工技术 摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。 关键词:加工原理、发展前景、强化处理、微细加工、发展前景。 一.激光加工的原理及其特点 1.激光加工的原理 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)的原理进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。由于激光加工热影响区域小,光束方向性好,其几乎可以加工任何材料。常用来进行选择性加工,精密加工。由于激光加工的特殊特点,其发展前景广阔,已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 目前,公认的激光加工原理是两种:分别为激光热加工和光化学加工(又称冷加工)。激光热加工指当激光束照射到物体表面时,引起快速加热,热力把对象的特性改变或把物料熔解蒸发。热加工具有较高能量密度的激光束(它是集中的能量流),照射在被加

工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象光化学加工指当激光束加于物体时,高密度能量光子引发或控制光化学反应的加工过程.冷加工具有很高负荷能量的(紫外)光子,能够打断材料(特别是有机材料)或周围介质内的化学键,至使材料发生非热过程破坏。这种冷加工在激光标记加工中具有特殊的意义,因为它不是热烧蚀,而是不产生“热损伤”副作用的、打断化学键的冷剥离,因而对被加工表面的里层和附近区域不产生加热或热变形等作用 2.激光加工的特点 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。 ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。 ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。 ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。 ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。 ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。 ⑦使用激光加工,生产效率高,质量可靠,经济效益好。例如:①美国通用电器公司采用板条激光器加工航空发动机上的异形槽,不到4H即可高质量完成,而原来采用电火花加工则需要9H以上。仅此一项,每台发动机的造价可省5万美元。②激光切割钢件工效可提高8-20倍,材料可节省15-30%,大幅度降低了生产成本,并且加工精度

相关文档
最新文档