FPGA verilog uart串口收发代码

FPGA verilog uart串口收发代码
FPGA verilog uart串口收发代码

ART波形图如下图所示,最简单的一种形式:1位起始位(低),8位数据位,1位停止位(高)。UART没有同步时钟,按照约定好的时间(波特率)进行间隔采样。

1,UART 数据发送模块

只需按照上图所示的波形图把需要传输的数据输出即可,由于发射时钟和系统时钟同步,我们使用一个计数器对50MHz系统时钟分频产生发送数据时钟。建立一个发送状态机,共四种状态,在每个状态输出相应的信息。

本模块为了方便调试,输出一个闪烁灯,按下一个键,发送一个固定的数据。代码如下:module UART_TX(

tx,

rx,

sw0,

sendkey0,

clk,

rst,

led

);

output tx;

input rx;

input [3:0] sw0;

input sendkey0;

input clk,rst;

output led;

//output discribe

reg led;

reg tx;

// baud rate:38400

parameter UART_CLK_DIV =50000000/38400/2;//额外的/2是因为产生时钟使用了~方式

//发送数据状态机

parameter sstate_idle =0;

parameter sstate_begin =1;

parameter sstate_sdat =2;

parameter sstate_end =3;

reg [2:0] curstate; //当前状态

reg [7:0] senddata; //需要发送的数据

reg [3:0] tosendcnt; //需要发送计数器计数

reg [3:0] alsendcnt; //已经发送数据计数

reg sendclk; //数据发送时钟

reg [15:0] clk_divcnt; //发送时钟分频计数器

reg [2:0] bitcnt; //发送数据的位选择

//产生发送数据的对应时钟

always@(posedgeclk, negedgerst)begin

if(!rst)begin

sendclk<=1'b0;

clk_divcnt<=0;

end else begin

if(clk_divcnt==UART_CLK_DIV-1)begin

clk_divcnt<=0;

sendclk<=~sendclk;

end else begin

clk_divcnt<=clk_divcnt+1;

end

end

end

//状态转换

always@(posedgesendclk,negedgerst)begin

if(!rst)begin

alsendcnt<=0;

curstate<=sstate_idle;

end else begin

case(curstate)

sstate_idle:begin

if(alsendcnt!=tosendcnt)begin // have data to send

alsendcnt<=alsendcnt+1; // count the number have send

curstate<=sstate_begin;

end else begin

curstate<=sstate_idle;

end

end

sstate_begin:begin

curstate<=sstate_sdat;

bitcnt<=3'b0;

senddata<=sw0+8'd97; // get the data to send end

sstate_sdat:begin

if(bitcnt==7)begin

curstate<=sstate_end;

end else begin

bitcnt<=bitcnt+1;

end

end

sstate_end:begin

curstate<=sstate_idle;

end

default:curstate<=sstate_idle;

endcase

end

end

//输出数据

always@(*)begin

if(~rst)tx<=1;

else begin

case(curstate)

sstate_idle:begin

tx<=1;

end

sstate_begin:begin

tx<=1'b0;

end

sstate_sdat:begin

tx<=senddata[bitcnt];

end

sstate_end:begin

tx<=1'b1;

end

endcase

end

end

//按下一个键发送一个数据

always@(posedge sendkey0, negedgerst)begin

if(!rst)begin

tosendcnt<=0;

end else begin

tosendcnt<=tosendcnt+1'b1;

end

end

// led debug use

reg [31:0] ledcnt;

always@(posedgeclk,negedgerst)begin

if(!rst)begin

ledcnt<=0;

led<=1'b1;

end else begin

if(ledcnt<20000000)begin

ledcnt<=ledcnt+1'b1;

end else begin

led<=~led;

ledcnt<=0;

end

end

end

endmodule

2,UART数据接收模块

由于不清楚何时数据到达,即时钟并不同步,使用和串口一样的时钟来判断输入数据并不适合。这里为了稳定,在每个数据波形的中间进行采样。代码如下:

module UART_RX(

tx,

rx,

hex1,//使用数码管显示收到的数据

hex0,

clk,

rst,

led

);

output tx;

input rx;

output [6:0] hex1,hex0;

input clk,rst;

output led;

//output declaration

reg led;

reg [7:0] dispdat;

assign tx =1'b1;

// baud rate:38400

//

parameter UART_CLK_DIV =50000000/38400;//需要分频比例//状态

parameter rstate_idle =0;

parameter rstate_beginq =1;//是否真的有数据传输

parameter rstate_begin =2;

parameter rstate_rdata =3;

parameter rstate_end =4;

reg [2:0] curstate;

reg [15:0] clkcnt;

reg [2:0] bitcnt;

reg [7:0] recdata;

always@(posedgeclk, negedgerst)begin

if(!rst)begin

curstate<=rstate_idle;

clkcnt<=0;

end else begin

case(curstate)

rstate_idle:begin

if(~rx)begin

curstate<=rstate_beginq;

bitcnt<=0;

clkcnt<=0;

recdata<=0;

end else

curstate<=rstate_idle;

end

rstate_beginq:begin

if(clkcnt==UART_CLK_DIV/2-1)begin//1/2是为了在每个波形的中间进行判断

clkcnt<=0;

if(~rx)begin

curstate<=rstate_rdata;

end else begin

curstate<=rstate_idle;

end

end else begin

clkcnt<=clkcnt+1'b1;

end

end

rstate_rdata:begin

if(clkcnt==UART_CLK_DIV-1)begin

clkcnt<=0;

recdata[bitcnt]<=rx;

if(bitcnt==7)begin

curstate<=rstate_end;

end else begin

bitcnt<=bitcnt+1'b1;

end

end else begin

clkcnt<=clkcnt+1'b1;

end

end

rstate_end:begin

if(clkcnt==UART_CLK_DIV-1)begin

clkcnt<=0;

curstate<=rstate_idle;

end else begin

clkcnt<=clkcnt+1'b1;

end

end

default:curstate<=rstate_idle;

endcase

end

end

always@(curstate,bitcnt)begin

case(curstate)

rstate_rdata:begin

end

rstate_end:begin

dispdat<=recdata;/////////////debug end

default:begin

end

endcase

end

// led debug use

reg [31:0] ledcnt;

always@(posedgeclk,negedgerst)begin

if(!rst)begin

ledcnt<=0;

led<=1'b1;

end else begin

if(ledcnt<20000000)begin

ledcnt<=ledcnt+1'b1;

end else begin

led<=~led;

ledcnt<=0;

end

end

end

SEG7 seg1(

.oSEG(hex1),

.Sel(dispdat[7:4]));

SEG7 seg0(

.oSEG(hex0),

.Sel(dispdat[3:0]));

endmodule

rs串口verilog代码

UART是通用异步收发器的简称,其中有一种电平规范较RS232规范,它用-3~-15V表示正逻辑,3~15V表示负逻辑,通过FPGA芯片实现RS232通信首先要解决的就是FPGA电平和RS232电平之间的矛盾,通常采用MAX3232作为物理层的电平接口,根据MAX3232提供的标准配制方式把物理电路设计好后,接下来的通信就是要实现逻辑的接收和发送…… 设计最简单的RS232通信逻辑,FPGA实现将接收到的数据会发出去,总共两个数据传输引脚,一收一发。将此通信模块分为三个部分:接收模块,波特率控制模块,发送模块。 工作原理:此模块接收MAX3232传过来的串行数据,对齐进行判断采样,校验,最后将数据流中的串行数据转换为八位并行数据,将此八位数据储存,或送给发送模块发送出去。根据RS232通信标准器串行数据分为起始位、数据位、校验位、停止位,空闲时为高电平,起始位通常为低电平,数据位通常为8位,校验位分为奇校验、偶校验等,停止位一位或两位且为高电平。FPGA接收模块对此数据进行异步接收,首先就要检测其数据传输开始标识,当然就是检测开始位,于是要有下降沿检测电路,检测到下降沿是输出一高脉冲,此电路可以用两个D触发器加上基本门电路实现,脉冲触发开始进入接收状态,输出接收状态标志位,使其为1,此标志位使能波特率控制模块输出采样脉冲,此计数脉冲触发接收模块中的计数器计数,加到相应的位就把当前的串行总线上的值赋给缓冲器,或对其判断,当计数完成11次计数后,已将8位串行数据转成并行数据到缓冲器中,且进行了校验的判断和停止位的判别,这是接收状态结束,接收状态位置0,计数器清零。对于波特率产生模块用于控制采样数据脉冲的周期,其周期就为串行数据传送一个bit所用的时间,根据此时间和时钟周期设置计数值。当接收模块完成工作时,接收状态位为0时可以触发发送模块,发送模块检测接收状态的下降沿,由此产生一高脉冲,与发送模块类似,根据波特率控制模块产生的计数脉冲将并行数据转成串行数据,并加上开始位、校验位、停止位。由此完成整个串行通信模块。 要熟悉:下降沿检测程序设计,并转串设计等。 顶层模块图如下所示: 各模块的程序如下: //本程序实现rs232通信中的串行数据接收模块 module rs232_rx( //input clk,//50M的时钟输入 rst_n,//低电平复位信号输入 rx_cnt_pluse,//采样脉冲输入,总共11个采样脉冲,一个时钟宽度的高电平 rs232_in_s,//串行数据输入,空闲时为高电平,1bit低电平作为起始位,接着8bit数据位LSB传输模式,接着偶数校验位,接着1bit低电平作为停止位

设备管理系统程序设计

《C#程序设计》大作业 题目:设备管理系统 专业:计算机科学与技术s 学号: 121096143 姓名:朱晓敏 完成日期: 2012/11/6

目录 1 前言 (2) 2 需求分析 (2) 2.1要求 (2) 2.2任务 (2) 2.3运行环境 (2) 2.4开发工具 (2) 3 概要设计与详细设计 (3) 3.1系统流程图 (3) 3.2数据库设计 (4) 3.2.1建立数据字典 (4) 3.2.2数据库详细设计 (4) 4 编码与实现 (5) 4.1分析 (5) 4.2具体代码实现 (7) 4.3界面实现 (16) 5 课程设计总结 (24) 参考文献 (25) 评语及成绩 0

1 前言 设计一个设备管理系统,该系统主要针对设备管理员。系统首先要求用户登录,用户必须输入正确的用户名和密码;系统主界面包括设备查询功能及数据维护功能,设备查询功能是按一定的条件查询所需要的设备信息,数据维护主要是通过增加或删除来修改数据。 2 需求分析 2.1要求 (1)用Csharp语言实现程序设计; (2)采用.NET开发工具来设计主窗体和子窗体等; (3)画出系统模块的流程图; (4)完成数据库的设计; (5)界面友好(良好的人机互交),程序要有注释。 2.2任务 (1)设计一个登陆窗体和主窗体,7个子窗体来显示相关信息; (2)管理员必须输入正确的用户名和密码,才能进入主窗体进行相关操作; (3)画出所有模块的流程图; (4)完成数据库的设计; (5)编写代码; (6)程序分析与调试。 2.3运行环境 (1)WINDOWS2000/XP系统 (2)Visual Studio 2005编译环境 2.4开发工具 C#: C#(C Sharp)是微软为NET Framework量身订做的程序语言,C#拥有C/C++的强大功能以及Visual Basic简易使用的特性,是第一个组件导向(Component-oriented)的程序语言,和C++与Java一样亦为对象导向(object-oriented)

verilog串口程序

串口通信是目前比较重要的一种通信方式,主要是用于计算机和外部的通信。首先简单的介绍一下串口通信的原理: 串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据

Verilog串口通讯设计

1 串口通信基本特点随着多微机系统的应用和微机网络的发展,通信功能越来越显得重要。串行通信是在一根传输线上一位一位地传送信息.这根线既作数据线又作联络线。串行通信作为一种主要的通信方式,由于所用的传输线少,并且可以借助现存的电话网进行信息传送,因此特别适合于远距离传送。在串行传输中,通信双方都按通信协议进行,所谓通信协议是指通信双方的一种约定。约定对数据格式、同步方式、传送速度、传送步骤、纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。异步起止式的祯信息格式为:每祯信息由四部分组成:a.1位起始位。b.5~8位数据位。传送顺序是低位在前,高位在后.依次传送。c.一位校验位,也可以没有。d.最后是1位或是2位停止位。FPGA(Field Pmgrammable Gate Array)现场可编程门阵列在数字电路的设计中已经被广泛使用。这种设计方式可以将以前需要多块集成芯片的电路设计到一块大模块可编程逻辑器件中,大大减少了电路板的尺寸,增强了系统的可靠性和设计的灵活性。本文详细介绍了已在实际项目中应用的基于FPGA的串口通讯设计。本设计分为硬件电路设计和软件设计两部分,最后用仿真验证了程序设计的正确性。 2 系统的硬件设计本方案的异步串行通信的硬件接口电路图如图1所示,主要由四部分组成:RS-485数据发送模块、FPGA串口模块、MAX3223和DB9。各部分功能简述如下:RS-485数据发送模块是将前续电路的数据发送到FPGA,供本电路处理,亦即本电路的输入。RS485是符合RS-485和RS-4225串口标准的低功耗半双工收发器件,有3.3V和5V两种,在本设计中选用了3.3V的器件SP3485。SP3485的内部结构示意图如图2所示在本设计中。485的7脚和8脚与前端信号相连接,用于接收输入的数据。数据格式是这样的:一帧数据有25位,报头是16个高电平和1个低电平,接下来是 8位有效的数据。传输速率为700k波特率。2脚是使能端,与FPGA的I/O口相连,由FPGA提供逻辑控制信号。1脚和4脚也与FPGA相连,由 FPGA对输入数据进行处理。 图1异步串行通信硬件接口功能框图 图2 SP3485的内部结构示意图FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚。FPGA选用Xilinx 公司的Spartan II系列xc2s50。此部分为该设计的主体。如上所述,输入数据的传输速率为700k波特率。为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍。在本设计中选用4倍于波特率的时钟,利用这种4倍于波特率的接收时钟对串行数据流进行检测和定位采样,接收器能在一个位周期内采样4次。如果没有这种倍频关系,定位采样频率和传送波特率相同,则在一个位周期中,只能采样一次,分辨率会差。比如,为了检测起始位下降沿的出现,在起始位的前夕采样一次之后,下次采样要到起始位结束前夕才进行。而假若在这个周期期间,因某种原因恰恰使接收时钟往后偏移了一点点,就会错过起始位。造成整个后面位的检测和识别错误。针对本设计,FPGA的软件共分了三个模块: 1.时钟分频模块。模块的功能是用来产生所需要的数据采集时钟和数据传输时钟。系统主频是40M的。数据采集时钟是2.8M的,发送时钟是11.2k。 2. 提取数据模块。由RS485发送过来的数据共有25位,其中只有8位是有效数据。为了发送这8位有效数据。必须先将其提取出来。提取的办法是这样的:通过连续检测到的16个高电平和一个低电平。判断8位有效数据的到来。然后按照串行数据传输的格式,在加上起始位和停止位后,将其存储于输出缓冲寄存器中。在这里,我们的串行数据输出格式是这样规定的,一位起始位,八位数据位,一位停止位,无校验位。 3.串行数据输出模块。这一模块相对比较简单,波特率选为11.2k,模块的

设备管理系统(论文+开题报告+源码)

目录 前言―――――――――――――――――――――――摘要―――――――――――――――――――――――第一章系统需求分析 第二章系统设计 2.1系统方案确定 2.2系统功能实现 第三章怎样开发一个人事工资管理系统? 3.1 编程环境的选择

3.2 关系型数据库的实现 3.3 二者的结合(DBA) 第四章 Visual basic下的控件所实现的功能 4.1实现菜单选项 4.2 实现工具栏 4.3 帮助 第五章系统总体规划 5.1 系统功能 5.2 流程图 第六章系统具体实现 6.1 用户界面的实现 6.2 数据库的实现 第七章结束语 第八章主要参考文献 第九章程序源代码、各功能模块的程序流程图 --------------前言-------------- 设备管理信息系统是一个企事业单位不可缺少的部分,它的内容对于企事业单位的决策者和管理者来说都至关重要,所以设备管理信息系统应该能够为用户提供充足的信息和快捷的查询手段。但一直以来人们使用传统人工的方式管理设备的信息,这种管理方式存在着许多缺点,如:效率低、保密性差,另外时间一长,将产生大量的文件和数据,这对于查找、更新和维护都带来了不少的困难。本论文主要介绍的是设备管理信息系统的整个设计过程。 随着计算机技术的不断发展,计算机应用于各大领域,并给人们的生活带来了极大的便利,在固定管理系统亦是如此。以往设备员由于缺乏适当的软件而给其工作带来了很多不便。本论文所介绍的便是一个设备管理信息系统,以方便在设备安排和设备管理信息上的工作任务。 该系统适用于普通设备的管理,在使用上力求操作容易,界面美观,另外,本系统具有较高的扩展性和可维护性,可能在以后需要的时候进行软件升级。 整个系统的开发过程严格遵循软件工程的要求,做到模块化分析、模块化设计和代码编写的模块化。 作为计算机应用的一部分,使用计算机对设备信息进行管理,具有着手工管理所无法比拟的优点.例如:检索迅速、查找方便、可靠性高、存储量大、保密性好、寿命长、成本低等。这些优点能够极大地提高设备管理信息的效率,也是企业的科学化、正规化管理,与世界接轨的重要条件。 --------------摘要--------------

FPGA模拟串口自收发-Verilog

实现功能,FPGA里实现从PC串口接收数据,接着把接收到的数据发回去。波特率可选9600bps,可调1bit起始位,8bit数据,1bit停止位,无校验位。 参考《VHDL硬件描述语言与和数字逻辑电路设计》 模块介绍如下 一、串口数据接收模块:特别注意一个数据位占4个clk_bps_4时钟周期。 串口数据接收控制 当数据接收端rxd出现起始位低电平,启动接收控制计数器rx_cnt,置位为8’b0111_00(28), 即rx_cnt[5:2]== 4’b0111(7),rx_cnt*1:0+ == 2'b00(0);一个计数周期开始,伴随clk_bps_4, rx_cnt加1(每一个数据位加4) 串口接收数据移位控制(关键采样点的选取) 每当rx_cnt[1:0] == 2'b01,为了保证在rxd一位数据靠近中间位置采样;每4个clk_bps_4, rx_cnt[5:2]加1当rx_cnt[5:2] == 8,9,10….15,完成8位的数据采样,串并变换 置位标志位rxdF数据接收标志 rxd出现起始位低电平, rxdF置1,表示数据接收开始;当rx_cnt计数到8’b1111_11(63),数据接收完成,rxdF置0 置位标志位rdFULL;//接收锁存器满标志 空闲时rdFULL置0,当数据接收完成,数据锁存到do_latch,同时rdFULL置1,向上层模块表示数据以准备OK,可以来读取;rd置0,表示上层模块开始读取数据,rdFULL置0,表示数据已读走 二、串口数据发送模块:数据发送依赖于wr(低电平有效) 空闲时wr置1,数据发送时wr产生低电平脉冲,wr上升沿将数据锁存到din_latch; 串口数据发送控制: wr由0跳变为1后,启动发送控制计数器tx_cnt,置位为8’b0111_00(28), 即tx_cnt[5:2]== 4’b0111(7),tx_cnt[1:0] == 2'b00(0);一个计数周期开始,伴随clk_bps_4, tx_cnt加1(每一个数据位加4)

基于verilog的串口通信实验指导和源程序

自己看了很多材料以后,精心整理的串口通信实验原理和指导,在网上找了很多代码,大部分因为没有很好的注释,看起来很头疼,于是自己写了一份,附带详细的注释,在modelsim仿真器上已经得到验证,现在传上来,仅供参考。 PS1:最后部分给出了一个测试文件,写的非常简单,只是验证了功能,不是很好的测试; PS2:代码部分看上去有点乱,因为在word中代码的层次结构无法清晰显示,如有需要,下载后把代码copy到notepad++这种类似的专用变成工具里面,就很清晰的显示代码和注释了。 第一部分:实验原理串行通信要求的传输线少,可靠性高,传输距离远,被广泛应用于计算机和外设的数据交换。通常都由通用异步收发器(UART)来实现串口通信的功能。在实际应用中,往往只需要UART的几个主要功能,专用的接口芯片会造成资源浪费和成本提高。随着FPGA/CPLD的飞速发展与其在现代电子设计中的广泛应用,FPGA/CPLD功能强大、开发过程投资小、周期短、可反复编程、保密性好等特点也越来越明显。因此可以充分利用其资源,在芯片上集成UART功能模块,从而简化了电路、缩小了体积、提高了可靠性,而且设计时的灵活性更大,周期更短。

UART简介 UART(Universal Asynchronous Receiver Transmitter通用异步收发器)是一种应用广泛的短距离串行传输接口。常常用于短距离、低速、低成本的通讯中。8250、8251、NS16450等芯片都是常见的UART器件。 基本的UART通信只需要两条信号线(RXD、TXD)就可以完成数据的相互通信,接收与发送是全双工形式。TXD是UART发送端,为输出;RXD是UART接收端,为输入。 UART的基本特点是: (1)在信号线上共有两种状态,可分别用逻辑1(高电平)和逻辑0(低电平)来区分。在发送器空闲时,数据线应该保持在逻辑高电平状态。 (2)起始位(Start Bit):发送器是通过发送起始位而开始一个字符传送,起始位使数据线处于逻辑0状态,提示接受器数据传输即将开始。 (3)数据位(Data Bits):起始位之后就是传送数据位。数据位一般为8位一个字节的数据(也有6位、7位的情况),低位(LSB)在前,高位(MSB)在后。 (4)校验位(parity Bit):可以认为是一个特殊的数据位。校验位一般用来判断接收的数据位有无错误,一般是奇偶校验。在使用中,该位常常取消。 (5)停止位:停止位在最后,用以标志一个字符传送的结束,它对应于逻辑1状态。 (6)位时间:即每个位的时间宽度。起始位、数据位、校验位的位宽度是一致的,停止位有0.5位、1位、1.5位格式,一般为1位。 (7)帧:从起始位开始到停止位结束的时间间隔称之为一帧。

Verilog实现串口接收多帧数据

`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 19:50:45 04/19/2015 // Design Name: // Module Name: Serial_Decoder // Project Name: // Target Devices: // Tool versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Serial_Decoder( input wire clk_seri, //串口时钟,用于从串口发送命令给FPGA input wire rst, input wire RxD, output reg[1:0] modu_sel, //BPSK,QPSK,8PSK选择 output reg[13:0] ser_asf, //由串口发过来的asf output reg[31:0] ser_ftw, //由串口发过来的ftw output reg cmd_done, //上位机给FPGA发送指令结束 output reg[31:0] dina, //ROM存储器,用于存储外部PN码 output reg wea, output reg[1:0] addra ); reg cmd_rdy;//指令接收完成 reg [3:0] instr_code;//用于分辨命令,是asf还是ftw还是外部PN码 reg [31:0] cmd_data; //接收从上层发过来的命令 wire RxD_data_ready;

c语言程序设计实验设备管理系统-百度文库

本文由导员0000贡献 doc文档 课程设计报告书实验设备管理系统
班学姓
级:号:名:
0909方 0909-1 20096409 王晶康亚男
指导教师:指导教师:
石家庄铁道大学四方学院
二零一零年七月十五号
1
课程设计报告内容
1. 选择题目
题目:实验设备管理系统题目:实验设备管理系统 2. 内容摘要
实验室设备管理系统是典型的设备信息管理系统,要求能为学校实验摘要:室管理提供信息化动态化的管理,方便实验室设备管理工作,提高设备管理质量和使用效率。而且系统应符合设备管理的有关规定,包括新设备的申请、购买确认、新设备信息录入、旧设备维修和报废及用户管理等。能满足日常工作的基本需要,并达到操作过程中的直观、方便、实用、安全等有关要求。实验室设备管理系统是一个典型的信息管理系统,采用面向对象的分析方法,给出系统的基本结构?设计特色?设计模型及实现途径,并且对系统的开发技术进行研究?本系统是一个为适应对学校实验室设备管理的迫切需求而设计开发的软件系统。
3. 索引关键词
关键词:结构体、文件、数组、函数
4.目录目录
目录……………………………………………………………目录题目要求………………………………………………………3 题目要求设计思想……………………………………………………3-4 设计思想系统完成及功能系统完成及功能……………………………………………… 4 界面设计……………………………………………………4-5 界面设计
2
核心算法及说明………………………………………….5-11 核心算法及说明结论…………………………………………………………11 结论考资料………………………………………………………12 考资料后记…………………………………………………………12 后记附录………………………………………………………12-13 附录
5. 正文
包括课程设计的要求,设计思想,系统完成的功能,及界面设计,核心算法及说明,和结论几部分,正文必须从页首开始。。
5.1 课程设计题目要求
实验设备信息包括:设备编号,设备种类(如:微机、打印机、扫描仪等等),设备名称,设备价格,设备购入日期,是否报废,报废日期等。主要功能:主要功能: 1、能够完成对设备的录入和修改 2、对设备进行分类统计 3、设备的破损耗费和遗损处理 4、设备的查询要求:使用二进制文件方式存储数据,系统以菜单方式工作
5.2 设计思想

串口通讯设计之Verilog实现

串口通讯设计之 V e r i l o g实现 Revised as of 23 November 2020

串口通讯设计之V e r i l o g实现 FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚。FPGA选用Xilinx公司的SpartanII系列xc2s50。此部分为该设计的主体。如上所述,输入数据的传输速率为700k波特率。为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍。 1 串口通信基本特点随着多微机系统的应用和微机网络的发展,通信功能越来越显得重要。串行通信是在一根传输线上一位一位地传送信息.这根线既作数据线又作联络线。串行通信作为一种主要的通信方式,由于所用的传输线少,并且可以借助现存的电话网进行信息传送,因此特别适合于远距离传送。在串行传输中,通信双方都按通信协议进行,所谓通信协议是指通信双方的一种约定。约定对数据格式、同步方式、传送速度、传送步骤、纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。异步起止式的祯信息格式为:每祯信息由四部分组成: 位起始位。 ~8位数据位。传送顺序是低位在前,高位在后.依次传送。c.一位校验位,也可以没有。d.最后是1位或是2位停止位。 FPGA(Field Pmgrammable Gate Array)现场可编程门阵列在数字电路的设计中已经被广泛使用。这种设计方式可以将以前需要多块集成芯片的电路设计到一块大模块可编程逻辑器件中,大大减少了电路板的尺寸,增强了系统的可靠性和设计的灵活性。本文详细介绍了已在实际项目中应用的基于FPGA的串口通讯设计。 本设计分为硬件电路设计和软件设计两部分,最后用仿真验证了程序设计的正确性。 2 系统的硬件设计 本方案的异步串行通信的硬件接口电路图如图1所示,主要由四部分组成:RS-485数据发送模块、FPGA 串口模块、MAX3223和DB9。各部分功能简述如下: RS-485数据发送模块是将前续电路的数据发送到FPGA,供本电路处理,亦即本电路的输入。RS485是符合RS-485和RS-4225串口标准的低功耗半双工收发器件,有和5V两种,在本设计中选用了的器件SP3485。 在本设计中。485的7脚和8脚与前端信号相连接,用于接收输入的数据。数据格式是这样的:一帧数据有25位,报头是16个高电平和1个低电平,接下来是 8位有效的数据。传输速率为700k波特率。2脚是使能端,与FPGA的I/O口相连,由FPGA提供逻辑控制信号。1脚和4脚也与FPGA相连,由 FPGA对输入数据进行处理。 FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚。FPGA选用Xilinx公司的Spartan II系列xc2s50。此部分为该设计的主体。如上所述,输入数据的传输速率为700k波特率。为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍。在本设计中选用4倍于波特率的时钟,利用这种4倍于波特率的接收时钟对串行数据流进行检测和定位采样,接收器能在一个位周期内采样4次。如果没有这种倍频关系,定位采样频率和传送波特率相同,则在一个位周期中,只能采样一次,分辨率会差。比如,为了检测起始位下降沿的出现,在起始位的前夕采样一次之后,下次采样要到起始位结束前夕才进行。而假若在

设备管理系统任务书(参考Word)

数据库应用系统设计与实践课程设计任务书 学院名称:数学与计算机学院课程代码:_______8424141__________ 专业:计算机科学与技术年级: 09 一、设计题目 设备管理系统 二、设计目的 学生根据所学的数据库原理与程序设计的知识,能够针对一个小型的数据库管理系统,进行系统的需求分析,系统设计,数据库设计,编码,测试等,完成题目要求的功能,从而达到掌握开发一个小型数据库的目的。 三、具体要求及应提交的材料 具体要求: 1.主要数据表 设备明细帐表,设备使用单位代码表,国家标准设备分类表等。 2.功能模块 1)实现设备的录入、删除、修改等基本操作。 2)实现国家标准设备代码的维护。 3)能够对设备进行方便的检索。 4)实现设备折旧计算。 5)能够输出设备分类明细表。 6)具有数据备份和数据恢复功能。 应上交的材料:

1、课程设计报告 2、程序源代码清单 四、主要技术路线提示 1.仔细阅读设计指导书内容,认真掌握任务要求 2. 需求分析 3.概念结构设计 4.逻辑结构 设计 5.物理结构设计 6.编码. 五、进度安排 1.第一周完成系统分析和设计 2.第二周完成程序开发,撰写课程设计报告 六、推荐参考资料(不少于3篇) 1、《软件工程概论》张海藩清华大学出版社 2、《实用软件工程基础》陈明编著清华大学出版社 3、《数据库系统概论》萨师煊,高等教育出版社,2003年5月第 3版 4、数据库基础与应用-SQL SERVER2000, 成先海, 机械工业出版社出版,2003 指导教师签名日期年月日 系主任审核日期年月日 (注:文件素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)

Java课程设计报告-设备管理系统

JAVA课程设计报告课题名称:设备管理系统

目录 1 项目总体规划1 2 系统需求分析4 2.1用户管理基本功能分析5 2.2设备管理基本功能分析6 2.3数据管理基本功能分析2 3 数据库设计1 4 关键技术和难点1 4.1 数据库连接3 4.2 SQL语句的使用2 5 系统详细设计与实现1 5.1用户管理设计与实现5 5.2设备管理设计与实现6 5.3数据管理设计与实现2 6 项目测试1 7 参考文献1

摘要: 随着社会生产活动中自动化水平越来越高,设备的监控及其数据的存储越来越重要。 本系统使用JAVA语言,结合实际编写了该设备管理系统,可以实现对数据库的准确操作,完成用户的登录、修改密码、添加用户、删除用户,及设备的添加和删除,设备数据的添加、删除和查询等一系列功能。 关键词: 设备管理系统数据库技术JDBC SQL语句

1.项目总体规划 随着社会生产活动中自动化水平越来越高,设备的监控及其数据的存储越来越重要。数据库技术已经成为现代信息技术的重要组成部分,是现在计算机信息系统和计算机应用系统的基础和核心。对于任何一个企业来说,数据是企业重要的资产,如何有效利用这些数据,对于企业发展起着极其重要的作用。随着我国市场经济的迅速发展,在工厂中,为了有效管理各种设备及其在运作过程中产生的数据,开发一个方便高效的管理软件是非常必要的。本系统使用JAVA 语言,结合实际编写了该设备管理系统,可以实现对数据库的准确操作,完成用户的登录、修改密码、添加用户、删除用户,及设备的添加和删除,设备数据的添加、删除和查询等一系列功能。 本系统开始运行时首先进入登陆界面,用户输入正确的用户名及密码后进入主窗体,然后通过点击主窗体的各项菜单进入各项功能。 2.系统需求分析 2.1用户管理基本功能分析 系统中用户需要正确的密码才能获得能录权限,登录之后可以进行一系列数据操作。 其功能定义如图1所示。 图1 2.2设备管理基本功能分析 设备管理可以实现对设备的添加和删除,其功能定义如图2所示。

Verilog程序6、UART(串口通信)

这个程序没有仿真、没有测试。。 1 UART功能设计 1.1 UART的工作原理 异步通信时,UART发送/接收数据的传输格式如图1所示,一个字符单位由开始位、数据位、停止位组成。 异步通信的一帧传输经历以下步骤: (1)无传输。发送方连续发送信号,处于信息“1”状态。 (2)起始传输。发送方在任何时刻将传号变成空号,即“1”跳变到“O”,并持续1位时间表明发送方开始传输数据。而同时,接收方收到空号后,开始与发送方同步,并期望收到随后的数据。 (3)奇偶传输。数据传输之后是可供选择的奇偶位发送或接收。 (4)停止传输。最后是发送或接收的停止位,其状态恒为“1”。 其程序的结构框图如下: 该程序的效果是串口接受到从计算机发送过来的数据后,又把数据发回给计算机,串口通信是串行的。 其uart.v为顶层文件,包含其他模块,speed_select.v文件的作用为为uart_rx.v和uart_tx.v 设置波特率。

uart.v(顶层文件) `timescale 1ns / 1ps ///////////////////////////////////////////////////////////////////// ///////////// // Company: // Engineer: // // Create Date: 16:08:27 11/12/2010 // Design Name: // Module Name: uart // Project Name: // Target Devices: // Tool versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ///////////////////////////////////////////////////////////////////// ///////////// module uart(clk,rst_n,rs232_rx,rs232_tx); input clk,rst_n,rs232_rx; output rs232_tx; wire bps_start1,bps_start2,clk_bps1,clk_bps2,rx_int; wire [7:0] rx_data; //发送模块的时钟 speed_select speed_tx ( .clk(clk), .rst_n(rst_n), .bps_start(bps_start2), .clk_bps(clk_bps1) ); //接受模块的时钟 speed_select speed_rx ( .clk(clk), .rst_n(rst_n), .bps_start(bps_start2), .clk_bps(clk_bps2)

设备管理系统

数学与计算机学院 课程设计说明书 课程名称: 软件工程与数据库课程设计 课程代码: 6014419 题目: 设备管理系统 年级/专业/班: 学生姓名: 学号: 开始时间:2012年6月10日 完成时间:2012年 6月20日 课程设计成绩: 学习态度及平时成绩(30)技术水平与实 际能力(20) 创新(5) 说明书(计算书、图纸、 分析报告)撰写质量(45) 总分 (100)指导教师签名:年月日

软件工程与数据库课程设计任务书 学院名称:数学与计算机学院课程代码:_6014419_ 专业:年级: 一、设计题目 设备管理系统 二、主要内容 主要数据表:设备明细帐表,设备使用单位代码表,国家标准设备分类表等。 功能模块 1.实现设备的录入、删除、修改等基本操作。 2.实现国家标准设备代码的维护。 3.能够对设备进行方便的检索。 4.实现设备折旧计算。 5.能够输出设备分类明细表。 6.具有数据备份和数据恢复功能。 三、具体要求 1、完成系统的需求分析 通过需求分析确定系统需要处理的数据的需求,要求使用数据库的辅助设计工具(PowerDesigner等),建立业务处理模型。 2、完成系统概念结构设计概念数据模型(CDM)用于完成数据库的设计,与人和数据库平台和具体数据存储结构和工具无关。首先选择局部应用画出分E-R图,最终形成系统的E-R图 3、完成系统逻辑结构设计 按照E-R图转换成关系模式的规则,将CDM转换成逻辑数据模型,并为每个 关系模式设计主键、外键。分析关系模式中的依赖关系,对关系模式规范化处理

4、完成系统物理结构设计 为每个关系分配存储长度,建立数据库的索引和视图,定义关系中的主码和外码,写出关系创建和查询的SQL语句。 5、编码 选择你自己熟悉的开发工具完成一个DBS系统的编码工作。 源代码格式规范,注释不少于三分之一 四、主要技术路线提示 1.仔细阅读设计指导书内容,认真掌握任务要求→ 2. 需求分析→ 3.概念结构设计→ 4.逻辑结构设计→ 5.物理结构设计→ 6.编码. 2.后台推荐采用SQL server或Oracle;前台开发环境不限制。可采用ADO,ODBC,OLEDB或JDBC连接数据库,并调用系统存储过程、自定义存储过程、函数等。 五、进度安排 第1周:数据库系统概念模型、数据模型设计,创建数据库以及相关对象; 第2周:前台程序开发,撰写报告,接受检查。 六、完成后应上交的材料 1.源程序一份(包含数据库) 2.课程设计报告一份 七、推荐参考资料 1.王珊.数据库系统概论(第四版). 高等教育出版社 2.闪四清.数据库系统原理与应用教程.清华大学出版社 3.周龙骧.数据库管理系统实现技术.中国地质大学出版社 4.张海藩.软件工程概论.清华大学出版社 5.陈明编著.实用软件工程基础.清华大学出版社 6.成先海.数据库基础与应用-SQL SERVER2000. 机械工业出版社出版 指导教师签名日期年月日 系主任审核日期年月日

verilog编写的uart程序

// UART_FPGA.v 顶层模块,实现由ARM控制FPGA读取串口数据,经过ARM返回给FPGA串口发送出去; `timescale 1ns/1ns module UART_FPGA( //EMIF PIN input wire [10:0] EADDR_pin /* synthesis syn_noclockbuf = 1 */, inout wire [15:0] EDATA_pin , input wire EnOE_pin /* synthesis syn_noclockbuf = 1 */, input wire EnWE_pin /* synthesis syn_noclockbuf = 1 */, input wire EnGCS1_pin /* synthesis syn_noclockbuf = 1 */, output wire EINT2_pin , //LED_run output wire LED_run_pin , //UART output wire UART_TXD0 , input wire UART_RXD0 /* synthesis syn_noclockbuf = 1 */, //test signal output wire TXD_test, output wire RXD_test, output reg TXD_start, output wire EINT2_test, output wire TXD_over_test, output wire uart_send_WR, //FPGA SYSTEM PIN input wire nRESET_pin /* synthesis syn_noclockbuf = 1 */, input wire CLK_50M_pin ); wire [15:0] write_data;

设备管理系统 源代码及运行界面

源代码及运行界面 1.model类 a.Depart.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace model { public class Depart { public Depart() { } #region model private int _departid; private string _departname; private int _parentid; public int DepartID { set {_departid = value; } get { return _departid; } } public string DepartName { set { _departname = value; } get { return _departname; } } public int ParentID { set { _parentid = value; } get { return _parentid; } } #endregion model } } b.Device.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace model { public class Device { public Device() { } #region model private int _deviceid; private string _devicetypeid; private int _typeid; private int _classid; private string _devicestate; private Single _price; private int _useofyear; private Single _svp; private string _manufacture; private DateTime _stocktime; public int DeviceID { set { _deviceid = value; } get { return _deviceid; } } public string DeviceTypeID { set { _devicetypeid = value; } get { return _devicetypeid; } } public int TypeID

Verilog编写的RS232(Uart)程序

module my_uart_top( clk,rst_n, rs232_rx,rs232_tx ); input clk; lk(clk), st_n(rst_n), .bps_start(bps_start1), .clk_bps(clk_bps1) , ); my_uart_rx my_uart_rx( .clk(clk), st_n(rst_n), .rs232_rx(rs232_rx), .rx_data(rx_data), .rx_int(rx_int), .clk_bps(clk_bps1), % .bps_start(bps_start1) ); lk(clk), st_n(rst_n), .bps_start(bps_start2), .clk_bps(clk_bps2) ); ` my_uart_tx my_uart_tx( .clk(clk), st_n(rst_n), .rx_data(rx_data), .rx_int(rx_int), .rs232_tx(rs232_tx), .clk_bps(clk_bps2), .bps_start(bps_start2) ); . endmodule module my_uart_rx( clk,rst_n, rs232_rx,rx_data,rx_int, …

clk_bps,bps_start ); input clk; // 50MHz主时钟 input rst_n; //低电平复位信号 input rs232_rx; // RS232接收数据信号 input clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点 output bps_start; //接收到数据后,波特率时钟启动信号置位 ` output[7:0] rx_data; //接收数据寄存器,保存直至下一个数据来到 output rx_int; //接收数据中断信号,接收到数据期间始终为高电平 //---------------------------------------------------------------- reg rs232_rx0,rs232_rx1,rs232_rx2,rs232_rx3; //接收数据寄存器,滤波用 wire neg_rs232_rx; //表示数据线接收到下降沿 always @ (posedge clk or negedge rst_n) begin { if(!rst_n) begin rs232_rx0 <= 1'b0; rs232_rx1 <= 1'b0; rs232_rx2 <= 1'b0; rs232_rx3 <= 1'b0; end else begin rs232_rx0 <= rs232_rx; : rs232_rx1 <= rs232_rx0; rs232_rx2 <= rs232_rx1; rs232_rx3 <= rs232_rx2; end end //下面的下降沿检测可以滤掉<20ns-40ns的毛刺(包括高脉冲和低脉冲毛刺), //这里就是用资源换稳定(前提是我们对时间要求不是那么苛刻,因为输入信号打了好几拍) //(当然我们的有效低脉冲信号肯定是远远大于40ns的) , assign neg_rs232_rx = rs232_rx3 & rs232_rx2 & ~rs232_rx1 & ~rs232_rx0; //接收到下降沿后neg_rs232_rx置高一个时钟周期 //---------------------------------------------------------------- reg bps_start_r; reg[3:0] num; //移位次数 reg rx_int; //接收数据中断信号,接收到数据期间始终为高电平

相关文档
最新文档