行测数量关系:排列组合常用方法(一)

行测数量关系:排列组合常用方法(一)
行测数量关系:排列组合常用方法(一)

行测数量关系:排列组合常用方法(一)

中公教育研究与辅导专家葛阳

高中时我们就学习过排列组合,并且学习了常见的几种方法:优限法,捆绑法,插空法等,接下来中公教育专家简单地举例说明其中几种方法的应用。

一、优限法

例1:小明所在的班级学习小组共5个人,现要求5个人站成一排去参加校园图书节,小明不站在排头,也不站在排尾,请问一共有多少种排队方式?

A 120

B 72

C 60

D 24

中公解析:根据题目中所说小明不站在排头,也不站在排尾,那么小明只能从中间的3个位置中选一个,所以一共有3种选法,剩余的4个人没有任何要求,由于是不同的元素有序地进行排队,所以其他人总的排列情况为A4 4=4×3×2×1=24,故,一共有3×24= 72种排队方式。选B。

总结:优限法应用于一些具有绝对限制条件的元素,让其优先进行安排,已达到让其满意的效果。

二、捆绑法

例2:某电影院有新电影上映,现在有两个三口之家以及一个两口之家站排买票,恰好这八个人能够凑成一排,现在要求每个家庭都不能分开坐,请问共有几种坐法?

A 36

B 72

C 216

D 432

中公解析:由于每个家庭不能分开,所以先把每个家庭看成一个整体,共三个整体先排列为A33=3×2×1=6,然后每个家庭在内部排列,共有:A33A33A22=3×2×3×2×2=72,因此总的坐法有:6×72=432种,选择D。

总结:适用于相邻问题。将相邻的元素看成一个整体,然后和其他的元素进行排列,最后相邻元素内部在进行排列。

三、插空法

例3:快毕业了,某班级的六个班级干部准备拍一张合照,合照要求六个人站成一排,并且班长和团支书不能挨在一起,满足情况的排列方式共有多少种?

A 20

B 24 C240 D 480

中公解析:由于合照的要求是班长和团支书不能挨在一起,因此,我们需要先安排其他

没有要求的班级干部,共有:A4 4=4×3×2×1=24,之后从其他班级干部站排之后产生的中间三个位置以及旁边两个位置,共五个位置中选择出两个位置,分别给班长和团支书共:A52=5×4=20种,因此总的情况数共有:24×20=480种,选择D。

总结:适用于不相邻问题。将没有要求的元素先进行安排,之后在从已安排的元素之间和两边产生的空位中选出N个空位,给N个不相邻元素。

四、间接法

例4:某社团共有7个人,其中有3个是高中生,剩余的是大学生,现在从中招募3个志愿者,从事街道清扫志愿活动,要求至少有一个是大学生,问共有多少种选择方式?

A 21

B 34 C35 D 68

中公解析:法一:要求至少有一个大学生包含:有一个大学生,两个大学生和三个大学

×3+4=34种,选择B。法二:生情况,所以总情况为:C4 1C3 2+C4 2C3 1+C4 3=4×3+4×3

2

-1=34种,选择B。

从总情况中除去三个都是高中生的情况:C7 3?C3 3=7×6×5

3×2×1

总结:正难则反。如果一些题目正面计算思考的内容比较多或者计算麻烦,那就考虑从总的情况中减掉相反的情况,会相对减轻难度。标志性语言“至少”。

当然排列组合中不仅仅是这几种方法,还有很多种,譬如:隔板法,错位重排等,把方法掌握了,做题会达到事半功倍的效果。

(完整版)高中数学完整讲义——排列与组合7排列组合问题的常用方法总结1,推荐文档

m m m n ! n m 知识内容 1. 基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中 有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个 步骤有 m 2 种不同方法,……,做第 n 个步骤有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. ⑴排列:一般地,从 n 个不同的元素中任取 m (m ≤ n ) 顺序排成一列,叫做从 n 个不同元素中取出 个元素的一个排列.(其中被取的象叫做元素) 排列数:从 n 个不同的元素中取出个元素的排列数,用符号 个元素的所有排列的个数,叫做从 n 个不同元素中取出 排列数公式: , m , n ∈ N + ,并且 m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做 个不同元素的一个全排列. n 的阶乘:正整数由1 到 n 的连乘积,叫作 n 的阶乘,用 ⑵组合:一般地,从 n 个不同元素中,任意取出个元素的一个组合. 表示.规定: 0! = 1 . 个元素并成一组,叫做从 n 个元素中任取个 组合数:从 n 个不同元素中,任意取出任意取出 m 个元素的组合数,用符号 表示. 元素的所有组合的个数,叫做从 n 个不同元素中, 组合数公式: , m , n ∈ N + ,并且 m ≤ n . 1 / 20 排列组合问题的常用方法总 结 1 m (m ≤ n ) m ! C m n = n (n - 1)(n - 2) (n - m + 1) = n C m n ! m !(n - m )! (m ≤n ) m (m ≤ n ) N = m 1 ? m 2 ? ? m n N = m 1 + m 2 + + m n A m n 表示. A m = n (n - 1)(n - 2) (n - m + 1) n

行测知识点数量关系汇总【精品】.pdf

数量关系 一、数量思维 1.选项关联:不是填空题 注意观察选项之间的倍数关系。 2.代入排除: 应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。 3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式 整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。 4.特值思想: 数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。 数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。 图形特值:比如特殊的长方形——正方形。 5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇; ②乘除运算:一偶就是偶,双奇才是奇。 二、基础代数公式和方法 1.基础代数公式: 完全平方:(a ±b)2 =a 2 ±2ab +b 2 平方差: a 2 -b 2=(a +b )×(a -b ) 完全立方:(a ±b)3 =a 3 ±3a 2 b +3ab 2 ±b 3 立方和差: a 3 ±b 3 =(a ±b)(a 2 ab +b 2 ) 阶乘: a m ×a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n × b n 2.常用方法: 公式法(记住常用的公式) 因子法(整除特性结合) 放缩法(用于判定计算的整数部分) n 1-n 32=1n!)(?????

构造法 特值法 三、等差数列 1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d 求和公式:s n = =na 1+ n(n-1)d 项数公式:n = +1 等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i 3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 四、等比数列 1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1q n -1 求和公式:s n = (q ≠1) 等比公式:G 2=ab (若a 、G 、b 成等比数列) 2.若m+n =p+q ,则:a m ×a n =a p ×a q 3.a m -a n =(m-n)d =q (m-n) 五、周期问题 一周7天,5个工作日。一年平均365天(52周+1天),闰年366天(52周+2天)。 心竺提醒:闰年:四年一闰,百年不闰,四百年再闰。平年365天,365÷7=52…1 大月31天,小月30天,平月(2月)28或29天。 2 12) (1n a a n +?d a a n 1 -q q a n -11 ·1) -(n m a a

(完整版)行测数量关系的常用公式

行测常用数学公式 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数 (1)方阵问题: 1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×4 2.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数) 2 =(最外层每边人数-层数)×层数×4=中空方阵的人数。 ★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。 3.N 边行每边有a 人,则一共有N(a-1)人。 4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4 例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。 线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔 (3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。 (5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段 ⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度= 2 12 12v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型: 顺水速度=船速+水速; 逆水速度=船速-水速。 顺流行程=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流行程=逆流速度×逆流时间=(船速—水速)×逆流时间 (4)火车过桥型: 列车在桥上的时间=(桥长-车长)÷列车速度 列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度 列车速度=(桥长+车长)÷过桥时间 (5)环形运动型: 反向运动:环形周长=(大速度+小速度)×相遇时间 同向运动:环形周长=(大速度—小速度)×相遇时间

行测数量关系常用公式汇总

公务员考试 行测数学常用公式汇总大全 (行测数学秒杀实战方法) 目录 一、基础代数公式 (2) 二、等差数列 (2) 三、等比数列 (2) 四、不等式 (3) 五、基础几何公式 (3) 六、工程问题 (4) 七、几何边端问题 (4) 八、利润问题 (5) 九、排列组合 (5) 十、年龄问题 (5) 十一、植树问题 (6) 十二、行程问题 (6) 十三、钟表问题 (7) 十四、容斥原理 (7) 十五、牛吃草问题 (8) 十六、弃九推断 (8) 十七、乘方尾数 (8) 十八、除以“7”乘方余数核心口诀 (8) 十九、指数增长 (9) 二十、溶液问题 (9) 二十二、减半调和平均数 (10) 二十三、余数同余问题 (10) 二十四、星期日期问题 (10) 二十五、循环周期问题 (10) 二十六、典型数列前N项和 (11)

1. 平方差公式:(a +b )·(a -b )=a 2-b 2 2. 完全平方公式:(a±b )2=a 2±2ab +b 2 3. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2 ) 4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2 ) 5. a m ·a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n · b n (1)s n = 2 )(1n a a n +?=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) (1)a n =a 1q n -1 ; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2 =ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6) n m a a =q (m-n)

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

以真题为例详解国考数量关系排列组合题型

以真题为例详解国考数量关系排列组合题型 排列组合问题在国家公务员考试行政能力测验数量关系专项中经常出现,近几年难度不断加大,题型及其解法也灵活多变。因此很多考生在面对这类问题时,感觉思路混乱,理不清头绪,也不知道如何备考。中公专家通过多年的公考培训实践证明,备考的有效方法是将题型与解法归类,识别模式,熟练应用。同时,还要抓住一些基本策略和方法技巧,排列组合问题便能迎刃而解。下面中公专家给大家介绍几种题型及相应的解题方法策略,希望能助广大考生一臂之力。 一、含有特殊元素或位置的题目,我们可以采用特殊优先法-------所排列或组合的元素或位置有限制,可以优先安排这些特殊的元素或位置,将问题转化为无限制问题,降低题目难度。 例题1:1名老师和6名学生排成一排,要求老师不能站在两端,那么有多少种不同的排法? A.720 B.3600 C.4320 D.7200 【答案】B。解析:本题中特殊元素是老师,特殊位置是两端(即排头和排尾),优先考虑老师的位置。 方法一:考虑特殊元素 这里特殊元素是“老师”,可优先考虑老师,老师在中间5个位置选一个有5种选法,其余的6名同学在6个位置全排列有=720种排法,故共有5×720=3600种。 方法二:考虑特殊位置 这里特殊位置是“排头和排尾”,那优先考虑这两个位置。排头的排法有6种(6个同学任选其一),排尾的排法有5种,剩下五个位置的排法有=120种,故共有 6×5×120=3600种。 二、有些组合排列问题从正面考虑,情况比较复杂,对立面又相对简单,对于这样的题目可以用对立转化法,可直接将问题转化为他的对立面。 例题2:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法? A.240 B.310 C.720 D.1080

(完整)公务员考试行测数量关系各类题型汇总,推荐文档

例2:某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,至少准备选择参加两种考试的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人? A.120 B.144 C.177 D.192 【中公解析】此题与第一题的区别在于所给条件多出两个字变为“至少准备选择参加两种考试的有46人”虽然只多出了至少两个字,但是它代表的含义就有所不同。至少准备选择参加两种考试的有46人表示的是参加两种考试和参加三种考试的人数之和,即文氏图中两层和三层之和,所以减去46后,两层减了一次,三层也减了一次,因此三层只需再减一次就够了。所以列示就应该是63+89+47-46-1×24+15=144,选B。 例3:某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择参加注册会计师考试和英语六级考试的有16人,准备参加英语六级考试和计算机考试的有13人,准备参加计算机考试和注册会计师考试的有17人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人? A.120 B.144 C.177 D.192 【中公解析】此题将“准备选择参加两种考试的有46人”条件改为“准备选择参加注册会计师考试和英语六级考试的有16人,准备参加英语六级考试和计算机考试的有13人,准备参加计算机考试和注册会计师考试的有17人”,这三个数值代表的是文氏图中两个圆相交的区域,每一个相交的区域都包含一遍三层的区域。所以它们加起来的代表的两层的区域之和以及三遍三层的区域,所以减去这三个数之和需要加上三层的一遍,列示应该是63+89+47-16-13-17+24+15=,选D。 例4:某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,仅准备选择参加注册会计师考试和英语六级考试的有16人,仅准备参加英语六级考试和计算机考试的有13人,仅准备参加计算机考试和注册会计师考试的有17人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人? A.120 B.144 C.177 D.192 【中公解析】此题描述的是“仅准备选择参加注册会计师考试和英语六级考试的有16人,仅准备参加英语六级考试和计算机考试的有13人,仅准备参加计算机考试和注册会计师考试的有17人”,多了一“仅”字,那么这三个数值代表的是文氏图中三个两层的区域。它们加起来的和正好是代表的两层的区域之和,所以减去这三个数之和需要减去三层的两遍,列示应该是63+89+47-16-13-17-2×24+15=120,选A。

行测数量关系的常用公式讲解

行测常用数学公式 一、工程问题 工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 注:在解决实际问题时,常设总工作量为1或最小公倍数 二、几何边端问题 (1)方阵问题: 1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×4 2.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数) 2 =(最外层每边人数-层数)×层数×4=中空方阵的人数。 ★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。 3.N 边行每边有a 人,则一共有N(a-1)人。 4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4 例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。 三、植树问题 线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔 (3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。 (5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段 四、行程问题 ⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度= 2 12 12v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型: 顺水速度=船速+水速; 逆水速度=船速-水速。 顺流行程=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流行程=逆流速度×逆流时间=(船速—水速)×逆流时间 (4)火车过桥型: 列车在桥上的时间=(桥长-车长)÷列车速度 列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度 列车速度=(桥长+车长)÷过桥时间 (5)环形运动型: 反向运动:环形周长=(大速度+小速度)×相遇时间 同向运动:环形周长=(大速度—小速度)×相遇时间

数量关系中排列组合问题的七大解题策略

中公教育研究与辅导专家邹继阳 排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。 一、排列和组合的概念 排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。 二、七大解题策略 1.特殊优先法 特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有() (A) 280种(B)240种(C)180种(D)96种 正确答案:【B】 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。 2.科学分类法 问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。 例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。 A.84 B.98 C.112 D.140 正确答案【D】 解析:按要求:甲、乙不能同时参加分成以下几类: a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;

行测数量关系的常用公式

行测数量关系的常用公式 行测常用数学公式 工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工 作量之和; 设总工作量为1或最小公倍数(1)方阵问题: 222 1. 实心方阵:方阵总人数=(最外层每边人数)=(外圈人数÷4+1)=N 最外层人数 =(最外层每边人数-1)×4 22 2. 空心方阵:方阵总人数=(最外层每边人数)-(最外层每边人数-2×层数) =(最外层每边人数-层数)×层数×4=中空方阵的人数。★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。 3. N 边行每边有a 人,则一共有N(a-1)人。 4. 实心长方阵:总人数=M×N 外圈人数=2M+2N-4 2 5. 方阵:总人数=N N排N 列外圈人数=4N-4 例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?解:(10-3) ×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬M -N 层。线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔(2)单边环形 植树:棵数=总长÷间隔;总长=棵数×间隔 (3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的2倍。 N :对折N 次,从中剪M 刀,则被剪成了(2×M +1)段⑴ 路程=速度×时间;平 均速度=总路程÷总时间平均速度型:平均速度= 2v 1v 2

排列组合常用方法总结

排列组合常用方法总结 导读:排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是排列组合常用方法总结,请参考! 排列组合常用方法总结 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法

中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?

数量关系:排列组合基本方法之优限法

2020年的第一场“大联考”——事业单位联考即将到来,一些考生在考前也许会焦灼:快考试了,备考还有效果吗?答案是:当然有!只要你有方法有策略的学习,一定会有所收获。今天中公教育辅导专家就给大家整理了职测中排列组合的基本方法——优限法。排列组合不仅在事业单位数量关系中考察到,在C 类职测的策略制定中也有所涉及,务必要引起重视。 一、知识铺垫 在排列组合中,对有限制条件的元素或者位置采取优先安排的操作叫做优限法。即优先考虑有限制条件的元素,再去考虑没有限制条件的元素。 例如甲、乙、丙、丁四人参加演讲比赛,甲不在前两出场,其他人没要求,则出场的方法有多少种?此时很明显甲出场方式有限制,那么我们就让甲优先出场,只能从后两个位置中 二、例题 【例题1】学校准备从5名同学中安排3人分别担任亚运会3个不同项目比赛的志愿者,其中张某不能担任射击比赛的志愿者,则不同的安排方法共有()。 A.60种 B.24种 C.48种 D.36种 【答案】C 【中公解析】共有三个项目,射击项目比赛对志愿者有限制要求,其他两类比赛没有,元素有限制要求用优限法。故优先选择射击运动志愿者,共有除小张4种选择,其他两个项

【例题2】用0、1、1、1、2、2、3、4这八个数字,可以组成多少个无重复的八位数? A.2940 B.5880 C.4410 D.3528 【答案】A 【例题3】一生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有: A.24种 B.36种 C.48种 D.72种 【答案】B 以上是排列组合基本方法中的优限法,各位考生也要好好练习,总结规律,以便考试遇到能够从容应对。不再傻傻分不清楚。

行测数量关系题目解题技巧:常用的数字特性汇总 2(1)

行测数量关系题目解题技巧:常用的数字特性汇总 一、整除性 整除性在公考中用的非常的频繁,更多体现在速算上,结合公考数算的特性,根据选项,不通过计算,直接出答案,整除性更大程度上是一种思维,而不是方法;带余除法可以结合到这里,理论依据为同余问题,剩余定理。 1、(国家2007-52)某班男生比女生人数多80%,一次考试后,全班平均成绩为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是: A、84 分 B、85 分 C、86 分 D、87 分 解析:此题的方法很多,有常规的方程法,也有稍微好点的十字交叉法,但这些都不是这里所要表述的利用数字的整除性。 因“女生的平均分比男生的平均分高20%”,即女生的平均分是男生的1.2倍。在一般情况下(特别是公考),分数只会是整数,所以我们只需要在选项中找一个12的整数倍的数即可,只有84符合题意。 2、(国家2006 一类-40)有甲、乙两个项目组。乙组任务临时加重时,从甲组抽调了四分之一的组员。此后甲组任务也有所加重,于是又从乙组调回了重组后乙组人数的十分之一。此时甲组与乙组人数相等。由此可以得出结论()。 A. 甲组原有16人,乙组原有11人 B. 甲、乙两组原组员人数之比为16∶11 C. 甲组原有11人,乙组原有16人 D. 甲、乙两组原组员人数比为11∶16 解析:此题的最佳思路还是利用数字的整除性,从“甲组抽调了四分之一的组员”,推出甲组的人数为4的倍数,排除掉CD,然后结合逻辑学的包含关系,排除掉A,选B。因为A成立的话,B也成立,答案只会是1个的,所以A是错的。 3、(天津2008-7)农民张三为专心养猪,将自己养的猪交于李四合养,已知张三,李四共养猪260头,其中张三养的猪有13%是黑毛猪,李四养的猪有12.5%是黑毛猪,问李四养了多少头非黑毛猪? A.125头 B.130头 C.140头 D.150头

排列组合的二十种解法(的排列组合方法总结)

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。 提高学生解决问 题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有 n 类办法,在第 1类办法中有 种不同的方法,在第 2类办法中有 m 2种不 同的方法,…,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有: 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成 n 个步骤,做第1步有m ,种不同的方法,做第 2步有m 2种不同的方 法,…,做第n 步有口种不同的方法,那么完成这件事共有 : 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行 ,确定分多少步 及多少类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 然后排首位共有C 4 A 3 解:由于末位和首位有特殊要求 3 ,应该优先安排 以免不合要求的元素占了 这两个位置

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

巧解数量关系之排列组合题

巧解数量关系之排列组合题 数量关系题目是我们部队文职考试中的一个重要得分点,那么如何把握住这类题目呢?今天图图就数量关系题目中的排列组合类题目给大家做一个分享。在进行作答数量关系中的排列组合题目的时候,需要考大家掌握一个分类分步的思想。也就说先分类再分步是主要思路。分类往往根据有限制的元素来进行,考生在练习题时用这样的思路去思考,相信能够很快掌握。 一、分类分步的解题原理 何为分类分步,简单来说,我要从长沙去北京,完成这样一件事情三类方法:一是坐火车过去,有3趟不同的火车;二是坐汽车过去,有2趟不同的汽车;三是坐飞机过去,有4趟不同的航班,那么我从长沙到北京就一共有3+2+4=9种不同的方法。三类方法每一类都能单独完成从长沙到北京这件事情,所以把每一类的方法数相加,这是分类相加的原理。如果我需要从长沙先到武汉,然后到北京,假设从长沙到武汉有4种方法,从武汉到北京有3种方法,那么总方法数就有4×3=12种。这是分步相乘的原理。其特点是每一步都不能缺少。 二、真题演练 分类分步是相辅相成的,做题的时候一般是先考虑分类再考虑分步。比如说这样一道题:【例1】由1-9组成没有重复数字的三位数共有多少个? A.432 B.504 C.639 D. 720 解析:三维数可以分成个、十、百三步去完成,首先完成个位,可以放任意的数字,一共有9种方法;然后完成十位,因为不能和个位一样,所以去掉个位之后还剩下8个数字,共有8种方法;最后填百位,不能和十位以及个位相同,一共有7种方法。根据分步相乘的原理,总方法数为9×8×7=504种。选择B。 这道题相对来说比较简单,但是再加工一下就变得比较复杂了,如下题: 【例2】由0-9十个数字组成的没有重复数字的三位偶数共有多少个? A. 392 B.432 C.450 D.630 解析:分析一下这道题,题目要求是三位数,那么0这个数字就不能放在百位上了,也就是说百位共有9种方法,而十位可以任意的放置,共有10种方法,个位必须是偶数,只有0、2、4、6 、8这5种方法。但我们不能说有9×10×5 =450 种方法。因为条件要求没有重复数字。按照分类分步的想法,可以分成这两类: ①个位为0,那么此时十位有9中方法,百位有8种方法,分步相乘,共有9×8=72种。

排列组合常用方法总结归纳

排列组合常用方法总结归纳 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是排列组合常用方法总结,请参考! 排列组合常用方法总结 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法

中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴2b=a+c, 可知b由a,c决定, 又∵2b是偶数,∴a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入

数量关系个常见问题公式

一.页码问题 对多少页出现多少1或2的公式 如果是X千里找几,公式是1000+X00*3如果是X百里找几,就是100+X0*2,X 有多少个0就*多少。依次类推!请注意,要找的数一定要小于X,如果大于X就不要加1000或者100一类的了, 比如,7000页中有多少3就是1000+700*3=3100(个) 20000页中有多少6就是2000*4=8000(个) 友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题 N个人彼此握手,则总握手数 S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2=N×(N-1)/2 例题: 某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有()人 A、16 B、17 C、18 D、19 【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。按照排列组合假设总数为X人则Cx取3=152但是在计算X时却是相当的麻烦。我们仔细来分析该题目。以某个人为研究对象。则这个人需要握x-3次手。每个人都是这样。则总共握了x×(x-3)次手。但是没2个人之间的握手都重复计算了1次。则实际的握手次数是x×(x-3)÷2=152计算的x=19人三,钟表重合公式 钟表几分重合,公式为:x/5=(x+a)/60a时钟前面的格数 四,时钟成角度的问题 设X时时,夹角为30X,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。 1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式) 变式与应用 2.【30X-5.5Y】=A或360-【30X-5.5Y】=A(已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用) 某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b)。 证明:设A、B两地相距S,则 往返总路程2S,往返总共花费时间s/a+s/b 故v=2s/(s/a+s/b)=2ab/(a+b) 六,空心方阵的总数 空心方阵的总数=(最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4 =最外层的每一边的人数^2-(最外层每边人数-2*层数)^2 =每层的边数相加×4-4×层数 空心方阵最外层每边人数=总人数/4/层数+层数 方阵的基本特点:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;

行测数量关系公式大全完整版

行测数量关系公式大全集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

华图数量关系公式(解题加速100%) 1.两次相遇公式:单岸型S=(3S1+S2)/2两岸型S=3S1-S2 例题:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸400米处又重新相遇。问:该河的宽度是多少 A.1120米 B.1280米 C.1520米 D.1760米 典型两次相遇问题,这题属于两岸型(距离较近的甲岸720米处相遇、距离乙岸400米处又重新相遇)代入公式3*720-400=1760选D 如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸 2.漂流瓶公式:T=(2t逆*t顺)/(t逆-t顺) 例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天 A、3天 B、21天 C、24天 D、木筏无法自己漂到B城 解:公式代入直接求得24 3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/(t1+t2) 车速/人速=(t1+t2)/(t2-t1) 例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍 A.3 B.4 C.5 D.6 解:车速/人速=(10+6)/(10-6)=4选B 4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)C.25?D.2 5.5 解:代入公式得2*30*20/(30+20)=24选A 5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺) 6.能看到级数=(人速-电梯速度)*逆行运动所需时间(逆) 7.6.什锦糖问题公式:均价A=n/{(1/a1)+(1/a2)+(1/a3)+(1/an)} 8.例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖 9.每千克费用分别为4.4元,6元,6.6元,如果把这三种糖混在一起成为什锦 10.糖,那么这种什锦糖每千克成本多少元? 11.A.4.8元B.5元C.5.3元D.5.5元 12.7.十字交叉法:A/B=(r-b)/(a-r) 13.例:某班男生比女生人数多80%,一次考试后,全班平均成级为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是: 14.析:男生平均分X,女生1.2X 15.1.2X75-X1 16.75= 17.X1.2X-751.8 18.得X=70女生为84 19.8.N人传接球M次公式:次数=(N-1)的M次方/N最接近的整数为末次传他人次数,第 20.?二接近的整数为末次传给自己的次数

相关文档
最新文档