最新期末复习全等三角形知识总结和经典例题(1)

最新期末复习全等三角形知识总结和经典例题(1)
最新期末复习全等三角形知识总结和经典例题(1)

全等三角形复习

[知识要点]

【一、全等三角形】

1.判定和性质

注:① 判定两个三角形全等必须有一组边对应相等;

② 全等三角形面积相等.

2.证题的思路:

????????????????????

?????

?????

???????)

找任意一边()

找两角的夹边(已知两角)

找夹已知边的另一角()

找已知边的对角()找已知角的另一边(边为角的邻边)

任意角(若边为角的对边,则找已知一边一角)

找第三边()

找直角()

找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS

角平分线上的点到这个角的两边的距离相等(垂线段相等)

判定:到一个角的两边距离相等的点在这个角平分线上(常作垂线)

[多边形的内角和]

①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度

②三角形的一个外角大于任何一个与它不相邻的内角。——常用来比较角的大小

5.多边形的内角与外角

2、多边形的内角和与外角和(识记)

(1)多边形的内角和:(n-2)180° (2)多边形的外角和:360°

引申:(1)从n 边形的一个顶点出发能作(n-3)条对角线;

(2)多边形有2)3(-n n 条对角线。

(3)从n 边形的一个顶点出发能将n 边形分成(n-2)个三角形;

(4)边数=外角和360°÷一个外角 (5)内角和=(边数-2)×180

3、 轴对称;一个图形沿着一条直线折叠,两部分能够完全重合,这个图形是轴对称图形

(选择

题应用)

① 点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.

[ 关于x 轴对称----横坐标x 不变纵坐标y 互为相反数]

② 点P

(,)x y 关于y 轴对称的点的坐标为"P (,)x y - [关于y 轴对称----纵坐标y 不变横坐标x 互为相反数]

③ 点P

(,)x y 关于原点对称的坐标为"P (-x,-y ) [关于原点对称----横坐标相反,纵坐标互为相反]

4、垂直平分线的性质 垂直平分线上的点到这条线段的两个端点的距离相等(直角三角形的斜边相等)---常用来算周长和角度

5、等腰三角形的性质:

①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角).

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.

⑸等边三角形的性质:

3.基本判定:

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形.

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对

等边).

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形.

②三个角都相等的三角形是等边三角形.

③有一个角是60°的等腰三角形是等边三角形.

基本方法:

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

⑷作已知图形关于某直线的对称图形:(5)做平行线得到等腰、等边三角形

第十五章 (5)整式乘除与因式分解

5、知识点归纳:

一、幂的运算:

1、同底数幂的乘法法则:n m n m a a a

+=?(n m ,都是正整数) 如:532)()()(b a b a b a +=+?+ 2、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 如:10253)3(=-

幂的乘方法则可以逆用:即m n n m mn a a a

)()(== 如:23326)4()4(4== 3、积的乘方法则:

n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???-

4、同底数幂的除法法则:n m n m a a a

-=÷(n m a ,,0≠都是正整数,且)n m 如:3334)()()(b a ab ab ab ==÷

5、零指数; 10=a ,即任何不等于零的数的零次方等于1。

二、单项式、多项式的乘法运算:

6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。如:=?-xy z y x 3232 。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,

即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。如:)(3)32(2y x y y x x +--= 。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项

公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。 如:))((z y x z y x +--+ = 10、完全平方公式:2222)(b ab a b a +±=±

完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。

公式的变形使用:(1)ab b a ab b a b a 2)(2)(2222-+=-+=+;ab b a b a 4)()(22-+=-

222)()]([)(b a b a b a +=+-=-- ;

222)()]([)(b a b a b a -=--=+- (2)三项式的完全平方公式: bc ac ab c b a c b a 222)(2222+++++=++

11、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。 如:b a m b a 242497÷-

12、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:c b a m cm m bm m am m cm bm am ++=÷+÷=÷=÷++)(

三、因式分解的常用方法.

1、提公因式法

(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式(一般后面的因式是完全平方和平方差).需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:

①平方差公式: a2-b2=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2

第十五章分式

知识点一:分式的定义

一般地,如果A,B表示两个整数,并且B中含有字母,那么式子B

A

叫做分式,A为分子,B为分母。

知识点二:与分式有关的条件

①分式有意义:分母不为0(

B≠)②分式无意义:分母为0(0

B=)

③分式值为0:分子为0且分母不为0知识点三:分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

知识点四:分式的约分

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

知识点四:最简分式的定义

一个分式的分子与分母没有公因式时,叫做最简分式。

知识点五:分式的通分确定最简公分母的一般步骤:

Ⅰ取各分母系数的最小公倍数;

Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;

Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

知识点六分式的四则运算与分式的乘方

若一个数x是0

n

10

a?(10

a

1<

,即a的整数部分只有一位,n为整数)

0.000000125=

-7

10 1.25?

知识点七分式方程的解的步骤

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

知识点八列分式方程

基本步骤

①审—仔细审题,找出等量关系。

②设—合理设未知数。

③列—根据等量关系列出方程(组)。

④解—解出方程(组)。注意检验

⑤答—答题。

2

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形练习题很经典

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE≌△ACD ,∠1=∠2, ∠B=∠C, 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条 第3题图 第5题图 第2题图 A B C D

件是( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC≌△CE D D.∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分 第9题图 第7题图 第6题图

三角函数经典例题

经典例题透析 类型一:锐角三角函数 本专题主要包括锐角三角函数的意义、锐角三角函数关系及锐角三角函数的增减性和特殊角三角函数值,都是中考中的热点.明确直角三角形中正弦、余弦、正切的意义,熟记30°、45°、60°角的三角函数值是基础,通过计算器计算知道正弦、正切随角度增大而增大,余弦随角度增大而减小. 1.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知,BC=2,那 么( ) A.B.C.D. 思路点拨:由于∠ABC在Rt△ABC和Rt△BCD中,又已知AC和BC,故只要求出AB或CD即可. 解析: 解法1:利用三角形面积公式,先用勾股定理求出 ,∴. ∴. 解法2:直接利用勾股定理求出, 在Rt△ABC中,.答案:A 总结升华:求直角三角形中某一锐角三角函数值,利用定义,求出对应两边的比即可. 2.计算:(1)________; (2)锐角A满足,则∠A=________. 答案:(1);(2)75°. 解析:(1)把角转化为值.(2)把值转化为角即可. (1).

(2)由,得, ∴.∴A=75°. 总结升华: 已知角的三角函数,应先求出其值,把角的关系转化为数的关系,再按要求进行运算.已知一个三角函数值求角,先看看哪一个角的三角函数值为此值,在锐角范围内一个角只对应着一个函数值,从而求出此角. 3.已知为锐角,,求. 思路点拨:作一直角三角形,使为其一锐角,把角的关系转化为边的关系,借助勾 股定理,表示出第三边,再利用三角函数定义便可求出,或利用求出 ,再利用,使可求出. 解析: 解法1:如图所示,Rt△ABC中,∠C=90°,∠B=,由,可设,. 则, ∴. 解法2:由,得 , ∴. 总结升华:知道一锐角三角函数值,构造满足条件的直角三角形,根据比的性质用一不为0的数表示其两边,再根据勾股定理求出第三边,然后用定义求出要求的三角函数值.或 利用,来求.

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

初中三角函数知识点总结及典型习题)

锐角三角函数知识点总结及典型习题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 5、30°、45°、 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、的增减性: 当0°<α<90°时,tan α随α的增大而增大, 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 A 90 B 90∠-?=∠? =∠+∠得由B A 对边 邻边

仰角铅垂线 水平线 视线 视线 俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l = 。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 例1:已知在Rt ABC △中,3 90sin 5 C A ∠==°,,则tan B 的值为( )A .43 B .45 C .54 D .34 例2:104cos30sin 60(2)(20092008)-??+---=______. 1. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米 B .83米 C . 83 3 米 D . 43 3 米 2. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( ) A .5sin 40° B .5cos 40° C .5tan 40° D .5 cos 40° 3. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( ) A . 8 33 m B .4 m C .43m D .8 m 4. 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53 米 B . 10米 C .15米 D .103米 5.如图,在矩形ABCD 中,D E ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则 DE 的长度是( )A .3 B .5 C .25 D . 2 2 5 6. 如图所示,小明在家里楼顶上的点A 处,测量 建在与小明家楼房同一水平线上相邻的电梯楼的高,在点 :i h l =h l α A B C D 1 h B C A A B

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

九年级《三角函数》知识点、经典例题

九年级《三角函数》知识点、例题、中考真题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 22c b a =+ 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90 °特殊角的三角函数值(重要) 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 A 90B 90∠-?=∠? =∠+∠得由B A 对边 邻边 A C A 90B 90∠-?=∠? =∠+∠得由B A

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 9、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 10、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 11、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 12、解斜三角形所根据的定理 (在△ABC 中) ① 正弦定理: SinC c SinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系: Sin(180ο -A)= sinA , Cos(180ο -A)= - cosA , tan(180ο -A)=-cotA , cotA(180ο -A)=-tanA. ④ S △ABC =21absinC=21bcsinA=2 1 casinB. 三角函数中考试题分类例题解说 一、三角函数的定义 :i h l =h l α 图1

全等三角形经典题型50题带答案知识讲解

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

证明:连接BF 和EF 。因为 BC=ED,CF=DF,∠BCF=∠EDF 。所以 三角形BCF 全等于三角形EDF(边角边)。所以 BF=EF,∠CBF=∠DEF 。连接BE 。在三角形BEF 中,BF=EF 。所以 ∠EBF=∠BEF 。又因为 ∠ABC=∠AED 。所以 ∠ABE=∠AEB 。所以 AB=AE 。在三角形ABF 和三角形AEF 中, AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。所以 三角形ABF 和三角形AEF 全等。所以 ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C C D B A B A C D F 2 1 E

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

最新全等三角形题型归纳(经典完整)

一,证明边或角相等 方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等; 如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2) 同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角 形全等,而且一般是在双垂直的图形中) 1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。 求证:HB=HC 。 2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF . A E D C B 654 32 1E D C B A F G E D C B A F B C A M N E 1234

E D C B A 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD) 证明两条线段和等于另一条线段,常常使用截长补短法。①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。 证明两条线段差等于另一条线段,只需把差化成和来解决即可。 1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ; 3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD P E D C B A

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结 一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。 分析:要求1sin 2+= y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足 2 1 sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周 期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。 解:由题意知需01sin 2≥+x ,也即需21sin - ≥x ①在一周期?? ????-23,2ππ上符合①的角为??????-67,6ππ,由此可得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数 是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>= a a x f y a 的函数,则其定义域由()x f 确定。 (5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+= x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2) ()[]. 0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 (2)函数的最大值与最小值。 例。求下列函数的最大值与最小值 (1)x y sin 211- = (2)??? ??≤≤-??? ? ? +=6662sin 2πππx x y (3)4sin 5cos 22 -+=x x y (4)?? ?? ??∈+-=32,31cos 4cos 32 ππx x x y

全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案) 1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求AD 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD 即 BE=AC=2 在三角形 ABE 中,AB-BE

形AEF 全等。所以Z BAF=Z EAF ( Z 1= Z 2)。

4.已知:/ 1= / 2, CD=DE , EF//AB,求证:EF=AC 证明:过E点,作EG//AC ,交AD延长线于G则 / DEG=Z DCA / DGE=/2 又;CD=DEU AD3" GDE ( AAS ) ??? EG=ACv EF//AB /-Z DFE=Z 1 v/ 1= / 2:丄 DFE=Z DG E A EF=EG:EF=AC 5.已知:AD 平分Z BAC, AC=AB+BD,求证:Z B=2 / C 证明:在AC上截取AE=AB,连接 ED ?/ AD 平分 Z BACA Z EAD=Z BAD又 ?/ AE=AB , AD=AD :?" AEM" ABD ( SAS) ?:Z AED=ZB , DE=DB ?/ AC=AB+BD AC=AE+CE ?: CE=DE:Z C=Z ED C vZ AED=Z C+Z EDC=2Z C: Z B=2ZC 6.已知:AC平分Z BAD ,CE丄AB, Z B+ Z D=180 °,求证:AE=AD+BE 证明:在AE上取F,使EF = EB,连接CF因为CE丄AB 所以Z CEB=Z CEF= 90 °因 为EB = EF,CE = CE,所以△ CEB^A CEF 所以Z B=Z CFE 因为Z B+Z D= 180 Z CFE+Z CFA= 180 ° 所以Z D=Z CFA 因为AC 平分Z BAD 所以Z DAC=Z FAC 又因 为AC = AC 所以△ ADC^A AFC ( SAS) 所以AD = AF 所以AE = AF + FE = AD + BE 12.如图,四边形ABCD中,AB // DC,BE、CE分别平分Z ABC、Z BCD,且点E在AD 上。求证: BC=AB+DC。 B D A

相关文档
最新文档