自动控制原理第八章 非线性系统的分析

自动控制原理第八章 非线性系统的分析
自动控制原理第八章 非线性系统的分析

第八章 非线性系统的分析

例8-1非线性系统如图8-1所示。

已知带死区的继电器特性的描述函数()N X 描述函数1()-N X 特性曲线如试图8-2,应用描述函数法分析当1=a 、3=b ,2=K 时系统的稳定性,若系统自振,求自振的振幅和频率。

图8-1

图8-2

解:当1=a 、3=b 时,负倒幅函数为 1

()

-

=N X

由试图10可知,1()-N X 的极值发生在

P X 0.523236 2

π

ππ-=-=-=-??b a

系统线性部分的频率特性为

23

2 2 (j )

j (0.5j 1)(j 1) 1.5j(0.5)

ωωωωωωω==++-+-+G 令Im[(j )]0ω=G ,得

30.50/s ωωω-+=?

2

2 Re[(j )]0.6671.5ωωωω-G

则(j )ωG

曲线与负实轴的交点坐标为(0.667 , j0)-。由于 1 ()

-N X 位于负实轴上0.532-~-∞之间,所以

(j )ωG 与 1 ()

-N X 两条曲线必然相交,在同一个坐标点(0.667 , j0)-上对应着负倒幅函数 1

()-N X 两个不同

X 值,由

1 Re[()]()

ωωG j N X

121 1.11 , 2.31.5

-=?==X X

容易判断,当 2.3=X 时系统产生稳定的自持振荡,振荡频率为/s ω 振幅为 2.3=X

例8-2非线性系统方框图如图7-3所示。已知理想继电器特性的描述函数为 4 ()M N X A

π=,若要求系

统自持振荡的角频率为ω,振荡幅值为1A =,求参数T 和M 之值。

图8-3

解:理想继电器的负倒幅特性为14A M N A π-=-()

,当0A =,1/0N A -=();当A =∞,1/N A -=-∞(),所

以1/N A -()特性为整个负实轴。 系统线性部分的频率特性为

2

2101011(1)G j j j jT T j T ωωωωωωω=

=++-++-()()()(1)

(1

) 令Im 0G j ω=[()],得/s

ω= 将ω=1),得12

10

10Re 1

(1)T

T G j T T ωωωω=-

=-++[()]

1/G j N A ω=-()()的交点有

1

1Re T

G j N A

ωω=-[()]()

1014T A T M

π-=-+ 要求系统自持振荡的角频率为ω

,振荡幅值为1A =,则3T =, 0.147.5M π==?

例8-3 具有饱和非线性的控制系统如图8-4所示,问:(1)试分析系统的稳定性?(2)为了使系统不产

生自持振荡,系统应如何调整?

8-4

图8-5 G j ω()曲线与1/N A -()曲线

解:饱和非线性的描述函数为12sin

S K N A π-?

??()=A S ≥(),其中,2K =,1S =,则 1N A -=()

起点1A =时,10.5N A -=-(),当A →∞,1N A -→-∞(),因此1N A -()

曲线位于0.5-~-∞这段负实轴上。

系统线性部分的频率特性为

2420.310.020.110.210.00040.051s j k j k G j s s s ωωωωωωω=---==

++++[()]()()()[]

令Im 0G j ω=[()],即210.020ω-=,得G j ω()

曲线与负实轴交点的频率为

7.07 rad /s ω=

= 代入Re G j ω[()],可求得G j ω()曲线与负实轴的交点为

42

7.07

0.30.3Re 0.00040.051k k G j ωωωω=--=++[()]= (1)将15k =代入上式,得Re G j ω[()]=-1。图8-5绘出了15k =时的G j ω()曲线与1/N A -()曲线,两曲线交于(-1,j 0)点。显然,交点对应的是一个稳定的自持振荡,根据交点处幅值相等,即

1=-

求得与交点对应的振幅 2.5A =。因此,当15k =时系统处于自持振荡状态,其振幅 2.5A =

,振荡频率为

7.07rad /s ω=。

(2)欲使系统稳定地工作,不出现自持振荡,由于G s ()极点均在s 平面左半部,故根据推广的乃奎斯特稳定性判据判断非线性系统的稳定性和确定系统是否存在自持振荡的结论,应使G j ω()曲线不包围1

-曲线,即0.30.5 4.5k -≥-,故k 的临界值为k 临界0.5 4.57.50.3

?==。

因此,为了使系统不产生自持振荡而稳定工作,系统的k 值最大调整到7.5。

例8-4含间隙特性的非线性系统的方框图如图8-6所示,其中,间隙特性参数1k =以及线性部分的传递函数为122

1.51G s G s s s =

+()()(),试加线性校正环节c

G s (),以消除间隙特性系统的自持振荡。

图8-6 含间隙特性的非线性系统的方框图

解:串联校正方案

将曲线12G j G j ωω()

()及1k =的间隙特性的负倒幅特性画在Nichols 图上,如图8-7所示。从图8-7上看出,曲线12G j G j ωω()()与1/N A -()有两个交点1b 及2b ,由乃奎斯特稳定性判据判断非线性系统的稳定性和确定系统是否存在自持振荡的结论可知:1b 为稳定交点,它代表实际存在于系统中的自持振荡,其参数由图中查出 6.25

A ε=及0.84rad /s ω=;2b 为不稳定交点。由此可见,当间隙特性的正弦输入初始振幅大于1.22A ε=时,在间隙特性的输入端将出现振幅 6.25A ε=及角频率0.84rad /s ω=的自持振荡;当初始振幅小于 1.22A ε=时,间隙特性的输入振幅向A ε=收敛。

10

-5

-0

51020152530

110-?90-?

180-?170-?160-?150-?130-?140-?120-?100-?12120l g

20l g d B G j G j N A ωω()()()

()

??( )12

1.51G j G j j j ωωωω=

+2()()()1N A -

()

0.82A

ε=ω= 0.16A

ε=ω=1

2

图8-7 曲线12G j G j ωω()()与1/N A -()

10

-5

-0

51020152530

110-?90-?

180-?170-?160-?150-?130-?140-?120-?100-?120l g

20l g d B G j N A ω()()

()

??( )j ω()

1N A -

()

图8-8 含间隙特性串联校正的Nichols 图

通过加校正环节c G s ()以改变12G s G s ()

()的形状,使其与1/N A -()脱离接触,并使1/N A -()不为12c G j G j G j ωωω()()()曲线所包围,即在12c G j G j G j G j ωωωω=()()()()的上方,从而达到消除自持振荡并确

保系统稳定的目的。为此,初选超前校正环节为10.810.4c s G j s

ω+=+(),这时,校正系统的线性部分频率响应

为12210.81.5

10.41c j G j G j G j G j j j j ωωωωωω

ωω+==++()()()

()()。将曲线G j ω()与1/N A -()画在Nichols 图上,如图8-8所示。从图上看到,由于加校正后系统线性部分的频率特性G j ω()完全置于间隙特性的负倒幅特性1/N A -()之下,故校正后的系统是稳定的,达到了校正的目的。

自动控制原理(梅晓榕)习题答案第八章汇编

习题答案8 8-1 1)二阶系统,2个状态变量。 设 2121212)(2)()( )()(x x t y t y t y x t y x x t y x --=--==?=== , []? ?? ???==??????--==00 01 2110 B y A A ,,,x x x 2) []x x x 001 100322100010=?? ?? ? ?????+??????????---=y u 3) []x x x 121 100321100010=?? ?? ? ?????+??????????---=y u 提示:本题利用了可控规范型与微分方程系数的关系。 8-2 1) 2 3101 )()(s s s U s Y += []x x x 001 1001000100010=?? ?? ? ?????+??????????-=y u 2) 8 1 5611171181891)()(2 3+?++?-?=++=s s s s s s s U s Y []x x x 001 100980100010=?? ??? ?????+??????????--=y u 或 x x x ?? ????-=???? ? ?????+??????????--=5617 1 8 1 111800010000y u 3) []x x x 145 1006116100010=?? ?? ? ?????+??????????---=y u 提示:本题利用了状态空间的规范型与传递函数系数的关系。

8-3 8 659 122+++s s s 8-4 ?? ? ???-=??????-??????+-+---==??????----------t t t t t t t t t t At t x t x e e 11e 2e e 2e 2e e e e 2)0(e )()(222221x 8-5 ?? ? ???-+-+-=-==------t t t t s BU A sI t 32321 1 3e 4e 1e e 21)]()[(L )()0(x 0x , 8-6 [])(120)( )(100)(321100010)1(k k y k u k k x x x =?? ??? ?????+??????????---=+ 或 [])(100)( )(120)(310201100)1(k k y k u k k x x x =?? ??? ?????+??????????---=+ 或 [])(001)( )(111)(321100010)1(k k y k u k k x x x =?? ?? ? ?????-+??????????---=+ 提示:利用状态空间的规范型与差分方程系数的关系。 8-7 []0110 3210=??? ???=??????--= C B A 下面是对该状态方程的求解过程。设初始条件为零。 ???? ??????++++-+++++=? ? ????+-=---232 32231233321)(2 2221 1z z z z z z z z z z z z A zI ???? ??? ?????-++++--++-+=????????????-++-++=?? ? ?????--=-??????-=-=---)1(6)1(2)2(32)1(6)1(2)2(3)1)(23()1)(23( 10)(110()(22 21 1 1 z z z z z z z z z z z z z z z z z z z z z z A zI z z A)(zI BU(z)A)zI z X ? ?????????+-+--+---==-61)1(21)2(3 261)1(21)2(31)]([Z )(1k k k k z X k x 8-8 1) ???????=??????= 10 0010B A 101])[(L e 1 1? ? ????=-=--t A sI At

重庆大学自动控制原理2第9章 习题参考答案_作业

9-2 已知非线性系统的微分方程为 (1) 320x x x ++= (2) 0x xx x ++= (3) 0x x x ++= (4) 2(1)0x x x x --+= 试确定系统的奇点及其类型,并概略绘制系统的相轨迹图。 解 (1) 奇点(0, 0)。特征方程为 2320λλ++= 两个特征根为 1,21, 2λ=-- 平衡点(0, 0)为稳定节点。 在奇点附近的概略相轨迹图: x (2) 奇点(0, 0)。在平衡点(0, 0)的邻域内线性化,得到的线性化模型为 0x x += 其特征方程为 210λ+= 两个特征根为 1,2j λ=±

1 平衡点(0, 0)为中心点。 在奇点附近的概略相轨迹图: x (3) 奇点(0, 0)。原方程可改写为 00 00 x x x x x x x x ++=≥?? +-=

2 为 0x x x -+= 其特征方程为 210λλ-+= 两个特征根为 1,20.50.866j λ=± 平衡点(0, 0)为不稳定焦点。 在奇点附近的概略相轨迹图: x 9-6 非线性系统的结构图如图9-51所示,其中0.2a =,0.2b =,4K =, 1T s =。试分别画出输入信号取下列函数时在e -e 平面上系统的相平面 图(设系统原处于静止状态)。 (1) () 2 1()r t t = (2) () 2 1()0.4r t t t =-+ (3) () 2 1()0.8r t t t =-+ (4) () 2 1() 1.2r t t t =-+ 图9-51 题9-6图 解:由系统结构图可得4c c u +=。由于e r c =-,那么4e e u r r ++=+。

非线性系统分析

第八章非线性系统分析 8-1 概述 一、教学目的和要求 了解研究非线性系统的意义、方法,常见非线性特性种类。 二、重点 非线性概念,常见非线性特性。 三、教学内容: 1 非线性系统概述 非线性系统运动的规律,其形式多样,线性系统只是一种近似描述。 (1)非线性系统特征—不满足迭加原理 1)稳定性:平衡点可能不只一个,系统的稳定性与系统结构参数、初始 条件及输入有关。 2)自由运动形式,与初条件,输入大小有关。 3)自振,自振是非线性系统特有的运动形式,它是在一定条件下,受初 始扰动表现出的频率,振幅稳定的周期运动。 (2)非线性系统研究方法 1)小扰动线性化处理(第二章介绍) 2)相平面法-----分析二阶非线性系统运动形式 3)描述函数法-----分析非线性系统的稳定性研究及自振。 2、常见非线性因素对系统运动特性的影响: 1)死区:(如:水表,电表,肌肉电特性等等)

饱和对系统运动特性的影响: 进入饱和后等效K ↓??? ??↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡) (原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 死区对系统运动特性的影响: ?????↓ ↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误 等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。 2) 饱和(如运算放大器,学习效率等等) 3) 间隙:(如齿轮,磁性体的磁带特性等)

间隙对系统影响: 1) 间隙宽度有死区的特点----使ss e ↓ 2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法: (1)提高齿轮精度 ; (2)采用双片齿轮; (3)用校正装置补偿。 5) 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理 改善慢变化过程平稳性的方法1)2)3)?? ??? 、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响: 影响系统慢速运动的平稳性 6)继电特性: 对系统运动的影响:

自动控制原理-第9章 控制系统的非线性问题

9 控制系统的非线性问题 9.1概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图9-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图9-1 伺服电动机特性 9.1.1控制系统中的典型非线性特性的类型 常见典型非线性特性有饱和非线性、间隙非线性、死区非线性、继电非线性等。 9.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图9-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特性以限制过载。 图9-2 饱和非线性 9.1.1.2不灵敏区(死区)非线性 控制系统中的测量元件、执行元件等一般都具有死区特性。例如一些测量元件对微弱的输入量不敏感,电动机只有在输入信号增大到一定程度的时候才会转动等等。如图9-3所示,其特性是输入信号在?<

第8章 非线性系统分析 参考答案汇总

参考答案 一、填空题 1. 非本质;本质 2. 自持振荡 3. 初始条件;输入信号大小 4. 饱和非线性;死区非线性;间隙非线性;继电器非线性 5. 不稳定 6. 稳定;不稳定;半稳定 7. 自左向右;自右向左 二、分析与计算题 1. 求3()()y t ax t =的描述函数。 解:由于3()()y t ax t =是单值奇函数,所以其傅里叶级数展开式中A 0=0、A 1=0、φ1=0,将()sin x t A t ω=代入B 1的计算公式,可得 2102330340 3203203 03031()sin 1sin sin 2sin 21cos 2()2 212cos 2cos 24 1cos 412cos 22242311(cos 2cos 4)828 231 (sin 284 B y t td t aA t td t aA td t aA t d t aA t t d t t t aA d t aA t t d t aA π π π ππππωωπωωωπωωπωωπωωωπωωωπωωωπππ===-=-+=+-+==-+=-???????3 1sin 4) 003234 t t aA ππωω+= 所以 32 133()44 B aA N A aA A A === 2.设具有滞环继电器非线性特性的非线性系统结构如题图8.1所示,已知b =1,a =0.3,试判断系统是否存在自持振荡,若存在,则求出自持振荡的幅值和频率。 题图8.1 解:具有滞环的继电器非线性特性的描述函数为 2 4()j ()ab N A A a A π=≥ 其描述函数负倒数特性为 1j ()()4a A a N A b π-=≥ 可见,描述函数负倒数特性的虚部为常数4a b π-,即1()N A -曲线为一条虚部为4a b π-的直线。 由于10 ()(21)(0.41) G s s s =++,所以

自动控制原理第8章习题解——邵世凡

习题8 8—1 三个非线性系统的非线性环节一样,线性部分分别为 ①G㈤一赢;②G㈤一志;③G㈤一高等揣。 试问用描述函数法分析时,哪个系统分析的准确度高? 8 2试求图8~41所示非线性特性的描述函数 8—3 试求图8—42所示非线性特性的描述函数。8—4求图8 43所示非线性描述函数。 8—5求图8 44所示非线性描述函数。 8 非线性系统理论§265 8—6 求出图8—45所示非线性控制系统线性部分的传递函数。

8—7一非线性系统其前向通路中有一描述函数N(A)一去e j寻的非线性元件,线性部分传递函数为试用描述函数法确定系统是否存在自激振荡,若有,求出自激振荡参数。 8 8试用描述函数分析图8 46所示系统必然存在自激振荡, y.z,e的稳态波形。 8 9若非线性系统的微分方程为 试求系统的奇点.并概略绘制奇点附近的相轨迹。并求出自激振荡振幅和振荡频率,并画出 8 10 非线性系统结构如图8—47所示,系统开始是静止的,输入信号r(£)一4×1(f),试写出切换线方程,确定奇点的位置和类型,作出该系统的相平面图,并分析系统的运动特点。 8—11 已知非线性系统的微分方程为 图8 47题8—10非线性系统 i1一T1(T;+z;一1)(T;+上;~9)一z2(z;+T;一4) j 2一z2(z;+卫!一1)(工}+z;~9)+z1(zi+T;一4) 试分析系统奇点的类型,判断系统是否存在极限环。 8 12绘制图8 48所示非线性系统的相轨迹,分析系统的运动特性(B>O,B。<4K)。

8—13 已知非线性系统如图8—49所示,粗略绘制系统在单位阶跃及斜坡输入r一、,T+R 作用下系统的相轨迹,并分析系统的运动特性(T>O,4KT>1)。 8—14一非线性控制系统如图8—50所示,请绘制系统在如下情况下的相轨迹,并分析系统的运动特性。 初始状态为P(O):3.5,i(O)一O。 8—15一位置继电控制系统结构如图8—51所示.当输入幅度为4的阶跃函数,绘制从y(0)一一3,j(O)一O出发的相轨迹,求系统运动的最大速度、超调量及峰值时间。

夏德钤《自动控制原理》(第4版)章节题库-第9章 平稳随机信号作用下线性系统的分析【圣才出品】

第9章 平稳随机信号作用下线性系统的分析 1.设随机过程 ,其中 a 和ω是常数,是服 从[0,2π]上均匀分布的随机变量,求 的数字特征。 解: 由于的概率密度函数为随机过程 的均值函数、相关函数、协方差函数、方差函数和 均方值函数可分别求得如下:2.设{X n ,n=1,2,…}是互不相关的随机变量序列,且 , k=1,2,…,试讨论{X n ,n=1,2,…}的平稳性。

所以,{X n,n=1,2,…}具有平稳性,称{X n,n=1,2,…}为平稳随机序列。 3.设s(t)是周期为T的可积函数,令-∞<t<+∞,其中,称{X(t),-∞<t<+∞}为随机相位周期过程,试讨论它的平稳性。 解:由故的概率密度函数为 于是 所以随机相位周期过程{X(t),-∞<t<+∞}是平稳过程。 4.设{X n,n=1,2,…}是随机变量序列, 是两两不相等的实数序列,试研究的平稳性。

所以{Y(t),-∞<t<+∞}具有平稳性。 5.设{X(t),t≥0}是只取±1两个值的过程,其符号的改变次数是一参数为λ的Poisson过程{N(t),t≥0},且,试讨论{X(t),t≥0}的平稳性。 解: 所以{X(t),t≥0}是平稳过程。 6.设系统的输入为实平稳过程{X(t),t≥0},其均值函数m X=0,相关函数为 为输出,且输入与输出满足线性微分方程

试求输出{Y(t),t≥0}的均值函数与相关函数。 解:由于该系统是线性定常系统,由得 m Y(t)=0,t≥0 如取有 因此频率响应为 又{X(t),-∞<t<+∞}的相关函数,故其谱密度为 由知识点10知,{Y(t),t≥0}的谱密度为 于是 7.设X(t)=sinUt,t=1,2,…,其中U服从区间[0,2π]上的均匀分布,试讨论{X(t),t=1,2,…}的平稳性。

自控原理习题参考答案(8)

第八章习题参考答案 8-3 设系统如图8-30所示,其中继电器非线性特性的a =1。试用描述函数法分析系统是否会出现自持振荡?如存在,试求出系统自持振荡的振幅和频率的近似值。 解:死区继电特性的描述函数为: 2 )( 14= )(A a A πM A N - (A ≥a ) 将M =1,a =1代入上式得: 2 2 )1( 14= )( 14= )(A A πA a A πM A N -- 当A

其频率特性为:) 2+)(1+(10 = )(j ωj ωωj ωj G 幅频特性和相频特性分别为: ) 4+)(1+(10 = |)(2 2 ωωωωj G |, ω.a r c t a n ωa r c t a n ωφ5090=)(--- 令 180=)(-ωφ,即 180=5090=)(----ω.arctan ωarctan ωφ 90 =50+ω.arctan ωarctan → 90 =.501.512 ω ωarctan - 解得2=ω,此时7 .61≈35=18 210 = ) 4+)(1+(10 = |)2(2 2ωωωj G | 因此,当2=ω时,线性部分奈氏曲线ΓG 与负实轴的交点坐标为(-1.67,j 0)。 ΓG 曲线如下图所示。由图可见,ΓG 曲线和-1/N (A )曲线存在两个交点。 由1 4 =)(1)2+)(1+(10= )(2 2-- =-A A πANj ωj ωωj ωj G 解得两组解:2 =1ω,2.21=1A 和2 = 2ω,37.1=2A 根据周期运动稳定性判据,A 1和ω1对应不稳定的周期运动;A 2和ω2对应稳定的周期运动。 当初始条件或外扰动使A A 1,则系统运动存在自振荡: t sin .)t (e 2731= () jY ω() X ωω=∞ ω=7.61-7.15- ) (1 A N -

自动控制原理第九章 大学课件

第九章非线性控制系统简介 1 主要内容简介 Description Function(描述函数)Lyapunov(李亚普诺夫)稳定性分析 2 简介简介回顾非线性系统特点 研究非线性系统的意义与方法典型非线性特性的数学描述 3 简介 1. 回顾 到目前为止前面的分析与设计都是基于线性系统的. 许多实际系统在某个操作点附近都可以近似为线性系统. 但是 非线性特性问题仍然不容忽视,本章就非线性控制进行简要介绍. 4 简介 x1 t y1 t x 2 t y 2 t 2. 非线性系统特点 a1 x1 t a 2 x 2 t a1 y1 t a 2 y 2 t 非线性系统与线性控制系统相比,具有一系列新的特点 1 线性系统满足叠加原理,而非线性控制系统不满足叠加原理(指同时满足叠加性与均匀性 虽然非线性系统通过利用非线性滤波,可使系统满足叠加性(如图示),但不可能满足均匀性。滤波器 I 非线性器件 I X1X2 Y1+Y2 滤波器 II 非线性器件 II 带滤波器的非线性系统 5 简介 2. 非线性系统特点非线性系统与线性系统相比,具有一系列新的特点:2 非线性系统的稳定性不仅取决于系统的固有结构和参数,而且与系统的初始条件以及外加输入有关系 对非线性系统而言,稳定性总是针对某一平衡点(状态)讨论的。 所谓平衡点(状态): xt f x t 设 f x t 0 求出满足的所有xe 即为非线性系统的平衡点 6 简介 2. 非线性系统特点例:对于一由非线性微分方程 x x 1 x 描述的非线性系统,显然有两个平衡点,即x10 和 x21。将上式改写为 dx 设t=0时,系统的初态为x0。积分上式可得 dt x 1 x x0 e t xt 1 x 0 x 0 e t xt 若初始条件x0<1,随着时间 1 t t xt0,即平衡状态x10 x0 ln 是小范围稳定的 当x0>1时, x0 1 0 在tlnx0/x0-1时, xt 这说明x21是不稳定的平衡状态。 一阶非线性系统 7 简介自激振荡(自振):没有外界周期变化信号 的作用时,系统内产生的具有固定振幅和频 2. 非线性系统特点 率的稳定周期运动。非线性系统与线性系统相比,具有一系列新的特点: 3 非线性系统可能存在自激振荡现象(即维持等幅振荡运动) 对于二阶非线性系统,这种自激振荡状态称为极限环。 4 非线性系统在正弦信号作用下,其输出存在极其复杂的情况: 跳跃谐振和多值响应 A 2 2 3 1 . 4 4 .5 跳跃谐振与多值响应 8 简介 2. 非线性系统特点分频振荡和倍频振荡 非线性系统在正弦信号作用下,其稳态分量除产生同频率振 荡外,还可能产生倍频振荡和分频振荡。如图所示波形。输入信号 t倍频信号 t分频信号 t 倍频振荡与分频振荡 9 简介 3. 研究非线性系统的意义与方法研究非线性系统的意义1)实际的控制系统,存在着大量的非线性因素。这些非线性因素的 存在,使得我们用线性系统理论进行分析时所得出的结论,与实际 系统的控制效果不一致。线性系统理论无法解释非线性因素所产生 的影响。2)非线性特性的存在,并非总是对系统产生不良影响。 10 简介 3. 研究非线性系统的意义与方法研究非线性系统的方法 1)相平面法是用图解的方法分析一阶,二阶非线性系统的方法。通过绘制控制系统相轨迹,达到分析非线性系统特性的方法。 2)描述函数法是受线性系统频率分析法启发,而发展出的一种分析非线性系统的方法。它是一种谐波线性化的分析方法,是频率法在非线性系统分析中的推广。3)计算机求解法是利用计算机运算能力和高速度求解非线性微分方程的一种数值解法。 11 简介 3. 研究非线性系统的意义与方法常见的非线性特性:继电特性

《自动控制原理》第九章 线性系统的状态空间分析与综合

第九章 线性系统的状态空间分析与综合 在第一章至第七章中,我们曾详细讲解了经典线性系统理论以及用其设计控制系统的方法。可以看到,经典线性理论的数学基础是拉普拉斯变换和z 变换,系统的基本数学模型是线性定常高阶微分方程、线性常系数差分方程、传递函数和脉冲传递函数,主要的分析和综合方法是时域法、根轨迹法和频域法,分析的主要内容是系统运动的稳定性。经典线性系统理论对于单输入-单输出线性定常系统的分析和综合是比较有效的,但其显著的缺点是只能揭示输入-输出间的外部特性,难以揭示系统内部的结构特性,也难以有效处理多输入-多输出系统。 在50年代蓬勃兴起的航天技术的推动下,在1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。现代控制理论正是在引入状态和状态空间概念的基础上发展起来的。 在现代控制理论的发展中,线性系统理论首先得到研究和发展,已形成较为完整成熟的理论。现代控制理论中的许多分支,如最优控制、最优估计与滤波、系统辨识、随机控制、自适应控制等,均以线性系统理论为基础;非线性系统理论、大系统理论等,也都不同程度地受到了线性系统理论的概念、方法和结果的影响和推动。 现代控制理论中的线性系统理论运用状态空间法描述输入-状态-输出诸变量间的因果关系,不但反映了系统的输入—输出外部特性,而且揭示了系统内部的结构特性,是一种既适用于单输入--单输出系统又适用于多输入—多输出系统,既可用于线性定常系统又可用于线性时变系统的有效分析和综合方法。 在线性系统理论中,根据所采用的数学工具及系统描述方法的不同,又出现了一些平行的分支,目前主要有线性系统的状态空间法、线性系统的几何理论、线性系统的代数理论、线性系统的多变量频域方法等。由于状态空间法是线性系统理论中最重要和影响最广的分支,加之受篇幅限制,所以本章只介绍线性系统的状态空间法。 9-1 线性系统的状态空间描述 1. 系统数学描述的两种基本类型 这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。本章中所研究的系统均假定具有若干输入端和输出端,如图9-1所示。图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出;二者分别用向量12[,,...,] T p u u u u =和 12[,,...,] T q y y y y =表示,它们均为系统的外部变量。描述系统内部每个时刻所处状况的

自动控制原理-第8章 非线性控制系统教案

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

第八章非线性控制系统分析习题与解答

第八章 非线性控制系统分析习题与解答 7-1 三个非线性系统的非线性环节一样,线性部分分别为 (1) G s s s ()(.)= +1011 (2) G s s s ()()=+2 1 (3) G s s s s s ()(.) ()(.) =+++21511011 试问用描述函数法分析时,哪个系统分析的准确度高? 解 线性部分低通滤波特性越好,描述函数法分析结果的准确程度越高。分别作出三个系统线性部分的对数幅频特性曲线如图所示。 由对数幅频特性曲线可见,L 2的高频段衰减较快,低通滤波特性较好,所以系统(2)的描述函数法分析结果的准确程度较高。 7-2 将图示非线性系统简化成环节串联的典型结构图形式,并写出线性部分的传递函数。 解 (a) 将系统结构图等效变换为图(a)的形式。 G s G s H s ()()[()]=+111 (b) 将系统结构图等效变换为图(b)的形式。 G s H s G s G s ()() () () =+1111

7-3 判断题7-41图中各系统是否稳定;)(1A N -与)(ωj G 两曲线交点是否为自振点。 解 (a ) 不是 (b) 是 (c) 是 (d) c a 、点是,b 点不是 (e) 是 (f) a 点不是,b 点是 (g) a 点不是,b 点是 (h) 系统不稳定 (i) 系统不稳定 (j) 系统稳定 7-4 已知非线性系统的结构如图所示 图中非线性环节的描述函数为N A A A A ()()=++>6 2 试用描述函数法确定: (1)使该非线性系统稳定、不稳定以及产生周期运动时,线性部分的K值范围; (2)判断周期运动的稳定性,并计算稳定周期运动的振幅和频率。 解 (1) -=-++126N A A A ()(), -=--∞=-101 3 1 1N N (),() dN A dA A ()()=-+<4 202 N(A)单调降,)(1A N -也为单调降函数。画出负倒描述函数曲线)(1A N -和 G j ()ω曲线如图所示,可看出,当K 从小到大变化时, 系统会由稳定变为自振,最终不稳定。 求使 Im[G j ()]ω=0 的ω值: 令 ∠=-?-=-?G j arctg ()ωω902180 得 arctg ωω=?=451,

自动控制原理第八章3

频率响应法是分析和设计线性系统的有力工具,其特点是将 线性系统描述为复值函数(即频率响应),而非微分方程 : 012αα=+?+x x x x 考察范德波尔方程:正常数,)(考察范德波尔方程例 012=+?+x x x x α描述函数分析法 例:(续))(例(续) 极限环的振幅;振荡频率 =G 描述函数分析法 ) sin()(t A t x ω例:(续) 拟线性

G 例:(续) .0 系统真实的极限环: .1 4 1 4 12 2 2? ? ± ? ? =A Aα α λ) ( 64 ) ( 8 2,1 例:(续) 描述函数分析法 拟线性近似(描述函数)法的适用范围 描述函数分析法例:具有一个非线性元件的系统(续)例具有个非线性元件的系统(续) G G G→线性成分G

描述函数的应用(续) 描述函数法的基本假设 描述函数分析法 描述函数法的基本假设(续) 描述函数分析法 描述函数法的基本假设(续)

描述函数法的基本定义 如果非线性函数x为单值函数,非线性元件w t的输出则通 果非线性数f()为单值数,非线性件()的输则通 描述函数法的基本定义(续) 描述函数分析法 描述函数法的基本定义(续) 描述函数分析法 非线性元件描述函数的计算方法 度不是关键,因为描述函数法本身就是一种近似方法 非线性部分的非线性特性) ,因本身种 适用于非线性部分的非线性特性w(t) = f(x)为显函数并且易进行下列计算的情形:

非线性元件描述函数的计算方法(续) 非线性元件描述函数的计算方法(续) 描述函数分析法 常见非线性特性的描述函数 1 ? w(t):奇函数a & k :线性区的) / ( sin A a = γ 范围及斜率 描述函数分析法 常见非线性特性的描述函数(续) z

(完整版)自动控制原理课后习题答案

第1章控制系统概述 【课后自测】 1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。 解:开环控制——半自动、全自动洗衣机的洗衣过程。 工作原理:被控制量为衣服的干净度。洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。 闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。 工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。 开环控制和闭环控制的优缺点如下表 1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么? 解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。各个基本单元的功能如下: (1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。 (2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。 (3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。 (4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。常用的比较元件有差动放大器、机械差动装置和电桥等。 (5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。 (6)执行元件—用于驱动被控对象,达到改变被控量的目的。用来作为执行元件的有阀、电动机、液压马达等。 (7)校正元件:又称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,以改善控制系统的动态性能和稳态性能。

第七章非线性控制系统分析

291 第7章 非线性控制系统分析 非线性系统的形式和种类繁多,在构成控制系统的环节中,有一个或一个以上的环节具有非线性特性时,这种控制系统就属于非线性控制系统。本章所说的非线性环节是指输入、输出间的静特性不满足线性关系的环节。对于非线性控制系统,目前还没有通用的分析设计方法,这里主要介绍工程上常用的相平面分析法和描述函数法。 7.1 非线性控制系统概述 7.1.1 非线性现象的普遍性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。 7.1.2 控制系统中的典型非线性特性 在实际控制系统中所遇到的非线性特性是各式各样的。常见的典型非线性特性有下述几种: 1.饱和非线性特性 实际放大器只能在一定的输入范围内保持输出和输入之间的 线性关系;当输入超出该范围时,其输出则保持为一个常值。这 种特性称为饱和非线性特性,如图7-1所示,其中a x a <<-的 区域是线性范围,线性范围以外的区域是饱和区。许多元件的 图7-1 饱和非线性

292 运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特性以限制过载。 2.不灵敏区(死区)非线性特性 一般的测量元件、执行机构都存在不灵敏区。例如某些检测元件对于小于某值的输入量不敏感;某些执行机构接受到的输入信号比较小时不会动作,只有在输入信号大到一定程度以后才会有输出。这种只有在输入量超过一定值后才有输出的特性称为不灵敏区非线性特性,如图7-2所示。其中,?<

自动控制原理第五章

第五章 §5-1 引言 §5-2频率特性 §5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法 §5-5 系统稳定性分析 §5-6控制系统的相对稳定性分析

第五章 控制系统的频率响应分析 [教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。 掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。本章的难点是Nyquist 稳定性分析。 [主要容]: 一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标 [重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。 [难点]:时域性能指标与频域性能指标之间的相互转换。闭环频域性能指标的理解与应用 [讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。准确理解概念,把握各种图形表示法的相互联系。与时域法进行对比,以加深理解。 §5-1 引言 1.时域分析法(特点) 1) 以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。 2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。 3) 对工程中普遍存在的高频噪声干扰的研究无能为力。 4) 在定性分析上存在明显的不足。 5) 属于以“点”为工作方式的分析方法。 2.根轨迹法(特点) 1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用; 2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式; 4)为定性分析提供了一种非常好的想象空间和辅助思维界面。 “时域分析法+根轨迹法”,合起来共同构成s 平面上的“点”、“线”、“面”全方位分析体系:用增加零极点的办法将根轨迹曲线“推拉”到希望的区域(面),对选定的根轨迹曲线按指定参数进行区间和围的划分和必要的定性分析(线) ,用时域法对希望区间的围进行选点计算,得到关键点的定量分析(点)。对三者的分析结果进行综合,就形成了对系统的更深层次上的

非线性控制系统的相平面分析法讲解

7-5 非线性控制系统的相平面分析法 相平面法在分析非线性系统时是很有用处的。但是,我们在介绍非线性系统的分析方法之前,先讨论一下相平面法在分析线性二阶系统中的应用是很有好处的。因为许多非线性元件特性一般都可分段用线性方程来表示,所以非线性控制系统也可以用分段线性系统来近似。 一、线性控制系统的相平面分析 1、阶跃响应 设线性二阶控制系统如图7-38所示。若系统开始处于平衡状态。试求 系统在阶跃函数)(1)(0t R t r ?= 作用下,在e e -平面上的相轨迹。 建立系统微分方程式,由图示系统可得 Ke c c T =+ 因为c r e -=,代入上式得 r r T Ke e e T +=++ (7-31) 对于->?=0),(1)(0t t R t r 时,0)()(==t r t r 因此上式可写成 0=++Ke e e T (7-32) 方程(7-32)与(7-22)式相仿。因为假设系统开始处于平衡状态,所以误差信号的初始条 件是0)0(R e =和0)0(=e 。e e -平面上的相轨迹起始于)0,(0R 点,而收敛于原点(系统的奇点)。当系统特征方程的根是共轭复数根,并且位于左半平面时,其相轨迹如图7-39(a) 所示。根据e e -平面上的相轨迹就可方便的求得c c -平面上系统输出的相轨迹,如图7-39(b)所示。由图7-39可见,欠阻尼情况下系统的最大超调量P σ及系统在稳态时的误差 为零。因为e e -平面相轨迹最终到原点,即奇点;所以在c c -平面上相轨迹最终到达0R c =的稳态值,则奇点坐标为)0,(0R 。 2、斜坡响应 对于斜坡输入t V t r 0)(=;当0>t 时,)(t r 的导数0)(V t r = 及0)(=t r 。因此,方程(7-31)可以写成 0V Ke e e T =++ 或 0)(0 =-++K V e K e e T 令v e K V e =-0,代入上式,则有 0V Ke e e T =++ννν (7-33) 在v v e e -平面上,方程(7-33)给出了相平面图与在e e -平面上方程(7-32)给出的相平面图是相同的。 应当指出,特征方程式的根确定了奇点的性质,在v v e e -平面上的奇点的位置是坐标原点,而在e e -平面上奇点坐标为)0,(0K V 点。又因为我们假设系统初始状态为平衡状态。

第七章 非线性控制系统分析

第七章 非线性控制系统分析 §7.1 非线性系统概述 ● 非线性系统运动的规律,其形式多样。线性系统只是一种近似描述 ● 非线性系统特征—不满足迭加原理 1) 稳定性 ? ??平衡点灯可能有多个入有关关,而且与初条件,输不仅与自身结构参数有 2) 自由运动形式,与初条件,输入大小有关。 3) 自振,在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。自振是非线性系统特有的运动形式。 4) 正弦响应的复杂性 (1) 跳跃谐振及多值响应 (2) 倍频振荡与分频振荡 (3) 组合振荡(混沌) (4) 频率捕捉 ● 非线性系统研究方法 1) 小扰动线性化处理 2) 相平面法-----用于二阶非线性系统运动分析 3) 描述函数法-----用于非线性系统的稳定性研究及自振分析。 4) 仿真研究---利用模拟机,数字机进行仿真实验研究。 常见非线性因素对系统运动特性的影响: 1. 死区:(如:水表,电表,肌肉电特性等等)

死区对系统运动特性的影响: ?????↓ ↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误 等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。 2. 饱和(如运算放大器,学习效率等等) 饱和对系统运动特性的影响:

进入饱和后等效K ↓?? ? ??↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 3. 间隙:(如齿轮,磁性体的磁带特性等) 间隙对系统影响: 1) 间隙宽度有死区的特点----使ss e ↓ 2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法: (1) 提高齿轮精度 ; (2) 采用双片齿轮; (3) 用校正装置补偿。 4. 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理 改善慢变化过程平稳性的方法1)2)3)?? ??? 、良好润滑 、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响:

相关文档
最新文档