射频集成电路设计基础10

《射频集成电路设计基础》讲义

<<>><>?

无线通信系统

引言

无线通信的发展 问题和挑战 频率重用和蜂窝结构 无线信道的一般特性

多径传输与信道模型 调制方式

与射频工程师的关系 参考文献

引言

? 什么是无线通信

– 以电磁波为载体、无需物理媒质的通信方式

? 个人无线通信迅猛发展的原因

– 技术因素:通信与网络理论、DSP、VLSI (微电子)和射频技术

– 政府方面:无线通信频段的划分和管理

– 市场因素:人们的“迁移率”越来越高,对移动通信的需求也越来越大? 对射频技术的要求

– 高频、宽带、高灵敏度、大动态范围、低功耗的接收机

– 高效率、高线性度的发射机

– 小体积、低成本

<<>><>?

无线通信的发展

? 移动电话/通信首次出现在1946年,用于救护车、警车、出租车等的调度,大功率、大体积、大范围、低话质

? 随着固态电路技术的成熟,移动电话趋向于小型化,模拟蜂窝系统形成– 寻呼机(Pager)

– 1983年AMPS1在美国获FCC2批准

– 类似的系统也开始在欧洲和日本提供服务

– 80年代中期无绳电话(Cordless Phone)出现

? Pager和AMPS的成功刺激了对个人无线通信的需求,80年代中期随着集成电路技术和通信理论的迅速发展,数字蜂窝(DC)系统逐步成为主流,主要代表有GSM、CDMA(IS-95)、PHS、CT-2等

1.American Mobile Phone Systems or Advanced Mobile Phone Service

2.Federal Communication Commission

<<>><>?

? 个人通信系统1(PCS)将频段拓展至1800 MHz和1900 MHz,并与Digital Cellular统称为第二代个人无线通信系统

– 蜂窝结构:更全面的覆盖范围

– 手机:小巧、便宜、低功耗、个人化

– 服务:除语音外更多样的服务种类和较低廉的收费

? “二代半”(2G+)系统

– GPRS (General Packet Radio Service,通用包无线业务),多时隙工作

– EDGE (Enhanced Data for GSM Evolution,GSM演进的增强型数据率),使用较宽的频带和高效的调制方式

? 3G

? Bluetooth、无线局域网(WLAN)、无线城域网(WMAN)

1.这里的个人通信系统是一个狭义的概念,与工作在800-900 MHz的数字蜂窝电话系统相区别

<<>><>?

问题和挑战

? 有限的频带宽度

– 有限频谱资源的共享、频谱利用率的提高

? 噪声和干扰的普遍存在

– 热噪声(Thermal Noise)以及各种环境噪声

– 同信道干扰(Co-channel Interference)

– 相邻信道干扰(Adjacent Channel Interference)

– 来自其它系统的干扰和阻塞(Blocking / Jamming)

? 无线信道的特性(不理想性)

– 路径损耗(Path Loss)

– 遮蔽效应(Shadowing Effect)

– 多径衰落(Multi-path Fading)

– 时变性(Time-varying)

<<>><>?

? 有限的天线尺寸

– 难以达到最佳的收发效果

? 有限的电池电量

– 低功耗设计至关重要

? 移动带来的管理问题

– 小区(Cell)之间的切换(Hand-off)

– 地区之间的漫游(Roaming)

? 这些问题的解决必须以保证通信质量为基础

<<>><>?

频率重用和蜂窝结构

? 蜂窝(Cellular)的概念始于五、六十年代

f1

f1

f1f1

f1

f1

f1

7小区重用方案

简单的蜂窝系统

<<>><>?

? 混合小区重用方案

<<>><>?

<<>><>?

无线信道的一般特性

? 电磁波的传播

– 反射(Reflection):障碍物远大于信号波长

– 绕射(Diffraction):障碍物具有尖锐边角的物体

– 散射(Scattering):障碍物为许多细小(与波长相比)的物体,如雨点

? 路径损耗(Path Loss)

– 在自由空间,天线所接收到的信号功率为

(1)

其中P t , G t , G r 分别为发射功率、发射天线增益和接收天线增益,c , d , λ和f c

分别为光速、传输距离、载波波长和频率;用对数形式表示

(2)

P r P t G t G r 4πd λ?()[]2----------------------------c 2P t G t G r 16π2----------------------1d 2----1

f c

2---??==P r dBm ,10P t log C 20f c log –20d

log –+=

<<>><>?

C 为常数;路径损耗可定义为

(3)

– 这里的损耗和衰减指数(path loss exponent)为2,表示距离每增加一倍信号衰减6 dB ;在拥挤的城市或建筑物内可以达到4以上

? 遮蔽效应(Shadowing Effect)

– 信号随距离的衰减并不是平滑的,当信号穿越各种障碍物(如建筑物、山丘、树林等),或被反射时,会使损失能量,许多次的损失之和如果用对数表示服从高斯(Gaussian)分布,其平均值即为对应的路径损耗

Table 1: 电磁波在不同环境中的衰减指数(path loss exponent)

Free space 2Urban area cellular 2.7 to 3.5Shadowed urban area 3 to 5In building line-of-sight 1.6 to 1.8Obstructed in building

4 to 6

PL dB P t dBm ,P r dBm ,–C –20f c log 20d

log ++==

<<>><>?

? 多径衰落(Multipath Fading)

发射天线发送的信号在到达接收天线之前会被不同的障碍物反射多次,形成多条路径,每条路径的信号都经过不同程度的衰减和延迟(相移), 它们在接收天线处迭加,相位接近时信号增强,相位相反时信号减弱。在几个波长(λ=0.3m @ 1GHz)的范围内,信号幅度(包络)的起伏可以达到几十

dB

d 1

t t

TX

RX

– 如果信号路径非常之多,那么根据中心极限定理(The Central Limit

Theorem),接收到的信号将服从一定的分布规律:信号幅度呈Rayleigh

分布

(在6%

的时间内幅度衰减大于10dB),而相位则在0到2π上均匀分布

<<>><>?

? 三层模型

– 路径损耗模型用于系

统规划

? 小区覆盖范围

? 频率复用系数的确定

– 遮蔽效应模型

? 功率控制

? 为系统规划提供更细

致的分析

– 多径衰落模型:

? 物理层设计:编码

器、解调器、交织编

码器(Interleaver)等

<<>><>?

<<>><>

?

多径传输与信道模型

? 平坦衰落信道(Flat Fading Channel)

– 信号的多径传输决定了信道的频率特性

假设发射频率为ω的正弦波,信号经过两路不同延时(相同衰减)在接收端汇合成 ,即

(4)

可见由于存在不同延时的多条传输路径,信号不仅产生了相移,而且发生了

衰减,衰减幅度取决于信号频率及路径间的时延差

x t ()A ωt τ1–()cos ωt τ2–()cos +[]=x t ()2A ωτ1τ2–()

2

------------------------cos ωt ωτ1τ2+()2-------------------------–cos ??=ωτ1τ

–(2

--------------

-----cos τ1τ2

–ωτ1τ–(2

-------------------τ1τ2

– Time Delay Spread:不同路径间的总时延差为?τ,若基带信号周期(码元宽度) T

S

>>?τ, 那么对于单个信道来说,可以认为各频率点的衰减都相同,或者说这是一个是平坦衰落信道

t time delay spread Symbol Period T

S

12

f

<<>><>?

<<>><>?

? 频率选择性衰落信道

(Frequency Selective Fading Channel)

– ?τ >> T S 时,信道的频率相应相对于信号带宽起伏很大,信号频谱会受到很大破坏

– 在时域中,由于各条路径的延时差大于码元宽度,在接收时会造成码元之间的相互干扰而形成严重的码间干扰(ISI)

? 时变信道

– 接收机或环境中物体的位置移动会造成信号延时和衰减随时间变化,或者说信道是时变的

? 分集接收(Diversity)

衰落是影响通信质量的主要因素。快衰落深度可达30至40dB,加大发射功率来克服衰落是不现实的,而且会造成对其它电台的干扰。分集接收是抗衰落的一种有效措施。

分集接收是指接收端对它收到的多个衰落特性互相独立、携带同一信息的信号进行特定的处理,以降低信号电平起伏的技术。

分集方式

– 空间分集(Space Diversity)

? 空间分集的依据在于快衰落的空间独立性

? 在两个不同的位置接收同一信号,只要两个位置的距离大到一定程度,则两处所收信号的衰落是不相关的。

? 接收机需要两副相隔距离为d的天线,在移动通信中:市区d=0.5λ; 郊区d =0.8λ; 基站:d为几个波长。900MHz的工作频段,d=0.8λ=0.27 m。

<<>><>?

– 时间分集(Time Diversity)

? 时间分集的依据在于快衰落的时间独立性

? 同一信号在不同的时间区间多次重发,只要各次发送的时间间隔足够大,那么各次发送信号所出现的衰落将是彼此独立的,接收机将重复收到的同一信号进行合并,就能减小衰落的影响

? 主要用于衰落信道中的数字信号的传输

? Rake Receiver in CDMA

? 有利于克服移动信道中由多普勒效应引起的信号衰落

– 频率分集(Frequency Diversity)

? 频率间隔大于相关带宽的两个信号所受到的衰落是不相关的,因此可用两个以上不同的频率传输同一信息,以实现频率分集

? 相关带宽Bc=1/(2π?), ?为延时扩展,例如市区中?=3μs,Bc=53kHz。此时频率分集需要使用两个发射机同时发送同一信号,并用两个接收机来接收信号

? 设备复杂,频谱利用率低

– 极化分集(Polarization Diversity)

? 两个不同极化的电磁波具有独立的衰落特性

<<>><>?

? 发送端和接收端可以用两个位置很近但为不同极化的天线分别发送和接收信号

? 射频功率分给两个不同极化的天线,发射功率损失3dB

– 场分量分集

? 电磁波的E场和H场载有相同信息,但反射机理不同

? 三个场分量互不相关

? 适于较低的工作频率(<100MHz),频率较高时,可以采用空间分集

? 场分量分集不像极化分集那样要损失3dB功率

– 角度分集

? 使电波通过几个不同路径,并以不同角度到达接收端。接收端利用多个方向性尖锐的接收天线分离出不同方向来的信号分量。由于这些分量具有互相独立的衰落特性,因而实现角度分集并获得抗衰落的效果

? 在较高频率时容易实现

<<>><>?

<<>><>?

合并方式

接收端收到M(M 大于等于2)个分集信号后,进行合并,以减小衰落的影响。假设M 个输入信号电压为r 1(t), r 2(t),...r M (t),则合并器输出电压r (t)为

选择不同的加权系数,可构成以下3种不同的合并方式? 选择式合并:选择信噪比最高的支路作为合并器的输出? 最大比值合并

? 等增益合并

r t ()a k r k t ()

k 1

=M

∑=

r t ()a k r k t ()r k 2

t ()N k

------------k 1

=M

=k 1

=M

∑=

r t ()r k t ()

k 1

=M

∑=

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

射频电路调试测试流程

射频电路调试测试流程(准备阶段) 射频电路的调试作为通信整机研发工作中的重要一环,工作量非常大,几乎所有电路都需要调试,为了提高效率,需要对调试环境、调试方法等进行规范。 环境准备如下 1、防静电 佩戴“静电手环”,并良好接地,若着化纤、羊毛、羽绒服装,外层需加穿防静电服,或防辐射服;小功率、低电压、高频率、小封装的器件均ESD敏感,最容易被ESD击穿的射频器件:RF开关,其次是LNA;所有仪器,开机使用前必须将机壳良好接地;2、电源 稳压电源接入负载前,先校准输出电压,电压等于负载的额定电压; 3、仪器保护 为安全起见:只要射频功率大于20dBm,射频信号源(30dBm)、频谱分析仪(27dBm)、信号源分析仪(23dBm)输入端必须级联同轴衰减器,一般情况下,5W 5dB衰减器为常态配置,若测试功放模块需根据实际输出功率大小配置合适的衰减器; 4、仪器设置 射频信号源:Keysight输出功率<13dBm,R&S输出功率<18dBm,若超出,输出功率可能小于显示值,需实测并进行补偿; 频谱分析仪:屏幕显示的有效动态范围,FSV约70dB,FSW约80dB;仪器的线性输入功率<-3dBm,超出会恶化待测IM3(ACLR)、谐波,应选择合适的内部/外部衰减值; 矢量网络分析仪:仪器的IF带宽决定噪声,测无源器件的带外抑制,应适当降低IF带宽;调测任何电路,必须保证输出功率

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

射频电路调试经验及问题分析

射频电路调试经验及问题分析 1前言 文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1.微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1.趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。我们通常用趋肤深度来描述趋肤效应。趋肤深度是频率与导线本身共同的作用,在这里我们不会作深入的讨论。 2.1.2.直线电感 我们知道,在有电流流过的导线周围会产生磁场,如果导线中的电流是交变电流,那么磁场强度也会随着电流的变化而变化,因此,在导线两端会产生一个阻止电流变化的电压,这种现象称之为自感。也就是说,微波频率下的导线会呈现出电感的特性,这种电感称为直线电感。也许你会直线电感很微小,可以忽略,但是我们将会在后面的内容中看到,随着频率的增高,直线电感就越来越重要。 电感的概念是非常重要的,因为微波频率下,任何导线(或者导体)都会呈现出一定的电感特性,就连电阻,电容的引脚也不例外。 2.2.微波频率下的电阻 从根本上说,电阻是描述某种材料阻碍电流流动的特性,电阻与电流,电压的关系在欧姆定律中已经给出。但是,在微波频率下,我们就不能用欧姆定律去简单描述电阻,这个时候,电阻的特性应经发生了很大的变化。 2.2.1.电阻的等效电路 电阻的等效电路。其中R就是电阻在直流情况下电阻自身的阻值,L是电阻的引脚,C 因电阻结构的不同而不同。我们很容易就可以想到,在不同的频率下,同一个电阻会呈现出不同的阻值。想想平时在我们进行Wi-Fi产品的设计,几乎不用到直插的元件(大容量电解

最详细解读射频芯片

最详细解读射频芯片 传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。 射频部分:一般是信息发送和接收的部分; 基带部分:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 1. 射频芯片和基带芯片的关系 先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 2.工作原理与电路分析 射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、 4 号板 1 块 4、双踪示波器 1 台

5、万用表 1 块 三、实验原理 检波过程就是一个解调过程,它与调制过程正好相反。检波器的作用就是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号就是高频等幅信号,则输出就就是直流电压。这就是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就就是采用这种检波原理。 若输入信号就是调幅波,则输出就就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来瞧,检波就就是将调幅信号频谱由高频搬移到低频。检波过程也就是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波与同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采 用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0、5伏)时,利用二极管单向导电特性对振幅调

2.4GHZ射频前端设计

2.4GHz ISM射频前端模块的设计及应用 2.4GHz工业科学医疗设备(ISM)是全世界公开通用使用的无线频段,蓝牙( Bluetooth)、 Wi-Fi、ZigBee等短距离无线数据通信均工作在2.4GHz ISM频段。 针对2.4GHz ISM频段无线应用,锐迪科微电子公司推出了RDA T212射频前端模块。T212芯片集成了功率放大器( PA)、低噪声放大器( LNA)、天线开关(Antenna Switch)和功率检测器(Power Detector),并特别增加PA带通及LNA带通的省电功能,内部还针对天线端做了 ESD保护设计。T212芯片采用标准的 QFN 3×3mm2超小型封装,输入和输出已集成隔直电容和匹配电路,外围元件仅需少量滤波电容,极大地简化了PCB设计。 高集成度、超小尺寸并提供省电功能的T212射频前端模块,在手机蓝牙以及802.11.b/g扩展应用中大有可为。同时,T212芯片还具有优异的线性度,支持Bluetooth 2.0的高速率应用。 T212模块的性能 T212射频前端模块内集成的功率放大器采用先进的砷化镓异质结双极晶体管( GaAs HBT)工艺制造,低噪声放大器和天线开关采用增强型高电子迁移率场效应晶体管( E-PHEMT)工艺制造。尽管没有采用差分PA的形式,但是T212依然为客户提供了差分输入管脚,从而使客户不需要再关心差分转单端的设计。 T212集成的功率放大器是一款高线性高效率PA,在2.4GHz~2.5GHz频段内有20dB增益,线性输出功率为18dBm时的三阶交调IM3小于-30dBc。PA的静态工作电流可低至10mA,饱和输出功率可达23dBm,功率附加效率高达45%,这么高的效率有助于延长供电时间。

WiFi产品射频电路调试经验

Wi-Fi产品射频电路调试经验 https://www.360docs.net/doc/a911472025.html,/article/11-04/422921302067041.html?sort=1111_1119_1438_0 2011-04-06 13:17:21 来源:电子发烧友 关键字:Wi-Fi 射频电路调试经验 这份文档是生花通信的一线射频工程师总结了的Wi-Fi产品开发过程中的一些射频调试经验,记录并描述在实际项目开发中遇到并解决问题的过程。 1 前言 这份文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2 微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1. 微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1. 趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。 在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。

通信电路实验报告

第一次实验报告 实验一高频小信号放大器 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 (1)单调谐高频小信号放大器仿真

图1.1 单调谐高频小信号放大器(2)双调谐高频小信号放大器

(a) (b) 图1.2 双调谐高频小信号放大器

三、实验结果 (1)单调谐高频小信号放大器仿真 1、仿真电路图 2、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp ==2.94Mrad/s fp 467kHz 由于三极管的电容会对谐振回路造成影响,因此我适当增大了谐振回路 中的电容值(减小电感),ωp的误差减小,仿真中实际fp464kHz 3、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

A = = 11.08 db v0 4、利用软件中的波特图仪观察通频带,并计算矩形系数。 f0.7 : 446kHz~481kHz f0.1 : 327kHz~657kHz 矩形系数约为:9.4 5、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输 出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

通频带:446kHz~481kHz 带宽:35kHZ 6、 在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 二次谐波: 加入四次谐波 f 0(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0(mv) 0.012 9 0.0155 0.0404 0.0858 0.2150 1.274 0.0526 0.0301 0.0216 0.0173 0.0144 0.0126 A V (db) -28.8 9 -27.38 -19.06 -12.60 -4.894 11.43 -16.46 -21.36 -24.22 -26.22 -27.73 -28.93

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

高频设计性实验及考查任务书

通信电路实验设计性实验及考查任务书 题目一、集成模拟乘法器在通信中的应用设计 1.设计目的:掌握模拟乘法器的功能及应用;综合运用射频通信电路的理论知识,加 强电路设计、仿真和调试能力。 2.设计任务:用集成模拟乘法器MC1496设计其应用电路。 3.设计要求: (1) 进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)单音普通调幅波,调制度可调;双边带调幅波。 b)混频功能 c)二倍频。 d)自行设计其他功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、 频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,测出试验数据和指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

通信电路实验设计性实验及考查任务书 题目二 .调幅系统实验 1. 设计目的:掌握高频系统设计的概念,掌握调幅发射接收和整机组成原理,加强电路 设计和仿真能力,掌握系统联调的方法,培养解决实际设计问题的能力 1. 任务:设计一调幅发射接收系统 2. 设计要求 (1)进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)自行设计产生载波,发射载波频率任意 b)设计调幅发射和接收模块,并联合仿真。 c)调制信号可以自行产生,也可以用音频信号,, d)发射功率最好在50mW以内。 e)自行设计仿真其它功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,实现发射与接收联调,测出试验数据和 指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方 案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

集成电路设计基础复习

1、解释基本概念:集成电路,集成度,特征尺寸 参考答案: A、集成电路(IC:integrated circuit)是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的集成块。 B、集成度是指在每个芯片中包含的元器件的数目。 C、特征尺寸是代表工艺光刻条件所能达到的最小栅长(L)尺寸。 2、写出下列英文缩写的全称:IC,MOS,VLSI,SOC,DRC,ERC,LVS,LPE 参考答案: IC:integrated circuit;MOS:metal oxide semiconductor;VLSI:very large scale integration;SOC:system on chip;DRC:design rule check;ERC:electrical rule check;LVS:layout versus schematic;LPE:layout parameter extraction 3、试述集成电路的几种主要分类方法 参考答案: 集成电路的分类方法大致有五种:器件结构类型、集成规模、使用的基片材料、电路功能以及应用领域。根据器件的结构类型,通常将其分为双极集成电路、MOS集成电路和Bi-MOS 集成电路。按集成规模可分为:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路、特大规模集成电路和巨大规模集成电路。按基片结构形式,可分为单片集成电路和混合集成电路两大类。按电路的功能将其分为数字集成电路、模拟集成电路和数模混合集成电路。按应用领域划分,集成电路又可分为标准通用集成电路和专用集成电路。 4、试述“自顶向下”集成电路设计步骤。 参考答案: “自顶向下”的设计步骤中,设计者首先需要进行行为设计以确定芯片的功能;其次进行结构设计;接着是把各子单元转换成逻辑图或电路图;最后将电路图转换成版图,并经各种验证后以标准版图数据格式输出。 5、比较标准单元法和门阵列法的差异。 参考答案:

射频电路设计困境及对策

射频电路设计地困境及对策 hc360慧聪网通信行业频道 2004-04-16 11:23:41 射频电路地设计技术一度专属于少数专家掌握并拥有其自己地专用芯片组,如今已能和数字电路模块及模拟电路模块集成在同一块 IC 里了.再则,射频电路设计中固有地临界尺寸要求,更增加了工程压力. 要点●射频电路设计师必须经常采用间接测量电路性能地方式,来推断电路故障地原因. ●射频电路设计问题正在影响数字电路设计和模拟电路设计. ●将射频电路集成在同一块印制电路板或 IC 上,这会促使人们使用一种新地设计方法. ● EDA 厂商正在开始提供集成时域仿真和频域仿真地分析工具. 射频电路设计就是对发射电磁信号地电路进行设计.射频意为无线电频率,因为射频电路在其初期,只能发射调幅和调频两个波段地无线电信号.今天,把高频电路设计称为“射频电路设计”,只是沿用了历史名称.图1表明,自从 20 世纪 60 年代使用 UHF 电视技术以来,广播设备使用高于 300000 MHz地频率.从那时以来,通信设备地内容、频率和带宽都增加了.安捷伦科技平台地经理Joe Civello说,对模拟/混合信号 IC 设计师地挑战正以前所未有地速度在加剧.在加大带宽和提高最终产品功能地市场需求推动下,设计正在进入更高地频率范围,并不断提高复杂性.工程师们正在把射频电路与模拟及数字纳M电路集成在一起.吉比级数据速率正在使数字电路像微波电路那样工作.不断扩充而更复杂地无线通信标准,如 WiFi<无线相容性认证)802.11a/b/g、超宽带和蓝牙标准,都要求设计师去评估其设计对系统整体性能地影响. 形状因子、功耗和成本推动着模拟电路设计、射频电路设计和数字电路设计地日益集成化.便携式设备小巧轻便,功耗和成本尽可能低.集成度直接影响着最终电子产品地制造成本、尺寸和重量,通常也决定所需功率地大小.设计师从材料清单中每去掉一个元件,维持该元件地供应链所需日常开支就会随之减少,最终产品地制造成本就会下降,产品尺寸也会缩小. 德州仪器公司(TI>负责无线应用地研究经理Bill Krenik说,射频电路地设计一向是很困难地,因为缺乏恰当地检测仪器,使高频信号地分析复杂化了.工程师们不得不采取间接地测量方法,并根据他们能够观察到地电路行为状态来推断电路特性.随着工程师们在同一块芯片上实现数字电路、模拟电路和射频电路,种种集成问题就使这一问题进一步复杂化.通过衬底传输或通过 IC 表面辐射地数字信号会影响射频或模拟部分地噪声敏感度.这些潜在地影响大多会结合在一起,从而使最初地硅片存在各种问题.传统地调试方法也许不再适用,这意味着你必须正确地进行设计,并在设计投片之前就要准确无误地对尽可能多地物理效应建立模型.当设计方法不能准确地建立硅片地模型时,设计小组通常别无选择,只能把器件制造出来,再去观察其工作状态.走这条途径就像一场赌注很高地赌博,多数公司只是把它作为最后地一招. 模拟电路和射频电路历来都制作在各自地芯片上,这样可以更方便地在系统中隔离噪声,防止耦合到电路地敏感节点中.工程师们把这几类设计元件都集成在同一块芯片上时,就不能忽视噪声问题.假如没有某种形式地精确硅衬底模型,工程师们也许要到硅片从工厂退回后才会知道问题地存在.这类产品地开发几乎总是需要一个由各个工程领域地专家组成地小组.很少有哪个设计师既有射频专业知识,又有模拟电路专业知识;再则,射频电路专家和模

射频ADS微波HFSS相关 射频电路基础实验教学大纲改

《射频电路基础实验》教学大纲 一、课程名称 射频电路基础实验 Experiment of Basis of RF Circuit 二、学时与学分 32学时;2学分 三、授课对象 电信系四年级本科生 四、先修课程 微波技术基础 五、教学目的 本实验课是一门独立设置实验课,旨在通过课堂的讲解和现场实验操作,使学生了解射频电路设计的基础知识,掌握主要射频器件的基本原理和工作特性及其测试方法,熟悉射频测试仪器矢量网络分析仪和频谱仪的工作原理和使用方法。通过实验,培养学生的实践动手能力,促进对专业理论知识的理解,提高学生的综合技术素质,培养其创新能力。 六、主要内容、基本要求及学时分配 实验一网络分析仪和频谱仪的原理及其使用 主要内容:了解网络分析仪和频谱仪的工作原理及熟悉使用操作方法。 基本要求:了解矢量网络分析仪工作原理,掌握正确的操作步骤,并理解网络分析仪测量的射频电路的S参数的物理意义;了解频谱分析仪的一般功能原理,初步掌握 AT5011频谱分析仪的使用方法,学会使用AT5011频谱分析仪观察简单信号的频 谱特性。 学时分配:4学时 实验二射频电路设计辅助软件ADS的使用方法 主要内容:学习射频电路仿真软件ADS(Advance Design System)的初步使用、构造原理图及仿真的方法。 基本要求:学会使用射频电路仿真软件ADS进行基本射频电路设计与仿真的操作方法。

学时分配:4学时 实验三射频滤波器实验 主要内容:学习射频低通、带通滤波器的工作原理和使用ADS软件设计滤波器的方法,并使用网络分析仪测量射频滤波器的幅频特性参数。 基本要求:掌握微带线低通和带通滤波器的工作原理、设计方法与测量方法。 学时分配:4学时 实验四射频功率分配器实验 主要内容:学习射频功率分配器的工作原理和使用ADS软件设计功率分配器的方法,并使用网络分析仪测量功率分配器的特性参数。 基本要求:掌握射频功率分配器的工作原理、设计方法与测量方法。 学时分配:4学时 实验五GSM可调增益放大器实验 主要内容:学习射频放大器的工作原理和使用ADS软件设计射频放大器的方法,介绍GSM 标准对射频放大器的设计要求以及可调增益放大器的设计方法,并使用网络分析 仪测量已有的GSM可调增益放大器的性能参数。 基本要求:掌握射频放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解GSM标准的射频放大器的要求以及可调增益放大器的设计方法。 学时分配:4学时 实验六CDMA频段平衡式放大器实验 主要内容:学习射频平衡放大器的工作原理,介绍CDMA-IS95标准对射频放大器的设计要求以及平衡放大器的设计方法,并使用网络分析仪测量已有的CDMA频段平 衡放大器的性能参数。 基本要求:掌握射频平衡放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解CDMA-IS95标准的射频放大器的要求。 学时分配:4学时 实验七射频PLL锁相环实验 主要内容:学习射频PLL锁相环的工作原理,并利用频谱仪测试射频PLL锁相环的主要性能

宽带微波接收机的射频前端设计探讨

龙源期刊网 https://www.360docs.net/doc/a911472025.html, 宽带微波接收机的射频前端设计探讨 作者:刘瑶潘威 来源:《科学与信息化》2018年第13期 摘要随着微波技术的发展,微波接收机已经被广泛应用于通信、雷达等多个领域。由于信道上受到外界因素干扰较多,为了保证微波接收机的性能,接收机需要有较高的线性度、灵敏度、动态范围和选择性,这些性能的实现与射频前端息息相关。本文将在分析射频前端设计对宽度微波接收机作用的基础上,对几种常见的射频前端结构进行阐述,然后就影响射频前端性能的几种因素进行分析,探讨应该如何合理设计射频前端。 关键词宽带微波接收机;射频前端;低噪声;动态范围 1 射频前端对微波接收机的重要意义 现代电子技术的发展,使得接收机的种类越来越多,性能也得到了各方面的完善,功能更加复杂和通用化。目前接收机正朝着体积小、重量轻和功耗小,性能更加优越的方向发展,要求微波接收机具有宽频带、大动态范围、高灵敏度和低噪声。基于上述影响微波接收机信噪比、影响信号处理的因素分析,必须要对接收机重要组成部分射频前端进行优化设计,从而可对接收机性能起到保障作用。射频前端主要实现抗烧毁、信号预选、增益控制、幅度均衡等几方面功能,噪声系数、滤波器选择、幅度均衡以及输入1dB压缩点等都会对接收机前端性能产生重要影响。 2 射频前端的几种构成形式 2.1 常用接收机射频前端结构 在微波接收机接收有用信号的过程中,会受到高电平干扰信号的影响,从而影响信噪比,对信号处理产生不利作用。为了保证信噪比,微波接收机应该具有高选择性、高线性和低噪声的特点。 对来自天线下来的信号,首先会使用限幅器对信号进行限幅处理,保护后级的放大器不被大信号烧毁;再使用带通滤波器进行信号预选,最后使用低噪声放大器对信号进行一级放大,放大后的信号进入下一级进行处理。 在这个过程中,限幅器保护后级链路不受大功率信号的损坏,带通滤波器隔离带外信号,低噪声放大器在尽可能减少对噪声恶化的情况下补偿增益,该结构的作用是可以通过带通滤波器使互调失真降到最低,削弱失真响应,同时具有成本较低、结构简单的优点。 2.2 采用YIG统调预选滤波器的结构

HY016射频设计6_射频匹配电路调试

HY016射频设计6_射频匹配电路调试 全部频段在QSPR中校准通过后,便可以进行电路优化了,也就是我们通常说的调匹配。 我们实验室采用的是盲调,即以最终实测性能的好坏来决定最终的匹配电路;与之对应的另一种方法是根据器件规格书,用网络分析仪逐个端口调试,使其和规格书要求相对应。对于RDA PhaseII方案,盲调性能挺好。 对于频分电路(FDD LTE/WCDMA/CDMA),重点是调双工器的输入输出端匹配;对于时分电路(TDD-LTE/TDSCDMA),重点是调滤波器的输入输出匹配。双工的调试相对复杂,本文会以HY016欧洲版中B20双工为例进行说明。 射频电路调试的最终原则包括: 1,发射端兼顾电流和线性度,也就是在ACLR余量足够的情况下尽可能的降低最大发射功率的电流,同时兼顾整个频段中高中低信道的平坦度。 2,接收端以提高接收灵敏度为最终原则 3,不是把某块板子的性能调到最佳为准;而是要留够余量,保证量产大批量板子的性能都能达到良好为准 双工器电路我通常的调试步骤: 1,初始bom采用datasheet的参考匹配 2,调节公共端的到地电感,让低、中、高信道特性一致,包括电流和ACLR 3,调节公共端的串联电感/电容,找出ACLR和电流的最佳权衡 4,调节发射端输入匹配,找出ACLR和电流的最佳权衡,最终确认发射端匹配 5,在QSPR下直接校准接收进行接收调试:若信道间差距过大就优先到地电感;若信道间差距不大则优化串联电感/电容;调试完成后实测灵敏度最终确认接收匹配 调试发射电路时,需要和仪表相连。通常在用QSPR完成校准后,再在QPST->PDC中导入并激活ROW_Gen_Commercial.MBN便可以和仪表通信了。关于MBN激活这部分,会在后续工厂文件部分详细说明,这里不再展开。

GPS接收机射频前端电路原理与设计

GPS接收机射频前端电路原理与设计 摘要:在天线单元设计中采用了高频、低噪声放大器,以减弱天线热噪声及前面几级单元电路对接收机性能的影响;基于超外差式电路结构、镜频抑制和信道选择原理,选用GP2010芯片实现了射频单元的三级变频方案,并介绍了高稳定度本振荡信号的合成和采样量化器的工作原理,得到了导航电文相关提取所需要的二进制数字中频卫星信号。 关键词:GPS接收机灵敏度超外差锁相环频率合成 利用GPS卫星实现导航定位时,用户接收机的主要任务是提取卫星信号中的伪随机噪声码和数据码,以进一步解算得到接收机载体的位置、速度和时间(PVT)等导航信息。因此,GPS接收机是至关重要的用户设备。目前实际应用的GPS接收机电路一般由天线单元、射频单元、通信单元和解算单元等四部分组成,如图1所示。本文在分析GPS卫星信号组成的基础上,给出了射频前端GP2010的原理及应用。 1 GPS卫星信号的组成

GPS卫星信号采用典型的码分多址(CDMA)调制技术进行合成(如图2所示),其完整信号主要包括载波、伪随机码和数据码等三种分量。信号载波处于L波段,两载波的中心频率分别记作L1和L2。卫星信号参考时钟频率f0为10.23MHz,信号载波L1的中心频率为f0的154倍频,即: fL1=154×f0=1575.42MHz (1) 其波长λ1=19.03cm;信号载波L2的中心频率为f0的120倍频,即: fL2=120×f0=1227.60MHz (2) 其波长λ2=24.42cm。两载波的频率差为347.82MHz,大约是L2的 28.3%,这样选择载波频率便于测得或消除导航信号从GPS卫星传播至接收机时由于电离层效应而引起的传播延迟误差。伪随机噪声码(PRN)即测距码主要有精测距码(P码)和粗测距码(C/A码)两种。其中P 码的码率为10.23MHz、C/A码的码率为1.023MHz。数据码是GPS卫星以二进制形式发送给用户接收机的导航定位数据,又叫导航电文或D 码,它主要包括卫星历、卫星钟校正、电离层延迟校正、工作状态信息、C/A码转换到捕获P码的信息和全部卫星的概略星历;总电文由1500位组成,分为5个子帧,每个子帧在6s内发射10个字,每个字30位,共计300位,因此数据码的波特率为50bps。

数字集成电路知识点整理

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

相关文档
最新文档