第二章 气体分子运动论的基本概念要点

第二章   气体分子运动论的基本概念要点
第二章   气体分子运动论的基本概念要点

第二章 气体分子运动论的基本概念

2-1

目前可获得的极限真空度为10-13

mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知

n =P/KT=)

27327(1038.11033.1101023

213+?????-- =3.21×109(m –3

) 注:1mmHg=1.33×102

N/m 2

2-2

钠黄光的波长为5893埃,即5.893×10-7

m ,设想一立方体长5.893×10-7

m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105

N/m 2

∴N=6

23375105.5273

1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5

mmHg 的真空。为了提高其真空度,

将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2

mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有:

)(0

110011101T P T P K V KT V P KT V P N N N -=-=

-=? 因为P 0与P 1相比差103

数量,而烘烤前后温度差与压强差相比可以忽略,因此

T P 与

1

1

T P 相比可以忽略 1823

2

23111088.1)

300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个

2-4 容积为2500cm 3

的烧瓶内有1.0×1015

个氧分子,有4.0×1015

个氮分子和3.3×10-7

g

的氩气。设混合气体的温度为150℃,求混合气体的压强。 解:根据混合气体的压强公式有 PV=(N 氧+N 氮+N 氩)KT

其中的氩的分子个数:

N 氩=

152310

01097.410023.640

103.3?=???=-N M 氩

μ(个)

∴ P=(1.0+4.0+4.97)1015

2231033.22500

423

1038.1--?=???

Pa 4

1075.1-??mmHg

2-5

一容器内有氧气,其压强P=1.0atm,温度为t=27℃,求 (1) 单位体积内的分子数:

(2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离; (5) 分子的平均平动能。 解:(1) ∵P=nKT

∴n=252351045.2300

1038.110013.10.1?=????=-KT P m -3

(2) l g RT

P /30.1300

082.032

1=??=

=

μρ

(3)m 氧=23

25

3103.51045.2103.1-????=n ρ

g

(4) 设分子间的平均距离为d ,并将分子看成是半径为d/2的球,每个分子的体积为v 0。 V 0=

336

)2(34d d ππ= ∴7

19

3

1028.410

44.266-?=??==ππn d cm (5)分子的平均平动能ε为:

ε 14161021.6)27273(1038.12

3

23--?=+??==

KT (尔格)

2-6 在常温下(例如27℃),气体分子的平均平动能等于多少ev?在多高的温度下,气体分子的平均平动能等于1000ev?

解:(1)21231021.63001038.12

3

23--?=??==

KT ε(J ) ∵leV=1.6×10-19

J

∴2

19

211088.310

6.11021.6---?=??=ε(ev) (2)T=K K 623

19

3107.710

38.13106.110232???????=--ε

2-7 一摩尔氦气,其分子热运动动能的总和为3.75×103

J,求氦气的温度。:解:

KT N E A 2

3

==

ε ∴K R E KN E T A 30131

.831075.3232323????===

2-8

质量为10Kg 的氮气,当压强为1.0atm,体积为7700cm 3

时,其分子的平均平动能是多少? 解: ∵MR

PV T μ=

而 kt 2

3

=

ε ∴

24

23

4

0104.510

022.610228

770010013.132323--?????????==

=

MN PV MR

KPV μμ

εJ

2-9 质量为50.0g ,温度为18.0℃的氦气装在容积为10.0L 的封闭容器内,容器以

v=200m/s 的速率作匀速直线运动。若容器突然静止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度和压强将各增大多少? 解:由于容器以速率v 作定向运动时,每一个分子都具有定向运动,其动能等于

22

1

mv ,

当容器停止运动时,分子定向运动的动能将转化为分子热运动的能量,每个分子的平均热运动能量则为1223

2123KT mv KT +=

∴△T=K

R v K mv T T 42.631

.83104104334

32

212=????==

=--μ 因为容器内氦气的体积一定,所以

T

P T T P P T P T P ??=

--==121

21122 故△P=

T T P ?11

,又由11RT M V P μ

= 得:V RT M

P /11μ

=

∴△P=1

3

1058.610

10442.6082.005.0--??????=?V T MR μ(atm )

2-10 有六个微粒,试就下列几种情况计算它们的方均根速率:

(1)

六个的速率均为10m/s ;

(2) 三个的速率为5m/s,另三个的为10m/s ; (3) 三个静止,另三个的速率为10m/s 。 解:(1)

s m V

/1061062

2

=?=

(2)s m V

/9.76531032

22

=?+?=

(3)s m V

/1.76

1032

2

=?=

2-11 试计算氢气、氧气和汞蒸气分子的方均根速率,设气体的温度为300K ,已知氢

气、氧气和汞蒸气的分子量分别为2.02、32.0和201。

解:

s

m RT

V H H /109.110371002.2300

81.333353

2

2

2???=

???=

=

2

3

2

021083.4103230031.83?????=

-V m/s s m V Hg /1093.110

201300

31.8323

2

?????=

-

2-12 气体的温度为T = 273K,压强为 P=1.00×10-2atm,密度为ρ=1.29×10-5

g

(1) 求气体分子的方均根速率。

(2) 求气体的分子量,并确定它是什么气体。 解:(1)

s m P

RT

V

/485332

==

=

ρ

μ

(2)mol g mol kg P

RT

n PN A /9.28/109.283=?===

-ρμ m=28.9

该气体为空气

2-13 若使氢分子和氧分子的方均根速率等于它们在月球表面上的逃逸速率,各需多高的温

度?

解:在地球表面的逃逸速率为 V 地逸=

s m gR /1012.11063708.92243?????=

在月球表面的逃逸速率为 V 月逸=

s

m R g R g /104.210370.627.08.917.0227.017.0223

5

???????=

??=地

地月月

又根据

μ

RT

V

32

=

∴R

v T 32

μ=

当s m V

/1012.142

?=时,则其温度为

T H2=

K

R

v H 42

432

21001.131

.831012.11023??????=

?-)

(地逸μ T O2=

K

R

v O 52

432

2106.131

.831012.110323??????=

?-)

(地逸μ 当

s m V

/104.232

?=时

T H2=K

R v H 22

332

2106.431

.83104.21023?=????=?-)(月逸

μ T O2=

K

R

v O 32

332

2104.731

.83104.210323??????=

?-)

(月逸μ

2-14 一立方容器,每边长1.0m ,其中贮有标准状态下的氧气,试计算容器一壁每秒受到的

氧分子碰撞的次数。设分子的平均速率和方均根速率的差别可以忽略。 解:按题设4611032273

3.8333

2

=???=

=

=

RT

V

v 米/秒

设标准状态下单位容器内的分子数为n ,将容器内的分子按速度分组,考虑速度为v i

的第i 组。说单位体积内具有速度v i 的分子数为n i ,在时间内与dA 器壁相碰的分子数为n i ·v ix dt ·dA ,其中v ix 为速度v i 在X 方向上的分量,则第i 组分子每秒与单位面积器壁碰撞次数为n i ·v ix ,所有分子每秒与单位面积器壁碰撞次数为:

2

2

322212

1/21

v n v n v n n

v n n v n n v

n D x

x i

i

i

ix

i ix

i

i i

ix

i ===

=

==

∑∑∑∑

即μ

RT

n D 33

2=

在标准状态下n=2.69×1025m -3

)

(1058.31032273

81.831069.23

21

1273

25--??????

??=

s D

2-15 估算空气分子每秒与1.0cm 2

墙壁相碰的次数,已知空气的温度为300K ,压强为1.0atm ,

平均分子量为29。设分子的平均速率和方均根速率的差别可以忽略。 解:与前题类似,所以每秒与1cm 2

的墙壁相碰次数为:

1

231059.333

21332-?????

=

=S S RT

KT

P

S RT

n D μ

μ

2-16 一密闭容器中贮有水及饱和蒸汽,水的温度为100℃,压强为1.0atm ,已知在这种状

态下每克水汽所占的体积为1670cm 3

,水的汽化热为2250J/g (1) 每立方厘米水汽中含有多少个分子? (2) 每秒有多少个水汽分子碰到水面上?

(3) 设所有碰到水面上的水汽分子都凝结为水,则每秒有多少分子从水中逸出? (4) 试将水汽分子的平均动能与每个水分子逸出所需能量相比较。 解:(1)每个水汽分子的质量为:0

N m μ

=

每cm 3

水汽的质量v M 1

=

则每cm 3

水汽所含的分子数

3

260102-?===

m v N m M

n μ

(2)可看作求每秒与1cm 2

水面相碰的分子数D ,这与每秒与1cm 2

器壁相碰的分子数方法相同。

在饱和状态n 不变。

个)

(1015.433

213

21232

?=?=

=

μ

RT

s

n s v n D

(3)当蒸汽达饱和时,每秒从水面逸出的分子数与返回水面的分子数相等。 (4)分子的平均动能

)

(1072.72

321J KT

-??=

∈ 每个分子逸出所需的能量

)(1073.62250200

J N Lm E -???

==μ

显而易见E ∈?,即分子逸出所需能量要大于分子平均平动能。

2-17 当液体与其饱和蒸气共存时,气化率和凝结率相等,设所有碰到液面上的蒸气分子都

能凝结为液体,并假定当把液面上的蒸气分子迅速抽去时液体的气化率与存在饱和蒸气

时的气化率相同。已知水银在0℃时的饱和蒸气压为 1.85×10-6

mmHg ,汽化热为80.5cal/g ,问每秒通过每平方厘米液面有多少克水银向真空中气化。 解:根据题意,气化率和凝结率相等

P=1.85×10-6

mmHg

=2.47×10-4Nm -2

气化的分子数=液化的分子数=碰到液面的分子数N ,由第14题结果可知:

个)

(1049.333

213

21142

?=?=

=

μ

RT

s

n s v n N

则每秒通过1cm 2

液面向真空气化的水银质量

)

(1016.11049.310022.6201

71423

g N N mN M -?????=

=

2-18 已知对氧气,范德瓦耳斯方程中的常数b=0.031831mol -1

,设b 等于一摩尔氧气分子体

积总和的四倍,试计算氧分子的直径。

解:2)2

(344d N b O π?

= ∴)

(1093.2)(1093.2231083

m cm N b d O

--?=??=

π

2-19 把标准状态下224升的氮气不断压缩,它的体积将趋于多少升?设此时的氮分子是一

个挨着一个紧密排列的,试计算氮分子的直径。此时由分子间引力所产生的内压强约为

多大?已知对于氮气,范德瓦耳斯方程中的常数a=1.390atm ﹒l 2mol -2,b=0.039131mol -1

解:在标准状态西224l 的氮气是10mol 的气体,所以不断压缩气体时,则其体积将趋于10b ,即0.39131,分子直径为:

)

(1014.32383

cm N b d O

-??=

π

内压强P 内=

8.90703913.039.12

2?=V a atm 注:一摩尔实际气体当不断压缩时(即压强趋于无限大)时,气体分子不可能一个挨一

个的紧密排列,因而气体体积不能趋于分子本身所有体积之和而只能趋于b 。

2-20 一立方容器的容积为V ,其中贮有一摩尔气体。设把分子看作直径为d 的刚体,并设想分子是一个一个地放入容器的,问:

(1) 第一个分子放入容器后,其中心能够自由活动的空间体积是多大? (2) 第二个分子放入容器后,其中心能够自由活动的空间体积是多大? (3) 第N A 个分子放入容器后,其中心能够自由活动的空间体积是多大? (4) 平均地讲,每个分子的中心能够自由活动的空间体积是多大?

由此证明,范德瓦耳斯方程中的改正量b 约等于一摩尔气体所有分子体积总和的四倍。 解:假定两分子相碰中心距为d ,每一分子视直径为d 的小球,忽略器壁对分子的作用。

(1) 设容器四边长为L ,则V=L 3

,第一个分子放入容器后,其分子中心与器壁的距离

应2

d ≥

,所以它的中心自由活动空间的体积V 1=(L-d )3

。 (2) 第二个分子放入后,它的中心自由活动空间应是V 1减去第一个分子的排斥球体积,

即:

2123

4

d V V π-

= (3)第N A 个分子放入后, 其中心能够自由活动的空间体积:

213

4

)

1(d N V V A A π--= (4) 平均地讲,每个分子的中心能够自由活动的空间为:

2

134

)]}1(321[3

4

{1]}3

4

)1([)342()34({131********--

=-+??+++-=

--??+?-+-+=A A A A A A N d V N d V N N d N V d V d V V N V πππππ因为d L ≥,1≥A N ,所以

33)2

(344234d

N V N d V V A A ππ?-=?-

= 容积为V 的容器内有N A 个分子,即容器内有一摩尔气体,按修正量b 的定义,每个分子自由活动空间b V V -=,与上面结果比较,易见:

3)2

(344d N b A π?

= 即修正量b 是一摩尔气体所有分子体积总和的四倍。

(完整版)结构化学课后答案第二章

02 原子的结构和性质 【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2212 11 ( )R n n ν=-% 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

第二章 分子结构与性质(知识清理及练习)

第二章分子结构与性质 一.共价键 1.特点:具有性和性(无方向性) 2.分类:(按原子轨道的重叠方式) (1)δ键:(以“”重叠形式) a.特征: b.种类:S-S δ键. S-P δ键. P-Pδ键 (2)π键:(以“”重叠形式),特征: 3.判断共价键类型的一般规律是: 共价单键中共价双键中共价三键中 【练习】1.下列说法正确的是() A. π键是由两个p原子轨道“头碰头”重叠形成 B. δ键是镜面对称,而π键是轴对称 C. 乙烷分子中的键全为δ键而乙烯分子中含δ键和π键 D. H2分子中含δ键而Cl2分子中含π键 2. 下列说法正确的是() A. 共价化合物中可能含有离子键 B. 非金属元素之间不能形成离子键 C. 气体分子单质中一定存在非极性共价键 D. 离子化合物中可能含有共价键 二.键参数 1.键能的定义: 2.键长与共价键的稳定性的关系:键长越短,往往键能,这表明共价键。 3. 决定共价键的稳定性,是决定分子的立体构型的重要参数。 【练习】1.关于键长、键能和键角,下列说法不正确的是() A.键角是描述分子立体结构的重要参数 B.键长的大小与成键原子的半径和成键数目有关 C.键能越大,键长越长,共价化合物越稳定 D.键角的大小与键长、键能的大小无关 2.下列说法正确的是() A.键能越大,表示该分子越容易受热分解 B.共价键都具有方向性 C.在分子中,两个成键的原子间的距离叫键长 D.H-Cl的键能为431.8kJ/mol ,H-Br的键能为366 kJ/mol 这说明HCl比HBr分子稳定 3.已知H-H键能为436 kJ/mol ,H-N键能为391 kJ/mol ,根据化学方程式 高温、高压 N2+3H22NH3,1molN2与足量H2反应放出的热量为92.4 kj/mol ,则N —N的催化剂 键能是() A.431 kJ/mol B.945.6 kJ/mol C.649 kJj/mol D.896 kJ/mol 三.等电子体 相同和相同的粒子具有相似的化学键特征和相同的空间构型 【练习】人们发现等电子体的空间结构相同,则下列有关说法中正确的是() A.CH4和NH4+是等电子体,键角均为60° B.NO3+和CO32-是等电子体,均为平面正三角形结构 C.H2O+和PCl3是等电子体,均为三角锥形结构 D.B3N3H6和苯是等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道 四.价层电子对互斥理论 1.价层电子对数= 2.孤对电子数的计算方法: 3.VSEPR模型和分子的立体构形的推测 例:H2O 孤对电子数为,δ键数,价层电子对数为,VSEPR模型,略去VSEPR模型中的中心原子上的孤对电子,因而H2O分子呈形。 【练习】1.下列分子构形为正四面体型的是() ①P4②NH3 ③CCl4④CH4⑤H2S ⑥CO2 A.①③④⑤ B.①③④⑤⑥ C.①③④ D.④⑤

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

第二章 分子结构-答案

第二章 化学键和分子结构 一.选择题 1. 下列分子或离子中,键角最小的是( ) A. HgCl 2 B. H 2O C. NH 3 D. PH 3 2. 关于原子轨道的说法正确的是( ) A.凡中心原子采取sp 3杂化轨道成键的分子其几何构型都是正四面体; B. CH 4分子中的sp 3杂化轨道是由4个H 原子的1s 轨道和C 原子的2p 轨道混 合起来而形成的 ; C. sp 3 杂化轨道是由同一原子中能量相近的s 轨道和p 轨道混合起来形成的一 组能量相等的新轨道; D. 凡AB 3型的共价化合物,其中心原子A 均采用sp 3杂化轨道成键。 3. 下列化合物中氢键最强的是( ) A. CH 3OH B. HF C. H 2O D. NH 3 4. 对羟基苯甲醛比邻羟基苯甲醛的熔沸点高的原因是( ) A. 前者不能形成氢键,后者可以; B. 前者能形成氢键,后者不能; C. 前者形成分子间氢键,后者形成分子内氢键; D. 前者形成分子内氢键,后者形成分子间氢键。 5. 下列各组物质沸点高低顺序中正确的是( ) A. HI>HBr>HCl>HF B. H 2Te>H 2Se>H 2S>H 2O C. NH 3>AsH 3>PH 3 D. CH 4>GeH 4>SiH 4 6. I 2的CCl 4溶液中分子间主要存在的作用力是( ) A. 色散力 B. 取向力 C. 取向力、诱导力、色散力 D. 氢键、诱导力、色散力 7. 下列分子中偶极矩为零的是( ) A. NF 3 B. NO 2 C. PCl 3 D. BCl 3 8. 下列分子是极性分子的是( ) A. BCl 3 B. SiCl 4 C. CHCl 3 D.. BeCl 2 9. 下列离子或分子有顺磁性的是( ) A. O 2 B. O 22- C. N 2 D. CO 10. 下列分子中心原子是sp 2杂化的是( ) A. PBr 3 B. CH 4 C. BF 3 D. H 2O 11. SO 42-离子的空间构型是( ) A. 平面正方形 B. 三角锥形 C. 四面体 D. 八面体 12. 下列各物质分子其中心原子以sp 2杂化的是( )

第二章分子结构与性质单元测试

第二章分子结构与性质单元测试 一、选择题(本题包括18小题,每小题4分,共72分,每小题有一个或两个选项符合题意, 选错不得分,如果有两个正确选项,选对一个得 2分) 1?有关乙炔分子中的化学键描述不正确的是( ) C ?每个碳原子都有两个未杂化的 2p 轨道形成n 键 D.两个碳原子形成两个 n 键 2?膦(PH 3)又称膦化氢,在常温下是一种无色、有大蒜臭味的有毒气体,电石气的杂质中常 含有膦化氢。它的分子构型是三角锥形。以下关于 PH 3的叙述正确的是( ) A. PH 3分子中有未成键的孤对电子 B PH 3是非极性分子 C. PH 3是一种强氧化剂 D. PH 3分子的P — H 键是非极性键 3?实现下列变化时,需要克服相同类型作用力的是( ) A.水晶和干冰的熔化 B.食盐和醋酸钠的熔化 C.液溴和液汞的汽化 D.HCl 和NaCI 溶于水 4. 下列指定粒子的个数比为 2: 1的是( ) A.Be 2+中的质子数 B.I 2H 原子中的中子和质子 C.NaHCQ 晶体中的阳离子和阴离子 D.BaQ (过氧化钡)晶体中的阴离子和阳离子 5. 在有机物分子中,当碳原子连有 4个不同的原子或原子团时,这 种碳原子称为“手性碳原 子”,凡具有一个手性碳原子的化合物一定具有光学活性。例如下图表示的有机物中含有一 个手性碳原子,具有光学活性。当发生下列变化时,生成的有机物无光学活性的是( ) A.与新制的银铵溶液共热 B.与甲酸酯化 C.与金属钠发生置换反应 D.与 H 2加成 6. 关于氢键的下列说 法中正确的是( ) A.每个水分子内含有两个氢键 B.在水蒸气、水、冰中都含有氢键 C 分子间能形成氢键使物质的熔沸点升高 D.HF 的稳定性很强,是因为其分子间能形成氢键 7. 下列说法正确的是( ) A.n 键是由两个p 电子“头碰头”重叠形成的 B y 键是镜像对称,而 n 键是轴对称 C 乙烷分子中的键全是 y 键,而乙烯分子中含 y 键和n 键 D.H 2分子中含y 键,而C 2分子中还含有n 键 8. 在BrCH=CHBr 分子中,C — Br 键采用的成键轨道是( ) 2 2 3 A.sp —p B.sp — s C.sp — p D.sp — p 9. 下列物质的杂化方式不是 sp 3杂化的是( ) A.CO 2 B.CH C.NH 3 D.H 2O O O CHb — C —O -CH -C -H CH2OH

《气体分子运动论》答案

第10章 气体分子运动论 一、选择题 1(B),2(C),3(C),4(B),5(D),6(E),7(B),8(B),9(A),10(C) 二、填空题 (1). 23kT ,25kT ,2 5 MRT /M mol .; (2). 1.2×10-24 kg m / s ,3 1×1028 m -2s-1 ,4×103 Pa . (3). 分布在v p ~∞速率区间的分子数在总分子数中占的百分率, 分子平动动能的平均值. (4). v v v d )(0 ? ∞ Nf , v v v/v v v v d )(d )(0 ?? ∞ ∞ f f , v v v d )(0 ? ∞ f . (5). 氢,1.58×103.; (6). 保持不变. 参考解答:令,2,m kT x p p == v v v 麦克斯韦速率分布函数可以写作: x e x N N x d 4d 22-=π 又,8πm kT =v .2π =p v v 所以有 .d 4π2 1 22x e x N N x ?-=?-πv v p 这个积分显然与温度无关! (7). 理想气体处于热平衡状态 , A N iPV /21或R ikPV /2 1 .; (8). B A B B A A N N f N f N ++) ()(v v . (9). 2; (10). 1 . 三、计算题 1. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 ) 解: A = Pt = T iR v ?2 1 , ∴ ?T = 2Pt /(v iR )=4.81 K . 2. 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 ) 解: 0.8× 221v M =(M / M mol )T R ?2 5 , ∴ T =0.8 M mol v 2 / (5R )=0.062 K

第二章 分子结构-答案

第二章化学键和分子结构 一.选择题 1.下列分子或离子中,键角最小的是( ) A. HgCl2 B. H2O C. NH3 D. PH3 2.关于原子轨道的说法正确的是( ) A.凡中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体; B. CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混 合起来而形成的; C. sp3杂化轨道是由同一原子中能量相近的s轨道和p轨道混合起来形成的一 组能量相等的新轨道; D. 凡AB3型的共价化合物,其中心原子A均采用sp3杂化轨道成键。 3.下列化合物中氢键最强的是( ) A. CH3OH B. HF C. H2O D. NH3 4.对羟基苯甲醛比邻羟基苯甲醛的熔沸点高的原因是( ) A. 前者不能形成氢键,后者可以; B. 前者能形成氢键,后者不能; C. 前者形成分子间氢键,后者形成分子内氢键; D. 前者形成分子内氢键,后者形成分子间氢键。 5.下列各组物质沸点高低顺序中正确的是( ) A. HI>HBr>HCl>HF B. H2Te>H2Se>H2S>H2O C. NH3>AsH3>PH3 D. CH4>GeH4>SiH4 6.I2的CCl4溶液中分子间主要存在的作用力是( ) A. 色散力 B. 取向力 C. 取向力、诱导力、色散力 D. 氢键、诱导力、色散力 7.下列分子中偶极矩为零的是( ) A. NF3 B. NO2 C. PCl3 D. BCl3 8.下列分子是极性分子的是( ) A. BCl3 B. SiCl4 C. CHCl3 D.. BeCl2 9.下列离子或分子有顺磁性的是( ) A. O2 B. O22- C. N2 D. CO 10.下列分子中心原子是sp2杂化的是( ) A. PBr3 B. CH4 C. BF3 D. H2O 11.SO42-离子的空间构型是( ) A. 平面正方形 B. 三角锥形 C. 四面体 D. 八面体 12.下列各物质分子其中心原子以sp2杂化的是( ) A. H2O B. NO2 C. SCl2 D. CS2

第二章 分子结构与性质

第二章分子结构与性质 教材分析 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程 [设问] 前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠?例:H2的形成 [讲解、小结] [板书] 1.δ键:(以“头碰头”重叠形式) a.特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变,轴对称图形。

b.种类:S-Sδ键 S-Pδ键 P-Pδ键 [过渡] P电子和P电子除能形成δ键外,还能形成π键 [板书] 2.π键 [讲解] a.特征:每个π键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含原子核的平面镜面,它们互为镜像,这种特征称为镜像对称。 3.δ键和π键比较 ①重叠方式 δ键:头碰头 π键:肩并肩 ②δ键比π键的强度较大 ②成键电子:δ键 S-S S-P P-P π键 P-P δ键成单键 π键成双键、叁键 4.共价键的特征 饱和性、方向性 [科学探究] 讲解 [小结] 生归纳本节重点,老师小结 [补充练习] 1.下列关于化学键的说法不正确的是() A.化学键是一种作用力

B.化学键可以是原子间作用力,也可以是离子间作用力 C.化学键存在于分子内部 D.化学键存在于分子之间 2.对δ键的认识不正确的是() A.δ键不属于共价键,是另一种化学键 B.S-Sδ键与S-Pδ键的对称性相同 C.分子中含有共价键,则至少含有一个δ键 D.含有π键的化合物与只含δ键的化合物的化学性质不同 3.下列物质中,属于共价化合物的是() A.I2 B.BaCl2 C.H2SO4 D.NaOH 4.下列化合物中,属于离子化合物的是() A.KNO3 B.BeCl C.KO2 D.H2O2 5.写出下列物质的电子式。 H2、N2、HCl、H2O 6.用电子式表示下列化合物的形成过程 HCl、NaBr、MgF2、Na2S、CO2 [答案] 1.D 2.A3.C4.AC5.略6.略 第二章分子结构与性质 第一节共价键 第二课时 [教学目标]: 1.认识键能、键长、键角等键参数的概念 2.能用键参数――键能、键长、键角说明简单分子的某些性质 3.知道等电子原理,结合实例说明“等电子原理的应用” [教学难点、重点]: 键参数的概念,等电子原理 [教学过程]: [创设问题情境] N2与H2在常温下很难反应,必须在高温下才能发生反应,而F2与H2在冷暗处就能发生化学反应,为什么? [学生讨论] [小结]引入键能的定义 [板书] 二、键参数 1.键能 ①概念:气态基态原子形成1mol化学键所释放出的最低能量。

气体分子运动理论

学科:物理 教学内容:气体分子运动理论 【基础知识精讲】 1.气体分子运动的特点 (1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动. 气体能充满它们所能达到的空间,没有一定的体积和形状. (2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动. (3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性. ①气体分子沿各个方向运动的数目是相等的. ②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的. 在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多. 2.气体压强的产生 (1)气体压强的定义 气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S. (2)气体压强的形成原因 气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的. (3)气体压强的决定因素 ①分子的平均动能与密集程度 从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度. ②气体的温度与体积 从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志. (4)几个问题的说明 ①在一个不太高的容器中,我们可以认为各点气体的压强相等的. ②气体的压强经常通过液体的压强来反映. ③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度

人教版-选修3-第二章分子结构与性质全章教案

人教版-选修3-第二章分子结构与性质全章教案 第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型 和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和 非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角 度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概 念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类 型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢? 教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的 立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的 影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性 外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的 极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质 的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非 极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的 酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学 和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时

(完整版)人教版高中化学选修3第二章《分子结构与性质》单元测试题(解析版).docx

第二章《分子结构与性质》单元测试题一、单选题(每小题只有一个正确答案) 1.下列叙述正确的是() 32- 中硫原子的杂化方式为sp 2 B 2 2 分子中含有 3个σ键和 2 个π键 A. SO.C H C. H2O分子中氧原子的杂化方式为sp2D. BF3分子空间构型呈三角锥形 2.氯的含氧酸根离子有ClO ---- 等,关于它们的说法不正确的是、 ClO 2、 ClO 3、 ClO 4 () A. ClO4-是 sp3 杂化B. ClO3-的空间构型为三角锥形 C. ClO2-的空间构型为直线形D. ClO-中 Cl 显 +1价 3.下列描述中正确的是() 2 V 形的极性分子 A. CS 为空间构型为 B.双原子或多原子形成的气体单质中,一定有σ 键,可能有π 键 C.氢原子电子云的一个小黑点表示一个电子 2﹣3 杂化 D. HCN、SiF 4和 SO3的中心原子均为 sp 4.水是生命之源,下列关于水的说法正确的是() A.水是弱电解质B.可燃冰是可以燃烧的水 C.氢氧两种元素只能组成水D.0℃时冰的密度比液态水的密度大 5.电子数相等的微粒叫做等电子体,下列各组微粒属于等电子体是()A. CO和 CO2B. NO和 CO C . CH4和 NH3D. OH-和 S2- 6.下列分子或离子中, VSEPR模型为四面体且空间构型为V 形的是 A. H2S B . SO2 2-C . CO2 D . SO4 7.下列分子中只存在σ键的是 () A. CO2B.CH4C.C2H4D.C2H2 8. HBr 气体的热分解温度比HI 热分解温度高的原因是() A. HBr 分子中的键长比HI 分子中的键长短,键能大 B. HBr 分子中的键长比HI 分子中的键长长,键能小 C. HBr 的相对分子质量比HI 的相对分子质量小 D. HBr 分子间作用力比HI 分子间作用力大 9.表述 1 正确,且能用表述 2 加以正确解释的选项是() 表述1表述2 A在水中,NaCl 的溶解度比I 2的溶解度大NaCl晶体中Cl ﹣与Na+间的作用力

第二章 分子结构

1. S F4分子具有( )[ID: 881] A B C D 2. 下列哪种分子的偶极矩不等于零?( )[ID: 909] A B C D 3. 下列化合物中哪种分子偶极矩为零?( )[ID: 910] A B C D 4. 下列哪一种分子或原子在固态时是范德华力所维持的?( )[ID: 911] A

B C D 5. 下列化合物中哪个不具有孤对电子?( )[ID: 912] A B C D 6. O F2分子的电子结构是哪种杂化?( )[ID: 913] A B C D 7. 下列化合物中哪一个氢键表现最强?( )[ID: 914] A B C D 8. 用价电子对互斥理论推测下列分子构型:PCl5、HOCl 、XeF2、ICl4-、IF5分别属于( )[ID: 915]

A B C D 9. 指出下列化合物中,哪一个化合物的化学键极性最小?( )[ID: 916] A B C D 10. 要组成有效分子轨道需满足成键哪三原则?( )[ID: 917] A B C D 11. 由分子轨道理论可知( )[ID: 918] A B C D

12. 指出下列化合物中,哪个化合物的化学键极性最大?( )[ID: 919] A B C D 13. 下列分子中,两个相邻共价键间夹角最小的是( )[ID: 920] A B C D 14. 下列说法中正确的是( )[ID: 921] A B C D 15. 下列化学键中,极性最弱的是( )[ID: 922] A B C

D 16. 下列说法中不正确的是 ( )[ID: 923] A B C D 17. 下列原子轨道中各有一个自旋方向相反的不成对电子,则沿x 轴方向可形成 σ键的是 ( )[ID: 924] A B C D 18. 下列分子或离子中,键角最大的是 ( )[ID: 925] A B C D 19. 下列说法中,正确的是 ( )[ID: 926] A

【人教版】高中化学选修3知识点总结:第二章分子结构与性质(精华版)

第二章分子结构与性质 课标要求 1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质 2.了解杂化轨道理论及常见的杂化轨道类型(s p、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。 3.了解简单配合物的成键情况。 4.了解化学键合分子间作用力的区别。 5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。 要点精讲 一.共价键 1.共价键的本质及特征共价键的本质是在原子之间形成共用电子对,其特征是具 有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 σ键和π键,前者的电子云具有轴对称性,后者的电子云 ③按原子轨道的重叠方式分为 具有镜像对称性。 3.键参数 ①键能:气态基态原子形成 1 mol 化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过 2 的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响 键长越短,键能越大,分子越稳定. 4.等电子原理[来源:学§科§网] 原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。 二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点 当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。 杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。

2 分子构型与价层电子对互斥模型 价层电子对互斥模型说明的是价层电子对的空间构型, 而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1) 当中心原子无孤对电子时,两者的构型一致; (2) 当中心原子有孤对电子时,两者的构型不一致。 3.配位化合物 (1)配位键与极性键、非极性键的比较

气体分子运动论的基本概念

第二章气体分子运动论的基本概念 §1 物质的微观模型 一、物质微观模型: 1、宏观物体是由大量微粒—分子(或原子)组成的, 2、物体内的分子在不停地运动着,这种运动是无规则的剧烈程度与物体的温度有关。 3、分子之间有相互作用。 二、物质三种聚集态的成因 分子力的作用将使分子聚集在一起,在空间形成某种规则的分布(有序排列),而分子的无规则运动将破坏这种有序排列,使分子分散开来。事实上,物质分子在不同的温度下所以会表现为三种不同的聚集态,正是由这两种相互对立的作用所决定的。 §2 理想气体的压强 一、理想气体的微观模型: 1、分子本身的形成比起分子之间的平均距离来可以忽略不计。 2、除碰撞的瞬间外,分子之间以及分子与容器器壁之间都无相互作用。 3、分子之间以及分子与容器器壁之间的碰撞是完全弹性的,即气体分子的动能不因碰撞而损失。 二、压强公式 1、压强产生的微观实质:是大量气体分子对器壁不断碰撞的结果。(举例说明)。 2、理想气体压强公式的推导过程:思路:欲求分子施于器壁的压强P,应先求出大量分子施于器壁的力F。这个力除以器壁的面积,就得到分子施于器壁的压强。设:有一个边长分别为L1、L2、L3的长方体容器,在平衡态下,共有N个Array分子,分子的质量为m,分子数密度为n=N/V。 ①单个分子在一次碰撞中施于A1面的冲 量,(A1面垂直于x轴) 设某一分子的速度为V i,速度三个分量分别为: V ix、V iy、V iz由于碰撞是完全弹性的,所以碰 撞前后分子在y、z两方向上的速度分量不变, 在x方向上的速度分量由V ix变为-V ix, 大小不变方向反向。这样,分子在碰撞过程中 的动量改变为:-m V ix -m V ix =-2m V ix.按动量定理,这就等于A1面施于分子的冲量,而根据牛顿第三定律,分子施于A1面的冲量为:+2m V ix ②dt时间内分子之施于A1面的冲量:它应等于2m V ix乘以dt时间内分子之于A1面碰 撞的次数,即:

第二章 分子结构 (1)

一、选择题 1、CO分子中存在的化学键是(C ) A、Π键、?键 B、Π键、配位健 C、?键、Π键、配位健 D、?键、配位健 2、N 2 分子中存在的化学键是( D) A、一个Π键、一个?键 B、一个?键 C、一个Π键、两个?键 D、两个Π键、一个?键 3、下列分子中,两个相邻共价键的夹角最小的是 ( D ) A、BF 3 B、H 2 S C、NH 3 D、H 2 O 4、BF 3 分子的空间构型为(B ) A、直线型 B、平面正三角形 C、三角锥型 D、正四面体型 5、下列分子和离子中,中心原子成键轨道不是sp2杂化的是( D ) A、NO 3-B、HCHO C、BF 3 D、NH 3 6、NCl 3 分子中,N原子与三个氯原子成键所采用的轨道是( B ) A、两个sp轨道,一个p轨道成键 B、三个sp3轨道成键 C、P X、P y 、P z 轨道成键 D、三个sp2轨道成键 7、下列化合物中,极性最大的是( B ) A、CS 2 B、H 2 S C、SO 3 D、SnCl 4 8、下列分子中,偶极矩不等于零的是( C ) A、BeCl 2 B、BF 3 C、NF 3 D、CO 2 9、下列分子为极性分子的是(A ) A、H 2O B、CH 4 C、CO 2 D、BF 3 10、下列液态物质中只需克服色散力就能使之沸腾的是( D ) A、H 2 O B、CO C、HF D、Xe 11、极化能力最强的离子应具有的特性是(B ) A、离子电荷高、离子半径大 B、离子电荷高、离子半径小 C、离子电荷低、离子半径小 D、离子电荷低、离子半径大 12、下列各组离子中,离子的极化力最强的是( C ) A、K+、Li+ B、Ca2+、Mg2+ C、Fe3+、Ti4+ D、Sc3+、Y3+

人教版化学选修3第二章《分子结构与性质》测试题(含答案)

第二章《分子结构与性质》测试题 、单选题(每小题只有一个正确答案) N2 B .HBr C .NH3 D .H2S 列物质中,既含有极性键又含有非极性键的非极性分子是 HF H2O NH3 CH4 B .CH4 NH3 H2O HF H2O HF CH4 NH3 D .HF H2O CH4 NH3 5.下列叙述中错误的是() A.由于氢键的存在,冰能浮在水面上;由于乙醇与水间有氢键的存在,水与乙醇能互溶。 B.甲烷和氯气反应生成一氯甲烷的反应,与苯和硝酸反应生成硝基苯的反应类型相同,都属于取代反应。 C.H2O是一种非常稳定的化合物,这是由于氢键所致。 D.苯不能使溴的四氯化碳溶液褪色,说明苯分子中没有与乙烯分子中类似的碳碳双键,难和溴的四氯化碳溶液发生加成反应。 6.下列化合物中含有 2 个手性碳原子的是 A. B A.丙烯分子中有 6 个σ 键, 1 个π 键 B.丙烯分子中 3 个碳原子都是sp 3杂化 C.丙烯分子属于极性分子 C. D . 7.下列关于丙烯(CH3﹣CH═CH2)的说法中正确的() 1.列化学键中,键的极性最强的是( A.C—F B.C—O C.C—N D.C—C 2.列物质中分子间能形成氢键的是 A. A.N a2O2 B.HCHO C.C2 H4 D.H2O2 4.列各组分子中,按共价键极性由强到弱排序正确的是 3. A. C.

D.丙烯分子中 3 个碳原子在同一直线上 8.下列过程中,共价键被破坏的是 A.碘升华 B .溴溶于CCl4 C .蔗糖溶于水 D .HCl 溶于水 9.阿司匹林是一种常见的解热镇痛药,其结构如图,下列说法不正确的是() B.阿司匹林属于分子晶体 3 C.阿司匹林中C原子只能形成sp3杂化D.可以发生取代.加成.氧化反应 10 .下列叙述不正确的是() A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强B.以极性键结合的分子,不一定是极性分子 C.判断A2B 或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角小于180°,为非直线形结构 D.非极性分子中,各原子间都应以非极性键结合 11.下列分子的中心原子是sp 2杂化的是() A.PBr3 B .CH4 C .H2O D .BF3 12 .用VSEPR理论预测下列粒子的立体结构,其中正确的() A.NO3-为平面三角形B.SO2为直线形 C.BeCl 2为V形D.BF3为三角锥形 13.已知A、B 元素同周期,且电负性A

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

化学选修3第二章 分子结构与性质 单元测试

第二章分子结构与性质 单元测试(1) 一.选择题(每题有1~2个正确答案) 1.对δ键的认识不正确的是 A.σ键不属于共价键,是另一种化学键 B.s-s σ键与s-p σ键的对称性相同 C.分子中含有共价键,则至少含有一个σ键 D.含有π键的化合物与只含σ键的化合物的化学性质不同 2.σ键可由两个原子的s轨道、一个原子的s轨道和另一个原子的p轨道以及一个原子的p轨道和另一个原子的p轨道以“头碰头”方式重叠而成。则下列分子中的σ键是由一个原子的s轨道和另一个原子的p轨道以“头碰头”方式重叠构建而成的是 A.H2 B.HCl C.Cl2 D.F2 3.下列分子中存在π键的是 A.H2 B.Cl2 C.N2 D.HCl 4.下列说法中,错误的是 A.键长越长,化学键越牢固 B.成键原子间原子轨道重叠越多,共价键越牢固 C.对双原子分子来讲,键能越大,含有该键的分子越稳定 D.原子间通过共用电子对所形成的化学键叫共价键 5.能用键能知识加以解释的是 A.稀有气体的化学性质很不活泼B.HCl气体比HI气体稳定 C.干冰易升华D.氮气的化学性质很稳定 6.化学反应可视为旧键断裂和新键形成的过程。化学键的键能是形成(或拆开)1 mol化学键时释放(或吸收)的能量。已知白磷(P4)和P4O6的分子结构如下图所示;现提供以下化学键的键能:P—P 198KJ·mol—1、P—O 360kJ·mol—1、O=O 498kJ·mol—1。则关于1mol P4和3mol O2完全反应(P4 + 3O2 = P4O6)的热效应说法正确的是 A.吸热1638 kJ B.放热1638 kJ C.放热126 kJ D.吸热126 kJ 7.下列物质属于等电子体一组的是 A.CH4和NH4+ B.B3H6N3和C6H6 C.CO2、NO2D.H2O和CH4 8.下列物质中,分子的立体结构与水分子相似的是 A.CO2 B.H2S C.PCl3 D.SiCl4 9.下列分子中,各原子均处于同一平面上的是 A.NH3 B.CCl4 C.H2O D.CH2O 10.下列分子中心原子是sp2杂化的是 A.PBr3 B.CH4 C.BF3 D.H2O 11.在乙烯分子中有5个σ键、一个π键,它们分别是 A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键 C.C—H之间是sp2形成的σ键,C—C之间是未参加杂化的2p轨道形成的π键 D.C—C之间是sp2形成的σ键,C—H之间是未参加杂化的2p轨道形成的π键12.有关苯分子中的化学键描述正确的是 A.每个碳原子的sp2杂化轨道中的其中一个形成大π键 B.每个碳原子的未参加杂化的2p轨道形成大π键

相关文档
最新文档