隔膜式、绝压变送器

隔膜式、绝压变送器
隔膜式、绝压变送器

差压变送器工作原理及常见故障分析

差压变送器工作原理及常见故障分析 差压变送器工作原理及常见故障分析 差压变送器在工业自动化生产中对压力、压差流量的测最应用愈见广泛,生产中遇到的问题也越来越多,故障的及时判定分析和处理,对正在进行的生产来说是至关重要的。本文介绍日常维护中的经验和故障判定分析方法,供参考。 一、差压变送器工作原理 来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至洲量元件上,测最元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测最方式: 1 .与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量. 2 .利用液体自身重力产生的压力差,测是液体的高度。 3 .直接测量不同管道、魄休液体的压力差值。 二、差压变送器故障诊断方法 除了回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修等情况;以及观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等现象外,还应通过检测来诊断故障。 1 .断路检侧:将怀疑有故障的部分与其他部分分割开来,查看故障是否消失,如果消失,则可确定故障在此处。否则可进行下一步查找,如:智能差压变送器不能正常Ha 性远程通讯,可将电源从仪表本体中断开 用现场另加电源的方法为变送器通电进行通讯,以查看是否叠加有约Zk - HZ 的电磁信号而干扰通讯。 2 .短接检测:在保证安全的情况下,将相关部分回路直接短接,如:差压变送器输出值偏小,可将导压管断开,从一次取压阀外将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路有无堵、漏及连通性。 3 .替换检测:更换怀疑有故障的部分,判断故障部位。如:怀疑变送器电路板发生故障,可临时更换一块,以确定原因。 4 .分部检侧:将测皿回路分割成几个部分(如:供电电源、信号输出、信号变送、信号检测),按各部分分别检查,由简至繁,由表及里,缩小范围,找出故障位置。 三、常见故障检修 1 .输出过大的可能原因和解决方法: ( l )导压管。检查导压管是否泄漏或堵塞;检查截止阀是否全开;检查气体导压管内是否有液体,液体导压管内是否有气休;检查变送器压力容室内有无沉积物. ( 2 )变送器的电气连接。检查变送器的传感器组件连接情况.保证接插件接触处清洁;检查8 号插针是否可靠接表壳地. . ( 3 )变送器电路故障。用备用电路板代换检查、判断有故障的电路板及更换有故障的电路板. ( 4 )检查电源的输出是否符合所需的电压值. 2 .输出过小或无输出的可能原因和解决方法: ( 1 )导压管。检查导压管是否泄漏或堵塞;检查液体导压管内是否有气体;检查变送器压力容室内有无沉积物;检查截止阀是否开全,平衡阀是否关严。 ( 2 )变送器的电气连接。检查变送器传感器组件的引出线是否短接;保证接插件接触处清洁;检查各调节螺钉是否在控制范围内。

压力变送器说明书

一、1151压力变送器工作原理 被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔膜片和δ 1151压力变送器原理图 元件内的填充液传到预张紧的测量腊片两侧,测量膜片与两侧绝缘体上的电极各组成一个电容器,在无压力通入或两压力均等时测量膜片处于中间位置,两侧两电容器的电容量相等,当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容就不等,通过检测,放大转换成4-2OmA的二线制电流信号。压力交送器和绝对压力交送器的工作原理和差压变送器相同,所不同的是低压室压力是大气压或真空元份结构图见右图 二、电气原理图 1151压力变松电气原理图 三、主要特点 电容式变送器有下列特点 1.品种齐全、精度高、稳定性好,价格比同类进口仪表便宜 2.采用二线制工作方式 3.敏感元件采用固体化结构,小型坚固,抗振能力强 4.主要部件可与1151同类产品进行互换, 5.关键零部件、电子元件及接插件均采用国际上高质量产品。本系列产品可靠性好,质量稳定,故障率少。 6.正迁移可达500%,负迁移可达600%(最小量程时) 7.阻尼可调 电容式变送器品种齐全,用户可按不同需要任意选用,自微差压至大差压,从低压力至高压力、绝对压力、高静压差压。DP/GP型变送器带上各种远传装置后,就成为远传式差压、压力变送器。采用ANSI标准,管道尺寸3",法兰等级150磅(2.5MPa),插入筒式远传装置后,插入筒长度一般

结构尺寸 八、1151变送器典型安装 变送器可以直接安装在测量点处,可以安装在墙上,或者使用安装板(变送器附件)夹拼在2''(约φ50mm)的管道上。 变送器压力容室上的导压连接孔为1/4-18NPT螺纹孔,接头上的导压接孔为1/2-14NPT内锥管螺纹(或M2OXl.5-18外螺纹),根据需要可选择与引压接头1/2-14NPT锥管螺纹的过渡接头。变送器可以轻而易举地从流程1艺管道上拆下,万法是拧下紧固接头的两个螺栓。转动接头,可以改变其接孔的中心距离为5lmm,54mm,57mm三种尺寸。 为了确保接头密封,在固紧时应按下面步骤操作:两只紧固螺栓应交替用板手均匀拧紧,其最后拧紧力距大约为40N.m(29fs-bs),切勿一次拧紧某一只螺栓。有时为了安装上的方便,变送器本体上的压力容室可转动。只要压力容室处于垂直面,则变送器木体的转动不会产生零位的变化。如果压力容室水平安装时(例如在垂直管道上测量流量时),则必须消除由于导压管高度不同而引起的液柱压力的影响。即重新调零位。 九、变送器的型号命名

差压变送器的校验步骤

差压变送器的校验步骤 差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。现介绍一种不用拆除导压管就进行现场校准的方法。 一.准备工作 我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。为此dlr加工制作了与排气、排液阀或旋塞相同螺纹的接头(又称为奶嘴),如图所示。 对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。 二.常规差压变送器的校准 先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约 0."2mA,反之亦然。例如: 输入满量程压力为100Kpa,该读数为 19."900mA,调量程电位器使输出为 19."900+( 20."000-

19."900)* 1."25= 20."025m A.量程增加 0."125mA,则零点增加1/5* 0."125= 0." 025."调零点电位器使输出为 20."000m A.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。 三.智能差压变送器的校准 用上述的常规方法对智能变送器进行校准是不行的,因为这是由HART变送器结构原理所决定了。因为智能变送器在输入压力源和产生的4-20mA电流信号之间,除机械、电路外,还有微处理芯片对输入数据的运算工作。因此调校与常规方法有所区别。 实际上厂家对智能变送器的校准也是有说明的,如ABB的变送器,对校准就有: “设定量程”、“重定量程”、“微调”之分。其中“设定量程”操作主要是通过LRV.URV的数字设定来完成配置工作,而“重定量程”操作则要求将变送器连接到标准压力源上,通过一系列指令引导,由变送器直接感应实际压力并对数值进行设置。而量程的初始、最终设置直接取决于真实的压力输入值。但要看到尽管变送器的模拟输出与所用的输入值关系正确,但过程值的数字读数显示的数值会略有不同,这可通过微调项来进行校准。由于各部分既要单独调校又必需要联调,因此实际校准时可按以下步骤进行:

压力和差压变送器详细使用说明

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

压力变送器工作原理

罗斯蒙特3051 智能型压力变送器 工作原理 工作时,高、低压侧的隔离膜片和灌充液将过程压力传递给中心的灌充液,中心灌充液将压力传递到δ- 室传感器中心的传感膜片上。传感膜片是一个张紧的弹性元件,其位移随所受压差而变化(对于GP表压变送器,大气压力如同施加传感膜片的低压则一样,AP绝压变送器低压侧始终保持一个参考电压)。传感膜片的最大位移量为0.004英寸(0.10毫米)且位移量与压力成正比,两侧的电容极板检测传感膜片的位置。传感膜片和电容极板之间的电容的差值被转换成相应的电流,电压或数字HATR输出信号。 线路板模块 变送器线路板模块采用专用集成电路(ASICS)和表面封装技术。 线路块接收来自传感器膜头的数字信号和修正系数后,对信号进行修正和显性化。线路板模块的输出部分将数字信号转换成一个模拟信号输出,并可与HATR手操器通讯。可选的夜晶表头插入线路板上,可

显示以压力工程单位或百分比为单位的数字输出。夜晶表头适用于标准变送器和低功耗变送器。 数据组态 组态数据存贮在变送器线路板上的永久性EEPROM存贮器中。变送器断电数据仍能保存,因此变送器一通电力可以工作。 数/模转换和信号传送 过程变量以数字方式存贮,可进行精确的修正和工程单位转换,之后经修正的数据被转换成一个模拟输出信号。HATR手操器存取传感器的数字信号,而不需要数/模转换从而达到更高精度。 通讯模式 1151型智能变送器采用HATR协议通讯,该协议采用工业标准bell202频移键控(FSK)技术,将一个高频信号叠加在电流输出信号上实现远程通讯。而不影响回路的一致性。 软件功能 HATR协议使用户很容易对1151智能型压力变送器进行组态,测试和具体设置。 组态 1151智能型可以很容易地用HATR手操器进行组态。组态包括两个方面。第一,对变送器可操作参数的设置,包括设置:·零点和量程设置点 ·线性或平方根输出 ·阻尼

差压式压力变送器

液位计技术报告 技术报告名称:差压变送器技术报告 学院名称:电气信息学院 专业班级:测控02 学生学号:1504200327 学生姓名:余文广 学生成绩: 指导教师: 课程设计时间:至

格式说明(打印版格式,手写版不做要求) (1)任务书三项的内容用小四号宋体,1.5倍行距。 (2)目录(黑体,四号,居中,中间空四格),内容自动生成,宋体小四号。 (3)章的标题用四号黑体加粗(居中排)。 (4)章以下的标题用小四号宋体加粗(顶格排)。 (5)正文用小四号宋体,1.5倍行距;段落两端对齐,每个段落首行缩进两个字。 (6)图和表中文字用五号宋体,图名和表名分别置于图的下方和表的上方,用五号宋体(居中排)。 (7)页眉中的文字采用五号宋体,居中排。页眉统一为:武汉工程大学本科课程设计。(8)页码:封面、扉页不占页码;目录采用希腊字母Ⅰ、Ⅱ、Ⅲ…排列,正文采用阿拉伯数字1、2、3…排列;页码位于页脚,居中位置。 (9)标题编号应统一,如:第一章,1,1.1,……;论文中的表、图和公式按章编号,如:表1.1、表1.2……;图1.2、图1.2……;公式(1.1)、公式(1.2)。

差压变送器技术报告 引言:本差压式压力变送器技术报共分为五部分:第一部分介绍压力变送器的类型;第二部分介绍差压式压力变送器的测量原理;第三部分介绍差压式压力变送器的优点缺点适用范围;第四部分介绍一般差压变压器的结构以及设计方案;第五部分总结。 第一部分压力变送器分类 压力变送器分类。在测量仪器中,变送器的应用最广泛、最普遍,变送器大体分为压 力变送器和差压变送器。压力变送器有电动式和气动式两大类。电动式的统一输出信号为0~10mA、4~20mA或1~5V等直流电信号。气动式的统一输出信号为20~100Pa的气体压力。压力变送器按不同的转换原理可分为力(力矩)平衡式、电容式、电感式、应变式和频率式等,。 压力变送器和差压变送器的区别。单从名词上讲测量的是压力和两个压力的差,但它们间接测量的参数是有很多的。如压力变送器,除测量压力外,它还可以测量设备内的液位。在常压容器测量液位时,需用一台压变即可。当测量受压容器液位时,可用两台压变,即测量下限一台,测量上限一台,它们的输出信号可进行减法运算,即可测出液位,一般选用差压变送器。在容器内液位与压力值不变的情况下它还可以用来测量介质的密度。压力变送器的测量范围可以做的很宽,从绝压0开始可以到100MPa(一般情况) 传感器和变送器之间的区别。传感器是将一个要测量的物理量转换成另一个可以读取处理的物理量,现代控制中,这种物理量就是电信号;变送器就是将传感器初级的电信号转换成标准的电信号,例如电流信号4--20mA,0--20mA,电压信号0--10V,1--5V。初级的压力传感器是压力引起应变产生毫伏信号变化,如果传感器内已经带有放大整形电路,输出标准电流或电压信号,这样的传感器也可以称为压力变送器;压力变送器的叫法,是相对于早期的压力传感器都是输出毫伏信号的,现代的压力传感器大部分已经直接输出标准信号了,所以现在的压力传感器与压力变送器就有可能合而为一了。 第二部分.液位计工作原理 差压变送器,顾名思义就是测量被测介质的压强差,即△P=ρg△h。由于油罐往往是圆柱形,其截面圆的面积S是不变的,那么,重力G=△P·S=ρg△h·S,S不变,G与△P成正比关系。即只要准确地检测出△P值,与高度△h成反比,在温度变化时,虽然油品体积膨胀或缩小,实际液位升高或降低,所检测到的压力始终是保持不变的。如果用户需要显示实际液位,也可以引入介质温度补偿予以解决。 压力变送器感受压力的电器元件一般为电阻应变片,电阻应变片是一种将被测件上的压

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

常见压力变送器及传感器的原理和分类

常见压力变送器/传感器的原理和分类 压力变送器是一种把非电量转变成电信号的器件,变送器关键件主要包含:压力敏感部件、集成电路、结构件三部分。压力敏感部件有溅射型、电阻应变型、扩散硅型、微熔型、蓝宝石型、陶瓷型等,在外加激励电压后,通过惠斯登测量原理输出电信号,达到测量介质压力的目的。 ☆电阻应变压力变送器原理 电阻应变型压力变送器关键器件是电阻应变片,它是一种将被测件上的应变变化,转换成为一种电信号的敏感器件。通常是将应变片通过特殊的粘合剂紧密的粘在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D 转换和CPU)、显示或执行机构。 ☆陶瓷压力变送器原理 压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯登电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,根据压力量程的不同,标准的信号可标定为2.0 / 3.0 / 3.3mV/V 等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,并可以和绝大多数介质直接接触。 ☆扩散硅压力变送器原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器内部芯片的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 ☆溅射薄膜压力变送器原理 在高真空度中,利用磁控技术,将绝缘材料、电阻材料以分子形式淀积在不锈钢弹性膜片上,形成分子键合的绝缘材料薄膜和电阻材料薄膜,并与弹性不锈钢膜片融为一体,再经过光刻、调阻、温度补偿等工序,在弹性不锈钢膜片上形成牢固而稳定的惠斯登电桥,当被测介质压力作用于弹性不锈钢膜片时,惠斯登电桥则产生与压力成正比的电输出信号,将信号经过放大、调节等处理,再配以适当的结构,就成为各个应用领域的压力传感器和变送器。 ☆蓝宝石压力变送器原理 利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在非常恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。 ☆压电式压力变送器原理 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英、二氧化硅是一种天然晶体,利用材料的压电效应,将动态应力转换为电信号。压电传感器主要应用在加速度、压力和力等的测量中,主要测量动态应力。

差压变送器校验

变送器的校验 一、校验指标 二、校验说明 三、关于现场校准 一、校验指标 ?校验的目标是差压变送器的示值误差,指标有两个,一是最大误差,二是回差,具体讲就是看最大误差和回差是否超过允许值,若超过经调整符合要求判断为合格,不符合要求为不合格。 ?1、允许误差:±精度%×(20-4) 2、最大误差:5点绝对误差的最大值 3、回差:(x上- x下) 2、3项都不能超过1,否则判定为不合格。 二、校验说明 ●非智能变送器。先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA。 ●智能差压变送器。 ①重新确定量程:将4和20 mA点设置到预定压力值; 只用手操器重设量程:HART手操器快捷键4或5。只使用受操器重设量程是最容易、最普遍的方法。这种方法可独立改变模拟4和20mA点的数值,而不需要压力输入。 用压力输入源和手操器重设量程:HART手操器快捷键指令序列1、2、3、1、2。当不知道4和20毫安点的具体值时,利用手操器与压力源设定量程,输入上述快捷键指令序列,按照HART手操器联机菜单指令操作,可改变模拟4 和20毫安点的数值。 利用压力输入源与本机零点和量程按钮重设量程:当不知道4和20毫安点的具体值,并且无手操器时,可利用压力源与本机零点和量程按钮重设量程。 注1:利用变送器的零点和量程按钮重设量程时,应依照下述步骤进行操作: a)拧松变送器表盖顶上的固定认证标牌的螺钉,旋开标牌,露出零点和量程按钮。 b)利用精度为三至十倍于所需校验精度的压力源 ●向变送器高压侧加下限量程值相应的压力。 如果设定4毫安点,先按住零点按钮至少2秒钟,然后核实输出是否为4毫安。如 果安装了表头,则表头将显示ZERO PASS(零点通过)。 ●向变送器高压侧加上限相应的压力。 如要设定20毫安点,先按住量程按钮至少2秒钟,然后核实输出是否为20毫安。 如果安装了表头,则表头将显示SPAN PASS(量程通过)。 注2:如果变送器保护跳线开关位于“ON”位置,则不能够调整零点和量程。 如果软件设定为不允许进行本机零点和量程调整,那么将不能利用本机零点和量程按钮调整。利用HART手操器快捷键1、4、4、1、7指令序列可以使变送器上的零点和量程按钮起作用或不起作用。但仍可使用HART手操器改变变送器的组态。

压力差压变送器检修维护规程

压力差压变送器检修维 护规程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

压力(差压)变送器维护规程 1 概述 压力(差压)变送器根据被测介质的压力不同分为压力变送器,绝对压力变送器,微差压变送器,低、中、高差压变送器,高静压变送器等,它把压力(差压)信号变成标准电信号(4-20mA)远传。可进行压力、流量、液位的测量。表1 压力(差压)变送器按测量原理分类压力变送器类型精度输出信号原理及特点主要制造厂力平衡式 DDZ-Ⅱ 0-10mA 力平衡式,力位移四线制,电源220VAC 抗振及稳定性差,价廉体积大上海调节器厂川仪七厂西安仪表厂天津自动化仪表厂 DDZ-Ⅲ 4-20mA 矢量机构力平衡式,力位移两线制,电源24VDC 稳定性相对比Ⅱ型好体积小隔爆型、本安型上海调节器厂上仪一厂川仪七厂西安仪表厂全电子(智能)式 1151系列(CECY,CECC)(69年由罗斯蒙特开发推出) 4-20 mA HART数字信号电容传感器, 力电容两线制,电源12-45VDC 小型、抗振、稳定智能型价格高(因品牌而异)隔爆型、本安型罗斯蒙特 ABB(400/500系列陶瓷电容式) 上仪一厂上海光华仪表等等固态压阻硅系列 4-20mA 数字信号 (因品牌而异)硅应变电阻传感器, 力电阻,两线制,电源10-55VDC 小型,稳定性较好价格中等(与厂家品牌有关)隔爆型、本安型罗斯蒙特(2088,3051) FOXBORO 等等 EJA系列 4-20 mA 单晶硅谐振式传感器, 力频率,日本横河(90年代推出) BRAIN或HART数字信号两线制,电源稳定,连续四年不需校验智能型价格高横河川仪

压力变送器的原理安装和使用

压力变送器的原理安装和 使用 This model paper was revised by the Standardization Office on December 10, 2020

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参

压力变送器说明书样本

一、 1151压力变送器工作原理 被测介质的两种压力通入高、低两压力室, 作用在δ元件(即敏感元件)的两侧隔离膜片上, 经过隔膜片和δ 1151压力变送器原理图 元件内的填充液传到预张紧的测量腊片两侧, 测量膜片与两侧绝缘体上的电极各组成一个电容器, 在无压力通入或两压力均等时测量膜片处于中间位置, 两侧两电容器的电容量相等, 当两侧压力不一致时, 致使测量膜片产生位移, 其位移量和压力差成正比, 故两侧电容就不等, 经过检测, 放大转换成4-2OmA的二线制电流信号。压力交送器和绝对压力交送器的工作原理和差压变送器相同, 所不同的是低压室压力是大气压或真空元份结构图见右图 二、电气原理图 1151压力变松电气原理图 三、主要特点 电容式变送器有下列特点 1.品种齐全、精度高、稳定性好, 价格比同类进口仪表便宜 2.采用二线制工作方式 3.敏感元件采用固体化结构, 小型坚固, 抗振能力强 4.主要部件可与1151同类产品进行互换,

5.关键零部件、电子元件及接插件均采用国际上高质量产品。本系列产品可靠性好, 质量稳定, 故障率少。 6.正迁移可达500%, 负迁移可达600%(最小量程时) 7.阻尼可调 电容式变送器品种齐全, 用户可按不同需要任意选用, 自微差压至大差压, 从低压力至高压力、绝对压力、高静压差压。DP/GP型变送器带上各种远传装置后, 就成为远传式差压、压力变送器。采用ANSI标准, 管道尺寸3", 法兰等级150磅(2.5MPa), 插入筒式远传装置后, 插入筒长度一般为50、 100,150mm用户可根据需要选择其长度。法兰式掖位交送器一般是整体体工, 只要用户需要也可提供远传结构, 同样对远传差压变送器用户也右选用一侧远传装置, 毛细管单根长度为1.5、 3、 4.5、 6、 7.5m 供用户选择。接液材料除316L不锈钢外, 还有哈氏C合金, 蒙耐尔合金、钽, 可使用于各种腐蚀介质场合。 1151DP/GP系列变送器设计精巧, 安装使用和调校都很方便简单, 电气外壳采用二腔结构, 即接线端子和放大器线路各占一腔, 密闭性较好, 具有防爆和全天候结构, 放大器线路有反向极性保护, 防止因电源极性接错而损坏变送器。曲于该变送器工作的容积变化小于0·16cm3。因此不需为补偿容积化而增加冷涣器或液位筒。

电容式压力变送器工作原理

电容式压力变送器工作原理 1、主要特点 1151系列智能电容式变送器除了一般电容式变送器的固有特点外,还具有如下特点: ·智能电子部件仅由一块组成 ·量程比15:1或10:1 ·0-0.6-0-42000KPa ·就地按鍵调整量程和零点·可更新现存的TY-1151(包括1151)各种模拟式变送器为智能仪表 ·符合HART协议,可用HART通讯器268、275与本智能表进行双向通讯而不中断输出信号 ·在采用HART协议的分散控制系统中同主机进行双向通讯 ·具有自诊断和远传诊断功能 ·带有EEPROM,不怕断电丢失数据 2、工作原理 被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔离 片和元件内的填充液传送到测量膜片两侧。测量膜片与两侧绝缘片上的电极各组成一个电容器。 当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容量就不等,通

过振荡和解调环节,转换成与压力成正比的信号。压力变送器和绝对压力变送器的工作原理和差压变送器 相同,所不同的是低压室压力是大气压或真空。 A/D转换器将解调器的电流转换成数字信号,其值被微处理器用来判定输入压力值。微处理器控制变送 器的工作。另外,它进行传感器线性化。重置测量范围。工程单位换算、阻尼、开方,,传感器微调等运 算,以及诊断和数字通信。 本微处理器中有16字节程序的RAM,并有三个16位计数器,其中之一执行A /D转换。 D/A转换器把微处理器来的并经校正过的数字信号微调数据,这些数据可用变送器软件修改。数据贮存 在EEPROM内,即使断电也保存完整。 数字通信线路为变送器提供一个与外部设备(如275型智能通信器或采用HART协议的控制系统)的连接 接口。此线路检测叠加在4-20mA信号的数字信号,并通过回路传送所需信息。 通信的类型为移频鍵控FSK 技术并依据BeII202标准。

压力变送器的原理安装和使用

压力变送器的原理安装 和使用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参数的监测和修改,非常的方便。 20世纪90年代中末期,引进的压力变送器的几乎是数字式全智能变送器,在此基础上,国内有不少厂家与国外的公司合作,生产智能仪表。 智能型压力变送器 智能型压力或差压变送器是在普通压力或差压传感器的基础上增加微处理

(情绪管理)隔膜压力表最全版

(情绪管理)隔膜压力表

YTP系列隔膜压力表 简介 YTP系列隔膜压力表是由壹个不同类型的通用压力表和壹个具有特定要求的由连接体和隔膜隔离体组成的隔离器配接而成的。通过这种配接,使壹般通用型的波登管压力表,增加了测量腐蚀性强、温度高、粘度大或含有固态浮游物,易凝固介质压力的性能。 隔膜压力表在石油化工作,制碱,化纤,染化制药,钢铁,食品等行业生产过程中,测量流体介质压力时被广泛使用。 我厂现生产的YTP系列隔膜压力表是在引进德国制造线及生产技术基础上,不断发展制造的更新换代产品,其制做工艺更加精良、技术性能更加可靠、使用功能更加广泛

□结构原理 隔膜压力表的工作原理如图所示。 隔离膜片在被测介质压力P的作用下产生变形,压缩内部充填的工作液形成壹个相当于P的压力P'。经工作液的传导,使压力仪表中的弹性元件自由端产生相应的变形,且按和之相配接的类别压力仪表工作原理显示出被测的压力值。 当隔膜压力表在安装时受压部份和通用型压力表处于不同位置时,(尤其对于采用软管连接的隔膜表)应考虑到由于液位差对压力的影响。 (密封工作液比重大体等于1的,落差1m,压力差约为 0.01Mpa/cm2。) □隔膜压力表构成示意图 隔膜式压力表的温度影响 隔膜压力表其温度的影响量和密封液膨胀系数隔膜刚度及受压部位的温度有关。 隔膜压力表在使用环境温度偏离20±5℃时,受温度影响的示值

最大变化率刚性不大于01.%℃,柔性(远接式)不大于0.1±0.25.%℃ (L-传压导管长度m) 隔膜压力表在制作时应注意根据不同的使用环境,选择相适应的 密封工作液。 密封液的选择参考下表 工作液体名称隔膜装置温度范围比重g/cm2 体膨系数1/℃用途 甘油水溶液-5-100℃ 1.27 0.61×10-3 食品用 硅油(低粘度)-40-130℃0.94 1.08×10-3 壹般用 硅油(高粘度)-30-240℃ 1.07 0.95×10-3 高温用 氟化油-30-160℃ 1.93 0.75×10-3 氢、氧、盐类、酸类 植物油-5-100℃0.93 1.03×10-3 食品用 或选适用的其它特殊要求的密封液 隔膜压力表的耐腐蚀性能 本X公司制造的隔膜压力表其耐腐蚀性能包括充分满足客户外部环境,及内部环境(介质腐蚀性)俩个方面,根据外部环境的要求,能够选择本X公司生产的不同类型的压力表及和之相适应的隔离器进行配接。对于不同腐蚀性的测量介质可通过选择和之相适应的防腐材料隔膜及防腐村产的隔离体部件来保证。 隔膜压力表隔膜材料: SUS316,SUS316L蒙乃尔合金(Cu30Ni70)哈氏合金(Hc276)钽(Ta)氟塑料(F4) 隔膜压力表隔离体材料: 1Crl8Ni9TiSUS316SUS316L氟塑料(F4),在不锈钢外部喷涂或内衬氟塑料 隔膜压力表密封垫圈材料: 丁睛橡胶,氟橡胶,硅橡胶及氟塑料 YTP-63S

压力变送器校准

压力变送器校准 技术要求: 外观检查 1.包括铭牌、标志、外壳等; 2.外观应整洁,零件完整无缺,铭牌、标志齐全清楚,外壳旋紧盖好; 3.检查变送器接头螺纹有无滑扣、错扣,紧固螺母有无滑丝现象。 内部检查 1.包括电路板、接线端子、表内接线、线号、引出线等; 2.内部应清洁,电路板及端子固定螺丝齐全牢固,表内接线正确,编号齐全清楚,引出线无破损、划痕。 变送器密封性检查 1.将压力变送器加压至最大测量压力,保持5min,测量室不应有泄漏; 2.将差压变送器的正、负压室同时加1.25倍的工作静压力,保持5min,不应有泄漏; 3.将差压变送器的正压室加压至最大差压值的压力,保持5min,不应有泄漏; 4.变送器加压后变送器及连接部分不得有渗漏和损坏现象。 绝缘性能检查 1.用兆欧表检查输出端子对外壳电阻、测量回路对地电阻。 2.输出端子对外壳电阻≥10MΩ,测量回路对地绝缘电阻≥20MΩ。 3.压力变送器的相对百分误差±1.0 %。 校准变送器的设备:标准压力发生器、智能校准表或万用表。 校准方法: 1.拆除现场仪表,接入标准仪器,检查所接管路是否有泄漏。被检仪表不带数值显示功能的在电信号输出端接数字校准仪或万用表; 2.按五点检验方式依次输入标准值,待显示数值稳定后记录测量值。(五点为仪表量程的0%、25%、50%、75%、100%); 3.校准从下限值开始,逐渐增加输入信号,使显示数字依次缓慢地停在被校表校准点值上(避免产生任何过冲和回程现象),直至量程上限值,然后再逐渐减小输入信号进行下行程的校准,直至量程下限值。在此过程中分别读取并记录标准表示值。其中上限值只检上行程,下限值只检下行程。 4.误差计算: △=(A-A1)/A×100%

智能压力变送器设计

摘要 传感器在工业生产中起着重要的作用,随着工业的发展,人们对于传感器的精度和用户体验等方面有着越来越高的要求,相应的仪器仪表在工业生产中也有着越来越重要的地位。压力,作为工业生产过程中重要参数之一,实现对其精确的检测和控制是保证生产过程运行和设备安全必不可少的条件。 这个课程设计是以AT89C51单片机为核心的智能压力变送器。通过压力传感器对工业现场的压力信号进行采集,通过全桥测量电路,三运算放大电路,进过AD0809转换器转换成数字信号送往单片机AT89C51进行处理,再经过DA0832装换成模拟信号,输出4~20mA的标准电压信号,由LED液晶显示屏显示所测得压力值。人机交互采用独立式键盘,键盘设置“+”,“-”和“、”三个按键分别用来设置上限值、下限值和锁存上限值和下限值,并设置报警电路,当输出超过上限值或下限值后自动报警提醒工作人员。 关键词压力变送器智能化

目录

1 绪论 压力变送器背景和应用简介 压力传感器作为工业活动中最为常见的传感器之一,其广泛运用于交通运输、石油化工、军事工业等各种工业自动控制的领域中。压力变送器的工作原理是将压力信号转变成某种可测量的电信号,如日常生活中常见的应变式压力传感器,其工作原理是通过施加压力使弹性元件变形从而产生电阻的变化,通过测量电阻的变化量,利用一定的标度变换,从而得出压力的大小。 在日常生活和工业生产中,人们可利用监测压力的变化和实现对压力的控制进行多种生产活动。例如,在地理环境中海拔高度可以通过测量大气压力的变化来获得;在化工厂中,利用压力参数来判断化学反应的过程;在气象预测中,测量大气压力可以判断阴雨天气状况。因此,压力变送器的设计拥有广阔的市场前景。自上世纪80年代,基于微处理器的智能压力传感器能比较精确和快速的测量,特别是对动态压力的测量,实现多点信号转换、长距变送、与计算机实时信息交换处理等,因而在农业、工业、国防、科技等领域获得了迅速发展和广泛运用。世界上多个国家一直把传感器技术的发展视为现代科技提升的关键。因为只有好的传感器技术,才能实现对工业过程更完美和智能的控制,从而得以大幅度提升科技水平乃至综合国力。美国、日本、欧洲等国的传感器技术一直在引领着世界潮流,我国对智能传感器的研究最近几十年来虽然取得了很大成就,但由于起步较晚,缺乏对该方面的高精尖人才,因此与世界顶尖水平还有不小的差距,因此,要想实现我国科学技术的长足发展,传感器技术必须要有质的突破。 2 系统总体设计

恒温隔膜式压力变送器的原理及设计

恒温隔膜式压力变送器的原理及设计 今天为大家介绍一项国家发明授权专利——恒温隔膜式压力变送器。该专利由中石化石油工程技术服务有限公司申请,并于2017年9月12日获得授权公告。 内容说明本实用新型涉及到测量领域,具体涉及到恒温隔膜式压力变送器。 发明背景在管道介质输送中所使用的管道上,通常会需要使用压力变送器来检测所输送介质的压力、流量等参数变化的信号,实现远程自动控制。 压力变送器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。压力变送器是用于测量液体、气体或蒸汽的液位、密度和压力,然后将压力信号转变成4~20mA DC信号输出。 目前压力变送器通常不考虑温度的要求,操作温度取决于测量介质的温度。且安装时工艺复杂。 发明内容本实用新型所要解决的技术问题在于可以方便安装,稳定性好的恒温隔膜式压力变送器。 为了实现上述目的,本实用新型提供的技术方案是:恒温隔膜式压力变送器,包括管道,管道上设置有与其连通的截止阀,截止阀与隔膜式压力变送器本体通过引流管连通,引流管外缘缠绕有与电源连接的电伴热带,隔膜式压力变送器本体下表面与伸缩杆上端连接,伸缩杆下端设置有包覆管道的包带,包带两端分别通过连接块连接有子卡头和母卡头,母卡头内设置有槽孔,子卡头向左侧凸起的部分设置在母卡头的槽孔内,子卡头凸起部分的下端设置有孔,与孔相对的槽孔孔壁上设置有与孔对应的螺钉。 具体的,包带与管道接触的面上设置有防滑层。伸缩杆上设置有锁紧螺钉。 本实用新型设计,结构简单,操作方便,能够实现快速安装,增加了电伴热带,压力检测的膜片始终在恒定的温度工作,避免了某些操作介质由于温度变化时所产生的压力检测失真的状况。

3051压力变送器工作原理及结构

罗斯蒙特3051压力变送器工作原理及结构 检修岗位 1.懂工作原理 3051 型变送器主要部件为传感器模块和电子元件外壳。传感器模块包括充油传感器系统(隔离膜、充油系统和传感器)以及传感器电子元件。传感器电子元件安装在传感器模块内并包括一温度传感器(电阻式测试检测器)、储存模块和电容/数字信号转换器(C/D 转换器)。来自传感器模块的电子信号被传输到电子元件外壳中的输出电子元件。电子元件外壳包括输出电子线路板(微处理器、储存模块、数字/模拟信号转换器或 D/A 转换器)、本机零点及量程按钮和端子块。 因为 3051C 型变送器设计压力适用于隔离膜,当油偏离中心膜时,改变电容信号。然后该电容信号在 C/D 转换器中被转换成数字信号。随后微处理器从电阻式温度检测器和 C/D 转换器中获取信号并计算出正确的变送器输出。随后,该信号被送到 D/A 转换器,D/A 转换器将信号转换回模拟信号并在4-20 mA 输出上叠加 HART 信号。 2.懂设备结构 2.1 3051 型变送器结构图

表压/绝压变送器 2.2 3051 型变送器参数设置HART 通讯装置快捷键序列

功能快捷键序列 报警和饱和电平 1, 4, 2, 7 模拟输出报警类型 1, 4, 3, 2, 4 触发模块控制 1, 4, 3, 3, 3 触发操作 1, 4, 3, 3, 3 自定义表头组态 1, 3, 7, 2 自定义表头值 1, 4, 3, 4, 3 阻尼 1, 3, 6 日期 1, 3, 4, 1 描述符 1, 3, 4, 2 数/模转换微调(4-20 mA 输出) 1, 2, 3, 2, 1 禁止本机量程/零点调整 1, 4, 4, 1, 7 现场装置信息 1, 4, 4, 1 全量程微调 1, 2, 3, 3 键盘输入—重置量程 1, 2, 3, 1, 1 本机零点及量程控制 1, 4, 4, 1, 7 回路测试 1, 2, 2 传感器下限微调 1, 2, 3, 3, 2 信息 1, 3, 4, 3 表头选项 1, 4, 3, 4 请求前导符数 1, 4, 3, 3, 2 地址查询 1, 4, 3, 3, 1 查询多站式变送器左箭头, 4, 1, 1 量程值 1, 3, 3 重置量程 1, 2, 3, 1 可变刻度数/模微调(4-20 mA 输出) 1, 2, 3, 2, 2 自检(变送器) 1, 2, 1, 1 传感器信息 1, 4, 4, 2 传感器温度 1, 1, 4 传感器微调点 1, 2, 3, 3, 5 状态 1, 2, 1, 1 标牌 1, 3, 1 换算函数(设置输出类型) 1, 3, 5 变送器安全(写保护) 1, 3, 4, 4 模拟输出微调 1, 2, 3, 2 单位(过程变量) 1, 3, 2 传感器上限微调 1, 2, 3, 3, 3 零点微调 1, 2, 3, 3, 1

相关文档
最新文档