流体包裹体的研究现状

流体包裹体的研究现状
流体包裹体的研究现状

流体包裹体在地质中应用

摘要: 在多数地质作用过程中, 流体都担任着元素迁移的载体、化学反应的活化剂的角色。大量研究表明, 岩石、矿物以及元素在有无流体的情况下会表现出迥异的物理和化学性质, 所以对于认识某一地质过程而言, 流体方面的研究往

往能够提供极其重要的信息。流体包裹体则以其直接反映古流体的成分, 在各种矿物中的普遍存在性, 以及对各种后期改造有一定的抵抗力等特点而成为研究

古地质流体的最佳样本, 并已经被成功地应用到各种地质过程的研究中。结合前人的研究,本文系统阐述了流体包裹体研究中常用的分析方法及变质岩中流体包裹体的研究, 并举例说明了流体包裹体在矿床学、石油地质学中的应用。

流体包裹体研究是目前地球科学研究中最活跃的领域之一, 已广泛应用于

矿床学、构造地质学、石油勘探、地球内部的流体迁移以及岩浆岩系统的演化过程等地学领域。通过阅读大量该领域的文献,本文就流体包裹体研究的基本原理、分析技术、地质应用的最新进展以及可能的发展方向作了系统的阐述。

1 流体包裹体的种类和区分

流体包裹体按其捕获时间与主晶矿物( hos-tminera l)形成时间的关系可以分为原生和次生流体包裹体。原生包裹体是矿物形成时包裹周围的流体而形成的, 而次生包裹体的形成晚于主晶矿物, 一般与后期主晶矿物的改造事件有关。二者由于形成时间和方式不同而携带了不同的信息。原生包裹体指示了主晶矿物形成时的流体环境和物理化学条件, 次生包裹体则指示了主晶矿物后期被改造事件

中的流体环境、构造特征以及物化条件。这就要求我们在流体包裹体研究中必须正确地区分它们。

一般来说, 原生包裹体和次生包裹体的区分可以应用如下两条准则: 一是

根据包裹体的形状和分布特征判别, 即原生包裹体的形状往往是规则的, 常呈

孤立状或沿主晶矿物某一结晶方位或生长环带分布, 次生包裹体的外形一般是

不规则的, 多沿愈合裂隙分布; 二是同一成因的包裹体密度、均一温度、盐度和成分是近似的, 可与已知的原生或次生包裹体进行对比和归类[1]。当然, 这两

个规则也不是绝对的, 只有较综合地观察包裹体形态以及主晶矿物与包裹体、包

裹体与微构造、包裹体与包裹体的关系才能得出准确的结果。

包裹体最规则的形态即是主晶矿物的负晶形, 它是包裹体在主晶矿物晶格

力场和重力场长期作用下达到的表面能最小的形态。一个液体系统在无力场(如外太空)的情况下由于表面张力会收缩为完美的球形, 而在重力场作用下则为水滴状。包裹体内的液体体系主要受晶格力场和重力场作用, 而晶格力场在微观尺度上要远远大于重力场, 这导致包裹体与主晶矿物达到平衡时最稳定的形状是

主晶矿物的负晶形。负晶形包裹体一般是包裹体形成后与主晶矿物长时间的溶解) 沉淀作用形成的, 以原生包裹体居多, 因为原生包裹体形成时间早并且一般在

矿物形成早期温度较高, 溶解) 沉淀反应较快, 较易达到平衡[2] 。

此外尚有实验表明变形及重结晶作用也会形成负晶形包裹体, 如Sterner等[3] 研究了在实验模拟的变质埋藏) 隆起条件下石英中包裹体的再平衡, 发现在

短时间内包裹体的内压比围压高100MPa条件下, 多数包裹体未发生变化, 当压

差达到400 MPa时, 所有的包裹体的密度都降低, 同时, 包裹体的形态发生了改变, 且密度降低最多的包裹体有最规则的自形形态。Barker等[4] 在研究挪威北部退变质石英脉中流体包裹体时发现有两类包裹体: 一类是拉长的形状不规则的

包裹体, 另一类是等径、规则的或负晶形包裹体。经过细致的研究后表明第一类包裹体经受很少或未经受捕获后的改造, 而第二类包裹体显示了捕获后经受非

弹性拉伸或渗漏的特征, 表现为伴随包裹体体积的增加和密度的降低, 其均一

温度增高, 但盐度不变。可见, 在有些情况下, 次生包裹体经变形及重结晶作用也会具有负晶形形态。由此, Van den Kerkhof等[2] 强调了应用负晶形鉴定原生包裹体要十分谨慎。

2 流体包裹体分析及显微测温方法

阴极发光显微镜分析已经成为岩石学研究的一个强有力的工具[ 5,6]。近年来一些学者将其应用到包裹体研究中来并取得了不错的效果, 其中以石英的阴极

发光研究最为活跃。石英中的阴极发光基本上是晶格中的微量元素引起的或主晶矿物固有的点缺陷激发的[7]。不同成因不同温度下形成的石英在阴极发光显微

镜下的发光特征不同, 这在成岩成矿演化、显微构造研究和包裹体与主晶矿物捕获时间的确定等方面有重要指示意义[1]。而近些年发展起来的扫描电子显微镜

配合阴极发光( CL-SEM )使得矿物的原始生长结构, 各种类型的次生显微构造,

流体包裹体与主晶矿物间的先后关系等研究更加准确、系统, 为原、次生流体包裹体的区分提供了依据。

以显微热台、冷热台以及爆裂仪为代表的流体包裹体显微测温技术现已达到成熟, 为广大流体包裹体研究者所熟知, 卢焕章等[1]已对这一方面作了详细的介绍。如何能获得更好的数据精确度以及如何避免包裹体内亚稳相对测温数据的干扰等方面的研究是近年研究的热点。由于流体包裹体的显微测温是以包裹体随温度变化而产生相变为基础, 所以亚稳态的存在会直接影响到包裹体显微测温数据的准确性。因此, 如何能排除亚稳态的干扰是包裹体显微测温中一个重要问题。最近Krger 等[8]对消除包裹体内亚稳态作了详细的研究。他们用精确聚焦的飞托秒激光脉冲来诱导冰、纯液态包裹体的气泡以及过饱和卤水盐类晶体的成核作用, 从而抑制亚稳相在流体包裹体中的存在。诱导成核作用的激光强度约为10 TW /cm2。为了避免对包裹体造成潜在的破坏, 他们还测定了对石英能产生显微镜下可见的剥蚀的激光强度阈值, 发现要比气态成核作用需要的激光光强高一倍, 比固体成核作用需要的激光光强高约25%。因此, 通过较好的能量控制, 在能产生成核作用的激光强度下是不会对包裹体造成破坏的。此外, 关于流体包裹体测温数据有效性的研究近年来也取得了重要进展, Goldstein等[9]提出流体包裹体组合( FIA 全称)的概念对测温数据有效性的制约越来越受到大家的重视。FIA 指的是/ 岩相学上能够分得最细的有关联的一组包裹体0或/通过岩相学方法能够分辨出来的、代表最细分的包裹体捕获事件的一组包裹体。每个FIA 都是建立在岩相学关系上的, 而不是测温数据的相似性, 代表了一个在时间上分得最细的包裹体封存事件[ 10]。从流体包裹体组合的定义可以看出, 鉴别一个FIA的最重要的依据是捕获的同时性。这个同时性必须有岩相学依据, 而不是根据包裹体测温数据是否相似。相邻的两个包裹体有很相似的均一温度, 这并不意味着它们属于一个FIA, 除非有岩相学证据证明它们是同时被捕获的。反过来, 如果一组包裹体的测温数据不一致, 我们不能因此就说它们FIA[11]。一般来说沿愈合裂隙或生长带分布的流体包裹体是最容易鉴别的FIA, 但如果有多期的次生或假次生包裹体叠加, 划分FIA 就不那么容易了, 要进行详细的岩相学观察, 在一些情况下, 阴极发光研究也是十分必要的[2]。FIA 概念用于包裹体数据评价的依据是: 如果FIA 内的包裹体捕获了一个均一的流体相, 且其体积和成分

在捕获后未发生变化, 那么这些包裹体就应该有相同的成分、密度和均一的温度。这样, 如果FIA 内流体包裹体的测温数据是一致的, 就可以推测均一捕获和等容体系的假定是可以满足的, 因此测温数据是有效的[12] , 在进行数据汇总或统计时, 应取整个FIA 内所有包裹体的平均值为代表, 而不应将每个包裹体的数据都列入; 反之, 如果FIA 内包裹体的测温数据变化很大, 那么可能是因为初始包裹体就是非均一捕获不同相的流体形成的或者FIA 内的包裹体在捕获后发生了不同程度的改造或破坏(如卡脖子、拉伸或渗漏), 这种情况下包裹体的测温数据是无效的, 不应纳入数据汇总或统计。在很多情况下, 一组包裹体是否属于同时捕获是很难确定的, 因此不能严格地用FIA 的方法来判定数据的有效性, 但是, FIA 的原理还是可以提供一些制约。详细的包裹体测温“填图”, 结合已知FIA 数据, 可能可以解决这种多解性问题。

3 流体包裹体的地质应用

3.1 变质岩中流体包裹体研究的应用

流体包裹体由于能够提供有关成岩流体的直接信息, 现已广泛应用到各种地学领域。变质岩中的流体包裹体研究正方兴未艾, 在研究有关变质作用期间流体的化学组成、来源、运移过程以及流体岩石相互作用等方面发挥了不可替代的作用。毕竟只有流体包裹体才是可供研究且保存至今的变质作用流体实体样本。但变质岩形成及演化的时间较长, 变质作用过程也较复杂, 使得变质岩中流体包裹体捕获后的改造较之沉积岩、岩浆岩要复杂得多, 研究起来也最为困难。准确区分原生与次生包裹体, 寻找流体包裹体捕获后发生变化的各种识别标志以及正确评估流体包裹体捕获后的改造效应和数据的代表性成了变质岩中流体包裹体研究的基本问题。这些问题至今还没有完美的解决方法。全面地研究流体包裹体数据, 进行较细致的镜下观察并与其他矿物岩石学、地球化学等方法获得的资料相结合, 多方限制是当前变质岩中流体包裹体研究的合理方法。近些年来国内外学者在这一领域取得了丰硕的成果,也提出了许多的问题。

5. 2 流体包裹体在矿床学研究中的应用

众所周知, 在成矿过程中流体的作用是巨大的,了解成矿各个阶段流体的化学组成以及物理化学条件对于我们研究成矿机制是非常有帮助的。流体包裹体能够为我们提供关于成矿流体特征的最可靠信息, 包括成矿流体的温度和压力、成矿流体的成分信息如盐度、金属离子含量、气体的逸度等。这些数据为我们以金

属离子运移、流体冷却和成矿元素沉淀模式来讨论和阐明成矿机制提供可能[ 13]。因而流体包裹体研究很早就被应用到矿床学研究中, 并且由于能够提供直接的成矿流体的基本信息, 现在已经成了矿床学研究中一个不可或缺的工具。

3.3 流体包裹体在成油研究中的应用

流体包裹体的显微测温技术已经成功地被应用到石油勘探中。应用流体包裹体的研究可以获得流体的温度、期次, 以及来源于不同成岩矿物的空隙流体的组成[ 13 ] , 并以此来推断石油运移的时间及运移时的温压条件。近些年来, 流体包裹体的显微测温数据被用来更完整的重建成油区的热历史, 并取得了很好的效果[ 14, 15 ]。

油气包裹体在成油过程研究中的应用主要有以下两个方面: 其一, 是根据包裹体的显微测温数据以及计算的捕获温度、捕获压力等资料, 研究盆地烃源岩和储层的热演化历史, 为油气勘探评价提供基础资料。其二, 是根据各类烃包裹体的观测分析资料, 剖析油气生成) 运移) 聚集的成藏信息, 直接为油气普查勘探提供科学依据。前者一般以测定盐水包裹体均一温度、冰点温度为重点, 后者以研究油气包裹体产出和分布特征为重点[ 16, 17]。

在一般的沉积体系中, 水流体是占绝对优势的,并参与各种成岩作用过程[ 18], 所以, 在石油沉积盆地中, 流体相一般为石油和水共存体系。即使是在含油度较高的油藏中, 这种建造水也是难以被完全排替的[19]。这种混合流体在成岩作用过程中被捕获就会形成典型的油气包裹体。油气藏中石油流体被捕获成流体包裹体从油藏充注开始直到现在都有可能发生, 但由于石油对固结成岩的抑制作用, 当圈闭构造中的水被排替后, 在随后的时间内油气包裹体被捕获于油藏中的可能性较大, 与晚期相比, 油气包裹体的形成在储层形成的早期更为活跃, 它们在油藏中被捕获的可能性最大[20]。

4 流体包裹体研究展望

除了本文列举的一些典型应用外, 其它方面的应用如流体包裹体在构造学研究中的应用, 流体包裹体在界定滑坡边界中的应用, 流体包裹体定年、流体包裹体在宝石鉴别中的应用以及地幔包体、陨石样品中的流体包裹体研究等, 不胜枚举。可见流体包裹体能够应用的研究范围是十分广阔的, 内容十分丰富。但同时, 流体包裹体研究作为一门学科正处于快速发展的阶段, 还存在一些有待解

决的问题,而这些问题正是流体包裹体研究的未来方向和目标, 这些流体包裹体研究未来可能的发展方向包括:

( 1) 原生、次生包裹体的准确区分法则。

( 2) 流体包裹体体积的准确测定或精确求解。

( 3) 单个多相流体包裹体总体以及各相化学成分的快速准确测定。

( 4) 单个流体包裹体的H、O、C同位素分析。

( 5) 单个流体包裹体内流体的机械提取技术。

( 6) 更加系统准确的包裹体定年技术以及单个流体包裹体的定年技术。

( 7) 建立各种类型岩石中典型流体包裹体的数据库。

( 8) 各种不同地质环境下流体包裹体数据的准确性和代表性评估准则。

这些技术或原理、方法有些是正在发展中的, 并很有可能在近些年内实现, 而有些是比较困难的, 需要人们长期的研究以及新技术的支持, 但我们相信,随着流体包裹体研究的快速发展, 这些问题最终都是可以被解决的。同时, 将流体包裹体方法与其它地学领域以及其它学科、技术相结合也是我们今后研究的主要目标之一。

参考文献:

[1] Lu Huanzhang, Fan Hongrui NiPe,ietal. Flu id Inclus ion s[M] .Beijing: Science Press, 2004.

[2] Vanden Kerkh of , Ulrich F H. Fluid inclusion petrography[J].Lithos, 2001, 55: 27-47.

[3] Sterner SM, Bodnar R J. Synthetic fluid inclusions. V II.

Re-equilibration of fluid inclusions in quartz during laboratory-simu lated metam orphicburial and up lift [J] . Journal of Metamorphic Geology, 1989, 7: 243-260.

[4] Bark er A J. Post-entrapmentmod ification of fluid inclusion s due to over pressure: Evidence from natural samples[J]. Journal of Metamorph ic Geology, 1995, 13: 737-750.

[5] MarshallD J. Cathodolum in escence of Geological Materials[M].London: Unw in Hyman, 1988: 146.

[6] Barker C E, Kopp O C. Lum inescence microscopy and spectros copy:Qua litative and quantitative applicat ion s [ J ] . Socity of Economic Paleon tologists and M ineralogists Short Course, 1991, 25:195.

[7] Habermann D, Gotze J, Neuser R D, et a l. The ph enomenon of

in trinsic cathodolum inescence: Case studies of quartz, calcite and apat ite[ J]. Z en tralblatt fr Geolog ie und Palaeon tolog ie, 1999, 12:1 275-1 284.

[8] Krger Y, Stoller P R, Frenz JM. Femtosecond lasers in fluid-inclusion analysis: Overcoming metastab le phase states[ J] . European Journal of Mineralogy, 2007, 19: 693-706.

[9] Gold stein R H, Reynolds T J. Systerm at ics of flu id inclusions in diagenetic minerals [ J ] . Socity for Sed im en tary Geology Short Course, 1994, 31: 199.

[10] Goldstein R H. Petrograph icanalys is of flu id inclusion s. Flu idinclu sions analys is and in terpretat ion [ J] . Minera logica l Association of Canada, Short Course Series, 2003, 32: 9-53.

[11]池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方

法[ J] . 岩石学报, 2008, 24( 9) : 1 945-1 953.

[12] Bodnar R J. Introduction to flu id inclusions[ C ] M F luidinclusions:Analysis and interpretation. Mineralogical Association of Canada, Short Course Series, 2003, 32: 1-8.

[13] E lrhaziM, H ayash iK. Mineralogy, geochemistry, and age constraints on the Beni BouIfrour skarn type magnetite depos it,northeastern Morocco[ J] . Resource Geology, 2002, 52: 25-39.

[14] Walderhaug O. Afluid inclusion study of quartz-cem ented sandstones from offshore m id-Norw ay-possib leeviden ce for continued

quartz cem en tat ion during o il em p lacem en t[ J ] . Journal of S ed imentary Petrology, 1990, 60: 203-210.

[15] LeischnerK, Welte D H , LittkeR. F lu id inclusions and organ icmaturity param eters as calibrat ion tools in bas inmodelling[ C ]M

Dore A G, Augusison JH, Stew art D J, e t al. Bas in Modell ing: Advances and Appl icat ion s. Nat ional Petroleum Foundat ion Special Publicat ion, 1993, 3: 161-172.

[16] Pagel M J, Braun JR, DisnarL, et al. Therm alh istory constraints from studies of organ ic matter, clay m in erals, flu id in clus ions, and apat ite fission track s at the Ardeche Paleo-Marg in ( BA1Dri ll H ole, GPF Program ) , Fran ce[ J ]. Journal of S ed imentary Research, 1997, 67: 235-245.

[17] 刘德汉, 肖贤明,田辉, 等. 含油气盆地中流体包裹体类型及其地质意义[ J ].石油与天然气地质, 2008, 29( 4 ) : 491-501.

[18] 刘德汉, 卢焕章, 肖贤明. 油气包裹体及其在石油勘探和开发中的应用[M ] . 广州: 广东科技出版社, 2007.

[19] Goldstein R H. Fluid in clusions in sed im en tary and d iagenetic systerm [ J] . Lithos, 2001, 55: 159-193.

[20] M uze I A. Petroleum inclus ion s in sedim en tary basins: Systerm atic, analytical m ethods and applicat ions [ J ]. Lithos, 2001, 55: 195-212.

[21] Muze IA, JohansenH, Holm K, et a l. The petroleum characterist ics of the froy field and the rind discovery, Norw egian North Sea [ J]. Ma rine and P e troleum G eology, 1999, 16: 633-651.

纳米流体研究进展

纳米流体研究进展 摘要:纳米流体作为一种新型换热工质展现出异常良好的换热性能和良好的稳定性目前,人们对于纳米流体的研究还不够深入,纳米流体各种特性的机理尚不清楚。进一步开展纳米流体各种特性的机理研究,有助于加深人们对纳米流体的认知,能够促进纳米流体的工程应用,是非常有意义的工作。本文综述了纳米流体制备、纳米流体的稳定性、传热特性、导热系数研究进展。并对其在应用上作出了展望。 关键词:纳米流体;稳定新;传热特性;导热系数 1引言: 随着科学技术的飞速发展和能源问题的日益突出,热交换设备的传热负荷和传热强度日益增大,传统的纯液体换热工质已很难满足一些特殊条件下的传热与冷却要求,低传热性能的换热工质已成为研究新一代高效传热冷却技术的主要障碍。随着纳米科学与技术的进步,纳米尺度材料和技术越来越多地进入强化传热工作者的视野。1995年美国Argonne国家实验室的Choi等[1]率先提出了纳米流体的概念。所谓纳米流体,是指以一定的方式在液体介质中添加纳米粒子或纳米管而形成的悬浮液。纳米流体与传统换热介质相比,在增强传热方面有着优良的特性。研究表明:纳米流体能显著提高传统换热介质的导热系数[2]。此外纳米流体在氨水鼓泡吸收实验中也表现出了很好的强化氨气吸收效果。制备导热系数高、换热性能好、传质效果强的纳米流体也必定会促进其在能源、化工、微电子、信息等领域的发展[3]。纳米流体概念的提出给强化传热技术的研究带来了新的希望。开展纳米流体强化传热机理研究,搞清楚影响纳米流体强化传热的主要因素,对于促进纳米流体在传热领域的应用有重要的意义。基于此,本文主要从纳米流体制备、纳米流体的稳定性、传热特性、导热系数等方面的最新进展及存在的问题进行叙述。 2纳米流体的制备 关于纳米流体的制备,己有许多相关综述可以参考,文献中采用的制备方法主要有两步法和一步法[4, 5]: 两步法是最为便利、经济的制备方法。纳米粉体工业已经较为成熟,可以通过物理或化学方法制备出金属或非金属的纳米颗粒、纳米管等纳米材料。两步法是指直接将纳米粒子分散到基液中的方法。首先,通过气相沉积法、化学还原法、机械球磨法或其它方法制备出纳米粒子、纳米纤维或纳米管,然后通过超声波振动、添加活性剂或分散剂、改变溶液pH值的方法,使纳米颗粒均匀地分散到基

流体包裹体研究进展

流体包裹体研究进展 1.流体包裹体的分类及区分 流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。 1.1流体包裹体的分类 流体包裹体成分复杂且成因多样,其分类研究多年来一直是随着测试手段的改进和研究内容的深化而变化。早期的分类研究主要是以定性描述为主,随着流体包裹体研究水平额度不断发展,出现了以成因、成分、相态和不同包裹体之间的相互关系为主要依据的各种分类。具有代表性的包括: (1)1953-1976年:最有代表性的是1969年Ermakov提出的分类方案,他根据包裹体的成分和成因,建立了21个类型,并且根据相的相对比例,建立了一种应用很广的分类。另外一些人也建立了不同的分类方案,例如,许多分类方案是根据仍宜选用的气液比而划分的,然而气液比由于其连续变化而不易精确测定,限定了其广泛应用。 (2)1985-2003年:最有代表的芮宗瑶的分类方案,他根据捕获时的流体特征将包裹 体分为由均一体系形成的和由非均一体系形成的。其中,均一体系形成的包裹体又分为原生包裹体、次生包裹体、假次生包裹体和出溶包裹体;非均一体系形成的包裹体包括液相+固相、液体+气体或液体+蒸气、两种不混溶流体3类。 (3)2003年至今:有些学者在著作及文献中阐述了一些流体包裹体类型的划分方案,多以流体包裹体的物理状态、成因、形成期次等指标为划分依据。其中,卢焕章等根据包裹体相数的不同,将流体包裹体分为纯液体包裹体、纯气体包裹体、液体包裹体、气体包裹体、含子矿物包裹体、含液体CO2包裹体、含有机质包裹体和油气包裹体等8类。 1.2流体包裹体的区分 在流体包裹体的诸多分类中,按捕获时间与主晶矿物形成时间的关系可分为原生和次生流体包裹体。原生包裹体是矿物形成时包裹周围的流体而形成的,而次生包裹体的形成晚于主晶矿物,一般与后期主晶矿物的改造事件有关。二者由于形成时间和方式不同而携带了不同的信息。原生包裹体指示了主晶矿物形成时的流体环境和物理化学条件,次生包裹体则指示了主晶矿物后期被改造事件中的流体环境、构造特征以及物化条件。 一般,原生和次生包裹体区分可应用以下两条准则:一是根据包裹体的形状和分布特征判别,即原生包裹体的形状往往是规则的,常呈孤立状或沿主晶矿物某一结晶方位或生长环带分布,次生包裹体的外形一般是不规则的,多沿愈合裂隙分布;二是同一成因的包裹体密度、均一温度、盐度和成分是近似的,可与已知包裹体类比归类。 2.流体包裹体研究的技术方法 2.1流体包裹体显微测温方法 以显微热台、冷热台以及爆裂以为代表的流体包裹体显微测温技术现已达到成熟,实际应用中多采用均一法和爆裂法相结合的方法。 (1)均一法是将流体包裹体放在冷热台上加热,随着温度的升高,气液两相逐步复原为一个均一相,此时的温度为包裹体均一温度。这是包裹体测温的基本方法,其特点是可直接观察到包裹体相态随温度的变化,也能测得各相的体积,所测数据直观可信。具有针对性且便于区分原生和次生包裹体,因此在流体包裹体研究中得到广泛应用。但这种方法测温速度慢,且只适用于透明和半透明矿物。 (2)爆裂法是将流体包裹体加热,使得包裹体内压升高,当内压大于主矿物强度及外压时,流体包裹体就会爆破而发出响声,用仪器收集、放大、记录其爆裂声响,从而来测定爆裂温度。这种方法适用性广,适用于透明和不透明矿物,且测温速度快。缺点是肉眼无法观察到所研究对象的特征,测定结果受主矿物的物理性质与位置、流体成分、流体包裹体形态

纳米流体研究进展_李云翔

doi :10.3969/j.issn.2095-4468.2013.04.111 纳米流体研究进展 李云翔,解国珍*,安龙,田泽辉 (北京建筑大学,北京 100044) [摘 要] 本文综述了纳米流体的研究进展。1995年美国Argonne 国家实验室的 Choi 等提出将纳米级金属或非金属氧化物颗粒添加到换热工质中制备出新型换热工质“纳米流体”的方法,而且指出纳米流体的稳定性是纳米流体能否进行科学研究和实际应用的关键问题。纳米流体的导热系数、粘度等物性是反映介质流动与换热的关键因素。为使纳米流体成功地应用于工业实际,必须对其传热特性做深入研究。研究发现,目前诸多文献对纳米流体强化沸腾传热存在争议,部分研究成果证明纳米流体能强化传热,而另外的研究成果则认为纳米颗粒的添加非但不能强化传热甚至出现恶化现象。 [关键词] 纳米流体;导热系数;粘度;分散稳定性 Review on Research of Nanofluid LI Yun-xiang, XIE Guo-zhen *, AN Long, TIAN Zei-hui (Beijing University of Civil Engineering and Arthitecture, Beijing 100044, China) [Abstract] The research status of nanofluid was reviewed in the present study. Nanofluid was firstly proposed by Choi et al. of U.S. Argonne National Laboratory in 1995, and it was prepared by adding nanoscale metal or nonmetal oxide into heat transfer fluid. Choi et al. also pointed out that, the stability of nanofluids is the key factor for scientific research and practical application. The thermal conductivity coefficient, viscosity and other physical properties of nano-fluids are the key factors reflecting the flow and heat transfer characteristics. In order to successfully apply nanofluids in industrial practice, the heat transfer chacteristics of nanofluids should be investigated deeply. The existing researches show that, the enhancement effect of nano-fluids is controversial; some research results show that nanofluids may enhance the heat transfer, while some other research results show that there is deterioration effect rather than enhancement effect due to the presence of nano particles. [Keywords] Nanofluid; Thermal conductivity; Viscosity; Dispersivity and stability *解国珍(1954-),男,教授,博士。主要研究方向:制冷与空调设备关键节能新技术研究、CFCs 和HFCs 替代技术研究、纳米微粒对空调制冷系统流体特性影响研究等。联系地址:北京市西城区展览馆路一号北京建筑大学,邮编;100044。 基金项目:国家自然科学基金项目(编号:51176007);北京供热、供燃气、通风与空调工程重点实验室资助。 0 前言 20世纪90 年代以来,随着能源、化工、汽车、建筑、微电子、信息等领域的飞速发展,使得传统的传热介质在传热性能等方面受到严重的挑战。研究人员开始探索将纳米材料技术应用于强化传热领域,研究新一代高效传热冷却技术。 1995年美国Argonne 国家实验室的Choi 等[1]提出将纳米级金属或非金属氧化物颗粒添加到换热工质中制备出新型换热工质“纳米流体”。由于金属及其氧化物的导热系数远大于液体,而且由于纳米颗粒的小尺度和强表面效应使得其在液体中能够稳定地分散,所以既使得传热工质的换热性能大大提高,也避免了传统微米级材料添加剂沉降造成管路阻塞等不良后果。 本文对目前国内外有关纳米流体研究的几个主要方向进行了概括,包括:纳米流体稳定性的研究、纳米流体物性的研究、纳米流体传热特性的研究,其中既包括实验方面的研究进展也对纳米流体物性以及传热特性的理论研究进行了系统的总结。一方面,这对纳米流体在工业生产中的应用起到参考和提示的作用;也对分析相关实验现象及数据给出合理的解释具有指导意义,对探寻纳米流体传热的物理机制及建立相关模型给出借鉴。另一方面,通过综合考虑目前的研究进展可看出这个领域存在的缺点和不足,以便于对后续的研究提供一定的指导作用。 1 纳米流体的稳定性 为了制备热物理性优良的纳米流体,首先要研究纳米流体的稳定性。美国Argonne 国家实验室KeblinskI 等人[2]指出纳米流体的稳定性是纳米流体 45

流体包裹体成因判别

流体包裹体成因判别 芮宗瑶译;张洪涛校 (据Roedder,1976,1979b年的资料修订,不包括出溶包裹体) 一、原生成因判据 1.根据在显示或不显示生长方向或生长环带的某一单晶中的产状。 ①在另一无包裹体的单晶中单独产出(或一个小型三维组合,Roedder,1965b,图10;1972,图版6); ②相对围晶而言,其个体大。例如,其直径≧0.1围晶,特别是出现几个这样的包裹体时; ③远离其它包裹体孤立地产出,其距离约为该包裹体直径的5倍; ④呈遍布晶体的无规律的三维分布产出(Roedder和Coombs,1967,图版4,图A和B); ⑤包裹体周围较规则的位错发生扰动,特别是如果这些位错由包裹体向外呈放射状时(Roedder和Weiblen,1970,图9); ⑥如同主晶中产出的固体包裹体或产出同生相一样,产出的子晶(外来的固体包裹体)。 2.根据显示生长方向的子晶的产状。 ①产在远离(在生长方向上)干扰主晶生长的外来固相(同生相或其他相)处,有时直接产在这种外来固相的前方,而该处主晶尚未完全封闭(由于发育不完全,包裹体可能围着于固体上或离开一定距离,Roedder,1972,图版1); ②产于某早期生长阶段的愈合裂隙之外,原因是该处新晶体生长不完善(Roedder,1965b,图18和19;Roedder等,1966,图15); ③在某一复合晶体的近于平行的两个单元之间产出(Roedder,1972,卷首插图的右上角); ④在几个生长螺旋体的交切面上或在一个在外表面可见到生长螺旋体的中心部位产出; ⑤尤其呈相对较大的扁平状包裹体产出,它们平行于某一外部晶面,并靠近于其中心(也即由于在晶面中心晶体生长发育不良),例如许多“漏斗状盐晶”; ⑥在板状晶体的核心产出(例如绿柱石)。这可能只不过是上述条款的一个极端情况; ⑦尤其沿两晶面的交切边缘成排产出。 3.根据显示生长环带的单晶中的产状(如根据颜色、透明度、成分、X衍射的暗度、捕获的固体包裹体、浸蚀环带和出溶相等标志确定)。 ①产于不规则的三维空间,在临近带中具有不同的富集程度(由于突变的羽毛状的或树枝状的生长);

纳米流体的合成及应用的研究进展

纳米流体的合成及应用的研究进展 纳米流体具有导电性、催化活性等特性,离子液体有宽电化学窗口和导电性,以两者合成的离子液体基纳米流体在生物医学、光催化、电化学等领域有着广阔的应用。本文介绍了纳米流体常用的两种制备方法,并讨论了各制备方法的优缺点。 标签:离子液体;纳米流体 纳米流体自20世纪90年代提出后广受关注,离子液体基纳米流体是离子液体及纳米材料在一定条件下用特定方法合成的复合物,不仅具有离子液体的性质,也具有纳米流体的性质。离子液体因其特性,能够对纳米粒子进行表面修饰,并且能够阻止纳米粒子团聚特性,为纳米流体的合成提供了新的研究方向,离子液体基纳米流体的研究逐渐被报导。目前较成熟制备纳米流体的方法有:一步合成法和两步合成法。 1 一步合成法 一步法是直接在纳米颗粒制备的同时把金属颗粒沉积到液体基质中。一步法中,纳米颗粒通过气相沉积制得再混溶于基液中。此方法制得的流体中纳米微粒稳定且粒径小,分散性好并不易团聚,不加分散剂也能长期稳定。能用在金属纳米流体的合成,但是此方法条件苛刻,要求在低蒸气压条件下且必须在流体介质中反应。此方法适用于对纯度要求高的少量產物合成,但是此法产量低且对设备要求高,不适合工业化生产。 2 两步合成法 两步法是将纳米微粒的制备与流体的合成过程分开首先,是目前比较普遍的合成方法。主要采用气相沉积法或别的方法如机械球磨法和化学还原法,将制备出的纳米颗粒,通过超声、搅拌、加入分散剂等其他方法,使纳米颗粒稳定、均匀地分散到基液中。由于纳米微粒制备的技术日趋完善已达工业化水平,使得两步法在工业中应用有明显优势。两步法合成纳米流体的缺点就是,制得的纳米流体不够稳定,还需要不断研究改善。 合成纳米流体后,需要对其稳定性、形貌、性质等进行表征。表征纳米流体的方法主要有:通过扫描电镜(SEM)和透射电子显微镜(TEM)对纳米颗粒大小及形貌进行表征,此方法需要将纳米颗粒分离,在分离过程中会造成纳米微粒形貌改变以及因为分子间的范德华力发生团聚现场。利用分光光度计对纳米流体的吸光度表征,吸光度越大,纳米流体越稳定或紫外可见光光谱的最大吸收波长发生蓝移,纳米流体的颗粒越小,纳米流体越稳定。使用专业的纳米粒度仪,纳米流体稳定性越好Zeta电位的绝对值之差越大;利用纳米粒度仪对纳米流体的粒度大小进行测量,平均粒径较小的纳米流体较稳定。还可通过沉降分析、激光衍射等多种方法进行表征。

纳米流体储能研究进展

龙源期刊网 https://www.360docs.net/doc/a81658836.html, 纳米流体储能研究进展 作者:贾亚峰尚玉明何向明李建军 来源:《新材料产业》2017年第06期 近年来,能源的不断消耗使能源短缺和环境问题呈现在人们面前,利用储能技术来提高能源利用率是一种有效的缓解方法。其中制冷设备通过相变蓄冷技术采用“移峰填谷”来进行能量高效利用的方式成为了储能领域的热门话题。纳米流体作为一种新型的储能蓄冷材料也备受人们的关注。 1995年,“纳米流体”的概念由美国学者Choi等[1]提出,即在基液中添加特定纳米材料的方式形成的一种具有高导热系数、高换热系数的均匀稳定悬浮液。制备性能稳定、优异的纳米流体是近年来国内外储能领域的研究热点。拥有高导热系数和强换热性能的纳米流体作为一种新型的相变材料,在储能领域中占有一席之地,本文主要介绍纳米流体的分散稳定性和导热机理以及纳米流体在储能领域的优势等,并阐述纳米流体在储能蓄冷领域的应用进展。 一、储能技术及相变储能材料 1.储能技术 储能技术是高效利用能量的途径之一。储能技术常见方法:抽水储能、飞轮储能、压缩空气储能、超级电容器储能、超导磁储能、化学电源储能、相变储能。 相变储能可通过吸收、释放相变材料的相变过程中产生的热量来进行储能和释能。常用在冰蓄冷空调技术、蓄热供暖技术等方面。冰蓄冷可以在低负荷的夜间采用电动制冷机实行,使蓄冷介质结冰蓄能,然后在负荷高的白天融冰,释放出储存的冷量。这种储能方式具有能量密度高,所需装置构造简单、设计灵活、使用方便且易于管理的优点。纳米流体因高导热系数纳米颗粒的添加,在传统换热工质的基础上提高了其导热系数和换热性能[2-6],使其成为国内外储能材料的研究热点。 2.相变储能材料 相变储能材料[7]主要分为无机相变材料和有机相变材料。 (1)无机相变储能材料 无机相变材料主要包括无机水合盐[8]和金属相变材料。无机水合盐相变材料主要包括硝 酸盐、磷酸盐以及碱金属的卤化物等,有较高潜热,属于低温储热材料。金属类相变材料具有导热系数高、储能密度大、热稳定差等特点,属于中高温储能材料。无机相变材料具有潜热高、热导率高、温度范围宽、成本低等优点,但也存在一些问题:溶剂蒸发造成脱水盐沉积,

激光拉曼探针在流体包裹体研究中的应用

[收稿日期]2007-06-29;[修回日期]2007-09-06 [基金项目]国家“973”多种能源共存项目资助(2003CB214603)。[作者简介]张 敏(1974—),女,山东潍坊人,工程师,硕士,主要从事流体地球化学研究。E-mail:zhangmin715@126.com 世界核地质科学WorldNuclearGeoscienceVol.24,No.4Dec.2007 第24卷第4期2007年12月激光拉曼探针在流体包裹体研究中的应用 张 敏,张建锋,李林强,邱林飞 (核工业北京地质研究院,北京100029) [摘要]激光拉曼探针(LRM)是一种非破坏性测定物质分子成分的微观分析技术。在详细介绍激光拉曼探针工作原理、测试方法的基础上,着重阐述了该项技术在单个包裹体成分分析、盐度和压力测定研究中的应用,进而指出了LRM不仅可以对样品中不同期次的单个流体包裹体各相态的成分进行定性分析,而且还可以对包裹体中某些流体成分的相对量及流体的盐度、压力进行定量化研究。同时,也指出了LRM在微区微观分析研究上存在的某些局限性和不足。 [关键词]激光拉曼探针;流体包裹体;成分;盐度;压力[中图分类号]O657.3 [文献标识码]A [文章编号]1672-0636(2007)04-0238-07 TheapplicationoflaserRamanmicroprobetothestudyoffluidinclusion ZHANGMin,ZHANGJian-feng,LILin-qiang,QIULin-fei (BeijingResearchInstituteofUraniumGeology,Beijing100029,China) Abstract:LaserRamanmicroprobeisamicro ̄analyticaltechniquefordeterminingmolecularcomponentswithoutdestroy.BasedontheintroductionofworkingprincipleandanalysismethodofLRM,thispaperexpatiatesonitsapplicationtothestudyofcompositionanalysis,salinityandpressureofsinglefluidinclusion.TheresearchfurthershowsthatLRMcannotonlyqualitativelyanalyzethecomponentofdifferentphasesofsinglefluidinclusionsindifferentages,butalsocanquantitativelydeterminesomerelativecomponents,salinityandpressureoffluidinclusion.SomelimitationandshortageofLRMintheresearchofmicro ̄analysisarealsosummarized.Keywords:laserRamanmicroprobe;fluidinclusion;component;salinity;pressure 激光拉曼探针(laserRamanmicroprobe,LRM),又称显微激光拉曼光谱仪(laserRamanmicrospectrometer),问世于20世纪60年代。早在1928年,印度物理学家拉曼(Raman)首先发现并系统研究了拉曼散射,但由于没有 理想的光源,拉曼谱学的发展受到了极大的限制。随着激光光源和信号处理技术的发展,到20世纪70年代激光拉曼探针作为一项非破坏性微区分析技术已经渗入到地学研究的各个领域,尤其是在矿物岩石和流体包裹体

流体包裹体研究方法

流体包裹体研究方法 一、野外样品采集和室内样品加工 1、野外样品采集 这里只叙及构造岩的显微样品的采集与制备。微观构造研究的首要工作就是野外标本的采集。构造岩主要产于脆性断层及韧性剪切带内,因此,在野外充分观察的基础上,首先就是以垂直断裂带(面)或剪切带片(麻)理走向作剖面,对构造岩作初步分带,并沿带取样。第一块样应从未变形岩石开始。取构造岩最好是定向标本。定向的方法是:将标本从露头上敲下,再放回原来位置,在标本上选取一平面,用记号笔画上水平线(利用罗盘测量),并标出其方向(一般在右侧用箭头表示),再测出倾向及倾角。其次是做好记录。记录包括:标本号、倾向及倾角、采样处片(麻)理产状、线理或断层擦线产状等,并尽可能作详细素描。 2、室内样品加工 首先是用记号笔将野外编号和定向线一一标好,再标出要切制的薄片面,然后送磨片室切制薄片。若只需切一片,破碎岩薄片一般要平行擦线、垂直断面;糜棱岩薄片则是尽量平行矿物拉伸线理、垂直片(麻)理,这样做出来的切片可直接用来判断运动方向或剪切运动指向(注意:一定要通过手标本恢复到野外产状)。糜棱岩如果要做三维有限应变测量,除平行线理、垂直面理的切片外,一般是垂直线理及面理再切一片。并常用该片做岩组测量,因为该片所切矿物数量最多,信息也最多,而组构图可以旋转到平行矿物线理的方向上。如果岩石本身矿物线理及面理不十分发育,应变测量则需作三个互为垂直的切片(根据三个切片的实际产状和测量结果用计算机拟合)。 二、显微镜下观察和冷热台下测定 1、显微镜下观察 对每个包裹体应做的观察内容包括如下几个方面。 ⑴包裹体的大小:应该注明包裹体两个或三个方向上的尺寸(以μm表示)。这一点很重要,因为有些包裹体的性质,特别是密度、形状可能随包裹体的大小有规律地变化;通常与CO2包裹体比较,水溶液包裹体很少有规则的形状。 ⑵包裹体的形状:大多数包裹体具有不规则的形状,然而如果包裹体具有诸如带晶面的形状(负晶形)、球形、椭球形和扁平形等形状时,需要注意。 ⑶气泡大小:应该在一定温度下测量气泡的直径,或是在温度超过CO2临界点时测量CO2+H2O混合包裹体中富CO2相的大小,以便随后在加热或冷却时引起包裹体的任何泄露能够鉴别出来。 ⑷体积百分数:应该记录温度超过CO2临界点(31.3℃)时(一般是+40℃)CO2+H2O 混合包裹体中富CO2相(内部相)的估计体积(或面积),其目的是计算包裹体中CO2的摩尔分数。 ⑸包裹体丰度:每平方毫米还有包裹体的个数。 ⑹包裹体的产状:包裹体岩相学和产状的研究十分重要,包裹体产在岩石什么显微构造中,它们的成因类型和成分类型。一个包裹体可以产于很多条件或环境中,简言之,包裹体可以呈单个产出,或成群产出,沿愈合裂隙(包裹体轨迹)产出,沿次颗粒边界产出,或是沿晶体各生长面产出,以及伴随着变形薄层(叶理)产出。 2、冷热台下测定 抛光的样品必须切成小片,使之符合冷热台腔的大小。切片的大小也要由包裹体的分布来确定。冷热台下测定以下几项内容。

用SRXRF微探针研究含油气单个流体包裹体的...

第9卷 第20期 2009年10月167121819(2009)2026145205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 110 No 120 Oct .2009 Ζ 2009 Sci 1Tech 1Engng 1 地球科学 用SRXRF 微探针研究含油气单个 流体包裹体的微量元素分布 王阳恩 陈传仁1  黄宇营2  何超群1  江隆盛2  邬春学1  李葵发 (长江大学物理科学与技术学院;油气资源与勘探技术教育部重点实验室(长江大学)1,荆州434023; (中国科学院高能物理研究所2,北京100049) 摘 要 简述了同步辐射X 射线荧光微探针用于含油气单个流体包裹无损分析研究的实验装置和方法。通过测定N I ST612标样,计算了不同实验条件下部分元素的检出限。利用日本KEK/PF SRF 工作站的设备对取自柴达木盆地、准噶尔盆地、塔里木盆地等油区16个油气包裹体作了微量元素分析,得到了不同油区不同样品内的微量元素含量。关键词 同步辐射 X 射线荧光分析 单个流体包裹体 微量元素中图法分类号 P575.5; 文献标志码  A 2009年7月15日收到 第一作者简介:王阳恩(1967—),男,汉族,湖南永州人,硕士,副教授。E 2mail:yewang@yangtzeu .edu .cn 。 为了研究流体包裹体,人们发展和形成了各种分析方法。随着微区微量分析技术的发展,人们对流体包裹体的研究,也由测温进入到流体包裹体的微量化学成分,特别是微量元素的定量分析,由破坏性的群体分析方法进入到对单个流体包裹体的无损分析。近年来,对单个流体包裹体的测试分析技术及其应用,受到了多方面研究者的关注[1—8] ,并 进行了有益的探索。 在国际上,随着高强度同步辐射的出现,用同步辐射X 射线荧光(SRXRF )微探针对单个流体包裹体作无损成分分析,近几年取得较快进展。同步辐射光源具有亮度高、通量大、频谱宽且连续可调、发散角小、偏振性好等优异特性,既适宜作μg/g 量级的微量元素分析,又适于进行μm 量级的微区分析,是对单个流体包裹体作微区微量无损分析的有力工具。20世纪80年代末以来,陆续有用同步辐 射X 射线荧光微探针对矿物中单个流体包裹体的成分进行分析测试实验方法研究的报道[9—11] ,其探 针聚焦光斑一般为(10~25)μm ,最小达到(215~ 5)μm ,分析的元素从Na 到REE 。 本文工作是在日本的KEK/PF SRF 工作站进行的,其主要目的是在以前的研究基础上,通过日本工作站新的实验条件,探讨用SRXRF 微探针研究含油气单个流体包裹体的微量元素分布。 1 实验准备 1.1 样品制备 样品属砂岩石英晶体,其中1、2号取自柴达木盆地,3号取自准噶尔盆地,4—16号取自塔里木盆地。将岩芯样品切片,并将其研磨成厚度约为200μm 的薄片,清洗后将其粘贴在与日本工作站装置相配的有机玻璃框架上。用配有长焦距的物镜的偏光显微镜探索尺寸合适的流体包裹体,再用荧光显微镜从中鉴别出含烃的油气包裹体(一般发黄色荧光)并做标记。用显微镜测出待测包裹体的尺寸和深度,判断包裹体的相态。对选出的流体包裹体

流体包裹体的研究现状

流体包裹体在地质中应用 摘要: 在多数地质作用过程中, 流体都担任着元素迁移的载体、化学反应的活化剂的角色。大量研究表明, 岩石、矿物以及元素在有无流体的情况下会表现出迥异的物理和化学性质, 所以对于认识某一地质过程而言, 流体方面的研究往 往能够提供极其重要的信息。流体包裹体则以其直接反映古流体的成分, 在各种矿物中的普遍存在性, 以及对各种后期改造有一定的抵抗力等特点而成为研究 古地质流体的最佳样本, 并已经被成功地应用到各种地质过程的研究中。结合前人的研究,本文系统阐述了流体包裹体研究中常用的分析方法及变质岩中流体包裹体的研究, 并举例说明了流体包裹体在矿床学、石油地质学中的应用。 流体包裹体研究是目前地球科学研究中最活跃的领域之一, 已广泛应用于 矿床学、构造地质学、石油勘探、地球内部的流体迁移以及岩浆岩系统的演化过程等地学领域。通过阅读大量该领域的文献,本文就流体包裹体研究的基本原理、分析技术、地质应用的最新进展以及可能的发展方向作了系统的阐述。 1 流体包裹体的种类和区分 流体包裹体按其捕获时间与主晶矿物( hos-tminera l)形成时间的关系可以分为原生和次生流体包裹体。原生包裹体是矿物形成时包裹周围的流体而形成的, 而次生包裹体的形成晚于主晶矿物, 一般与后期主晶矿物的改造事件有关。二者由于形成时间和方式不同而携带了不同的信息。原生包裹体指示了主晶矿物形成时的流体环境和物理化学条件, 次生包裹体则指示了主晶矿物后期被改造事件 中的流体环境、构造特征以及物化条件。这就要求我们在流体包裹体研究中必须正确地区分它们。 一般来说, 原生包裹体和次生包裹体的区分可以应用如下两条准则: 一是 根据包裹体的形状和分布特征判别, 即原生包裹体的形状往往是规则的, 常呈 孤立状或沿主晶矿物某一结晶方位或生长环带分布, 次生包裹体的外形一般是 不规则的, 多沿愈合裂隙分布; 二是同一成因的包裹体密度、均一温度、盐度和成分是近似的, 可与已知的原生或次生包裹体进行对比和归类[1]。当然, 这两 个规则也不是绝对的, 只有较综合地观察包裹体形态以及主晶矿物与包裹体、包

包裹体在石油地质学中的应用

油气测试分析报告 学号:1006091213 姓名:孟星浑 指导教师:陈永进 中国地质大学(北京) 2011年12月25日

流体包裹体在石油地质中的应用 摘要:流体包裹体研究是油气形成和成藏定量化研究的重要手段。本文总结了油气藏中流体包裹体的地质意义及其在石油、天然气研究中的应用,本文将从从岩相学、成岩作用和流体地质学的角度出发,阐述了沉积岩包裹体发育分布的时空规律和流体组成的特殊性。流体包裹体研究是油气形成和成藏定量化研究的重要手段。 关键词:关键词:流体包裹体油气成藏示踪油气地质学 1 包裹体的基本概念 包裹体是成岩矿物结晶时所捕获的部分成矿流体。流体包裹体的成分、相态、丰度、均一温度及盐度等地化指数, 能够反映不同成矿阶段的地球物理化学条件。作为一种新手段, 流体包裹体研究早已在金属和非金属矿产的普查勘探中得到广泛应用, 在矿产的成矿作用、成矿物理化学条件及矿床成因模式的研究中, 以及指导找矿勘探方面发挥了重要的作用。一个多世纪以来的油气勘探实践证明,石油和天然气资源主要赋存于沉积岩十分发育的含油气盆地中。油气的生成、演化、运移和聚集, 油气的圈闭和保存与地质历史中沉积物的成岩演化和地壳的构造变动史有着极为密切的关系。这些石油地质问题一直是油气勘探中的重要课题。一些具有远见流体是一个在应力作用下发生流动, 并且与周围介质处于相对平衡状态下的物体。矿物中流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中, 被包裹在矿物晶格缺陷或穴窝中的至今尚在主矿物中封存并与主矿物有着相的界限

的那一部分物质。根据成因 , 包裹体可分为原生、假次生和次生等。矿物流体包裹体作为一种研究方法 , 起初主要被应用于矿床学的研究。目前 , 流体包裹体的分析已广泛应用于矿床学、构造地质学、壳幔演化、地壳尺度上的流体迁移石油勘探以及岩浆岩系统的演化过程等地学领域。流体包裹体研究的基本任务之一 , 即是尽可能地提供准确详细的有关古流体组成的物理化学信息 , 以便于建立古流体作用过程的地球化学模型。 2 形成机制 一般认为油气运移充注过程只要发生成岩作用就会形成油气包裹体。悬浮油滴分布在盐水溶液中,矿物结晶生长时,捕获盐水溶液形成盐水溶液包裹体,捕获油滴形成含全烃的油气包裹体;二者一起捕获就形成既含油气又含盐水溶液的包裹体已深入探讨过碎屑岩储层中油气包裹体的形成机制欧光习将其归纳为跨越障碍物式捕获酸溶式捕获和微裂隙式捕获机制。此外,石油的侵位与成岩作用关系尚有争议,后者与储层质量密切相关。有人依据石英胶结物中存在油气包裹体及其均一温度同现今储层温度相近,以及油、水饱和带之间孔隙度的相似,认为石油侵位不会终止成岩作用。有人根据一些含油砂岩或碳酸盐岩储层孔隙度的显著差异,认为石油充满储层会抑制成岩作用。最近的实验表明只要达到一定的温压条件,即使在石油饱和度很高的环境下也会发生石英的胶结和捕获包裹体。这些成果为利用油气包裹体及其共生的盐水溶液包裹体,探讨油气的形成运移聚集与后期变化奠定了基础。

流体包裹体文献综述

流体包裹体文献综述 游智敏 (地球科学与资源学院011070班) 摘要:流体包裹体是研究矿物中和岩石中的古流体,通过利用现代热力学原理,可以恢复流体捕获时的物理化学条件,如温度、压力,密度,成分,组分逸度等。对它们的研究可以定性和定量分析流体参与下的各种地质作用,尤其是成矿作用。对流体包裹体的正式研究始于1858年国外学者Sorby对包裹体地质温度计原理和方法提出,它的发展经历了漫长的过程,可以分为五个阶段。国内流体包裹体起步晚,在流体包裹体理论研究方面与国际先进水平存在差距。此文还总结了水盐体系,CO2-H2O体系这两个主要类型的流体包裹体盐度测算的测温方法,与数据计算公式表格。 关键词:流体包裹体研究进展盐度计算NaCl-H2O体系CO2体系 0 引言 地质体中的流体包裹体多是微米级的观察和研究对象。流体包裹体与微量元素,同位素,微粒矿物等都是微体、微区、和微量物质,但对他们的分析研究、其成果进展等却极大地丰富了宏观地球科学,带来了重要信息,开拓了新的思路,延展了研究领域。对流体包裹体定性和定量分析可解释地壳乃至地幔中流体参与下的各种地质作用过程,它已广泛应用于矿床学、构造地质学、壳幔作用、油气勘探、研究演化、变质学等地学领域。 1、流体包裹体的定义和研究内容 流体包裹体是研究存在于矿物和岩石包裹体中的古流体,通过对其进行定性和定量分析可解释地壳乃至地幔中的流体参与下的各种地质过程。矿物在生长过程中所圈闭的流体保存了当时地质环境的各种地质地球化学信息(P、T、pH、X、W等),是相关地质过程的密码。流体包裹体分析已广泛应用于矿床学、构造地质学、壳幔演化、地壳尺度上流体迁移、石油勘探以及岩浆岩系统演化过程等地质领域。研究流体包裹体是研究包裹体各种性质及其相互关系、为成岩成矿过程提供物理化学和热力学条件数据、探讨地质作用地球化学和演化历史,并服务于找矿勘探。 流体包裹体的研究内容包括: (1)研究矿物中包裹体的成因、恢复地质环境。现今所见的矿物和岩石大多数都是从不同成分和性质的流体或熔体中结晶出来的,它们在结晶过程中以流体包裹体形势捕获了成岩成矿时的介质。矿物中捕获的包裹体是迄今保留下来的最完整最直接的原始流体或熔体的样本,研究其形成机理和捕获后所经的变化,可以区分包裹体的成因,获得包裹体所代表的当

相关文档
最新文档