供热管网水力平衡失调的表现及原因

供热管网水力平衡失调的表现及原因
供热管网水力平衡失调的表现及原因

供热管网水力平衡失调的表现及原因

摘要:近几年来,我国城市的集中供暖事业又了迅猛发展,然而供热系统在实际运行中存在诸多问题,水力失调便是其中的突出问题。所以保证供热管网的水力平衡是供暖设计工作中的一个重要环节。本文归纳了供热管网水力平衡失调的表现及原因,对目前国内普遍采用的几种调节方法进行了比较,并提出了供热管网水力平衡的保证措施。

关键词:供热管网,水力失调,水力平衡,调节

前言

供热管网的水力平衡十分关键,她决定着系统运行效果的好坏,一般来说水力平衡的调节工作是在系统运行之前完成,这是系统正常运行的基本保障,也是节能运行的前提条件。但由于种种原因,水力平衡难以实现,尽管各种调控设备已应用了很多年,水力失调依然普遍存在。

一、供热管网水力平衡失调的表现及原因

(一)供热管网水力平衡失调的表现

在集中供热系统的室外管网中,水力失调主要表现是:各个环路的流量输配不均衡,致使各个用户的室温冷热不均,距循环泵较近的室温偏高,用户被迫开窗散热,大量热能流失;距循环泵较远的用户却因室温偏低经常投诉,甚至拒交采暖费;另外一些问题也和水力失调密切相关,例如系统在大流量小温差的工况下运行,锅炉或换热器等热源设备难以达到其额定出力,投入运行的设备超过实际负荷的需求,水泵的工作点偏离高效区,能量输配效率低,无法进行整体调控和节能运行,燃料和输热电能的消耗过高等等,水力失调已成为集中供热系统中普遍存在又难以治愈的顽疾。

(二)供热管网水力平衡失调的原因

1、实际施工与设计存在偏差

工程设计人员在进行供热工程设计时,已经进行了精确的管网水力平衡计算,选定了适当合理的管径,但是由于施工人员在实际施工中没有严格按照设计图纸要求和施工规范进行安装施工,造成实际施工情况和理论设计之间出现较大偏差。这些人为因素都将造成水力失调。

2、设计人员设计时存在设计不合理的问题

工程设计是根据水力学理论进行计算而选取相应的数据,而实际管材的数值与标准是有差别的。设计图纸中采取的管网管径普遍偏大,造成管网建成后近端用户和远端用户的水力不平衡问题非常突出,近端用户供热系统水流量远大于设计流量,远端用户供热系统水流量远小于设计流量已必须通过管网的初调节才能使近端用户和远端用户趋于平衡。

3、供热管网的老化

供热管网长期运行中有部分管网附件(阀门)会出现磨损,甚至失灵,供热管网的锈蚀、结垢严重,使管网阻力系数增大。破坏管网原有平衡,供热管网的“跑冒滴漏”也同样会造成水力的失调。

4、供热系统改造时的随意性

在供热系统维修、改造时,忽视系统的设计工况,随意改变管道的敷设线路、管径,改变系统的连接方式,随意加设管道阀门,以普通闸阀代替调节阀。

5、个别用户的偷窃行为

个别热用户偷窃系统供热用水、擅自改动室内管线布置、擅自对室内的散热器加片等情况。这些都将增大管网的阻力系数,加大管路实际流量与理论设计流量的偏差,对供热管网的水力工况产生很大影响。

二、国内供热管网水力平衡调节的方法

(一)温差法

此法是利用在用户引入口安装压力表温度计,对系统进行初调节。

首先使整个系统达以热力稳定。为提高系统初调节的效果,可使网路供水温度保持60℃以上的某个温度不变化。若热源的总回水温度不再变化,就可以认为整个系统已达到

热力稳定。此时记录下热源的总供水及回水温度和所有热用户处回水压力和供、回水温度。

先调节供回水温差小于热源总供回水温差的热用户,并按照用户的规模大小和温差的偏离程度大小,确定初调节次序。先对规模较大且温差的偏离也较大的热用户进行调节。根据经验对其用户引入口装置中的供水或回水阀门进行节流。待第一轮次调节完毕系统稳定运行几小时后。再重新记录总供水温差及各用户入口处供回水压力及温度进行下一轮的调节。

该调节方法调节周期时间长,需要反复进行,它适用于保温较好的网络。如果网路保温较差,网路供水的沿途温降较大,则对于供水温度较低的热用户,或室内供暖系统水力不平衡的用户将较差,可能出现新的水力失调。但此调节方法属于粗调,调节效果不准确。

(二)比例法

此法是利用两台便携式超声波流量计,或可测得流量的阀门(如平衡阀新型入口装置)及步话机(用于调节时人员之间的联系)来完成的,比例法的基本原理为如果两条并联管

路中的水流量以某比例流动(例如1:2),那么当总流量在+30%范围内变化时,它们之间的流量比仍然保持不变(1:2)。但用比例法调节时相互间不易协调,对操作人员素质要求

较高,并需要两台相同的流量计,初投入较大。

(三)CCR法

CCR法是在严格的对全系统阻力分析计算的基础上,对全系统实行一次调整的新

方法,它由采集数据,计算机计算和现场调整三步构成。CCR法的基本思路是先测出被测

管网现状的各管段阻力数S值,再根据所要求的各支路流量计算出各调节阀所相应的开度,最后根据计算结果一次将各调节阀调节到所计算的开度,使系统达到所要求的分配流量,此方法相应的初投资较大。而且测量各管段实际阻力数S值不容易。但降低了运行费用,是

未来发展的

方向。

(四)综合调节法研究

我们分析了以上各调节方法的优缺点,在此提出了一种新的调节方法,此方法具有比例法和CCR法的一些特点,因此称做综合调节法。综合调节法有两种调节形式,一种是在管网的设计阶段通过计算为使支管线及各热用户水力平衡选取适当管径的截止阀(截止阀与管径相同或小几号)及相应的开启度管网投入运行后,按计算结果将截止阀一次调节完成。可实现管网的初平衡。在管网精细调节时,需要在热用户入口处或支管线上装设流量测孔,并配备一台便携式水力平衡测试仪(该仪表可测流量与温度)通过流量测试、计算、再调节,从而实现管网的最终水力平衡。

此方法先将管网的设计参数及管网安装竣工后的管网有关数据输入计算机,计算出各管段设计阻力数s值,根据各支路所设计的流量、阀门阻力特性数S与阀门开启高度Y

的拟合方程式,(据大量截止阀的实验研究得出的s=f(G·Y)关系)通过计算机程序计算并调节,最后使系统达到所要求的流量分配。

三、供热管网水力平衡的保证措施

(一)严格控制补给水量

在系统运行过程中,应尽可能地将系统的补给水量控制在系统循环水量的O.5%以下。这对节能减排、降低系统的运行费用和减轻锅炉及管网的腐蚀具有重要意义。因此,需经常检查系统中有无漏水点,若发现漏水点,应及时采取措施,降低水耗。在实际应用中,常采用压力表检漏法,效果较好。当管网补水量突然增大,证明管网有丢水或漏水情况。可在所属供水、回水管上各安装l块压力表,待安装好后记住压力表上显示的压力,然后同时

关闭供回水阀门,几分钟后,若有漏水点,会发现该管段上压力表显示数值迅速下降;若无漏水点,则压力表显示数值不变。这种方法对及时发现漏水点,及时抢修,降低补给水量,很有作用。

(二)加大施工监督管理力度

实行工程质量终身责任制,加强对施工过程的监督管理,严格按设计图纸施工。对需变更设计的一定要经设计人员确认后,方可按照设计变更单的要求更改。

(三)加强日常考核管理

加强水质管理制度,合理排污,及时排除水渣,每天对水质的情况进行记录,保证水质合格,避免不安全事故的发生。对管网和用户系统设立每班次的巡回检查制度,做好每天室外温度、炉膛温度、锅炉出水温度、循环流量、补水量、锅炉及管网运行压力等数据的记录,以便及时发现运行安全问题及系统不热、漏水和其他不正常现象。对煤、水、电等各项指标进行每日的记录,每周进行分析及核算,做到节能减排。

结语

由于提高热水网路的水力平衡性,使得供暖系统能够正常运行,保证热用户正常的工作和生活,可节约无效的热能和电能损失,便于系统的初调节和运行调节。因此在热水供暖管网设计中,对于提高系统的水力平衡给予充分的重视。

参考文献

[1]刘凤忠,沈秀环.保障供热管网水力平衡的关键环节[J].节能,2009.3.

[2]高巍,蒋兴旺.供热管网水力平衡失调问题探讨[J].中国新技术新产品,2009.

14.

[3]民用建筑供暖通风与空气调节设计规范(GB50736-2012)[S].中国建筑工业出版社,2012.

供暖系统水力失调原因及解决方法

供热系统水力失调原因及解决方法 第一章水力失调和水力平衡的概念 在热水供热系统中各热用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。 水力失调的程度可以用实际流量与设计要求流量的比值来衡量,即称水力失调度。 水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力。 第二章水力失调和水力平衡的分类 2.1静态水力失调和静态水力平衡 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。 静态水力失调是稳态的、根本性的,是系统本身所固有的,是供热系统中水力失调的重要因素。 通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。 2.2动态水力失调和动态水力平衡 当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的水力失调,叫做动态水力失调。 动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,此时系统实现动态水力平衡。 第三章定流量系统水力平衡分析 定流量水力平衡系统是供热设计中常见的水力系统,在运行过程中系统各处的流量基本保持不变。常用的主要有以下三种形式: 3.1完全定流量系统 完全定流量系统是指系统中不含任何动态阀门,系统在初调试完成后阀门开度无须作任何变动,系统各处流量始终保持恒定。完全定流量系统主要适用于末端设备无须通过流量来进行调节的系统,如末端风机盘管采用三速开关调节风速和采用变风量空气处理机组的空调系统以及系统要求较低、只需气候补偿器调节供暖水温即可满足基本需要的供暖系统等。

集中供热管网水力失调及应对措施探究

集中供热管网水力失调及应对措施探究 发表时间:2016-12-06T15:04:59.950Z 来源:《基层建设》2016年24期8月下作者:齐森 [导读] 摘要:本文对集中供热管网中发生水利失调的情况进行了分析,并制定出相应的解决方案,增加了集中供热管网系统使用压头的数量,对集中供热管网整个系统的功能进行调节和管理,改变集中供热管网系统的运行流程,根据集中供热管网真实情况和运行环节,对集中供热管网的改良方法和水力失调的预防和治理进行了一系列的研究。 天津滨海新区响螺湾公共事业发展有限公司天津市 300457 摘要:本文对集中供热管网中发生水利失调的情况进行了分析,并制定出相应的解决方案,增加了集中供热管网系统使用压头的数量,对集中供热管网整个系统的功能进行调节和管理,改变集中供热管网系统的运行流程,根据集中供热管网真实情况和运行环节,对集中供热管网的改良方法和水力失调的预防和治理进行了一系列的研究。 关键词:供热管网;水力失调;措施 集中供热管网系统发生水力失调的原因是非常多的,水利失调问题是集中供热管网系统建设中的关键问题,如果想要解决这一问题,首先要意识到水力失调对整个系统的影响程度,然后对集中供热管网系统发生水力失调的原因进行分析,根据集中供热管网系统的设计、建造等步骤,制定对集中供热管网系统改良和集中供热管网系统运行的解决方案和措施,解决集中供热管网系统压力不足和温度忽高忽低的现象,全面的对水利失调问题进行防范和治理。 一、集中供热管网系统出现水力失调的原因 集中供热管网系统运行成效与水力均衡有着决定性的联系,但是,在集中供热管网系统工作中会发生水力失调现象,一半的用户产生温度下降的情况,另一半的用户产生温度升高的情况,降低了城市集中供暖的质量,因此广大人民群众对供热企业产生了不满和质疑。同时,也使供热公司赔了很多钱,造成公司经济损失严重。经过对城市集中供热系统的全面了解和分析,进而发现供热管网水力失调的原因。 1、集中供热管网系统循环水泵功率不足 集中供热管网系统中经常使用的是循环水泵,循环水泵有流量或者水头不匹配的现象,容易使运行产生偏差,使管网水力工况不能处在有效的工作范围内,导致了水力不平衡问题。 2、集中供热管网系统用户多样化要求 集中供热管网系统把热力用户认定为一个广泛和统一的状态,随着时间的不断变化,用户数量在不断增加的同时,对热能的使用和其使用方法也在不断的完善,导致供热管网网络处于不停变化的状态,所以对集中供热管网系统的调整要科学精确,才能使网络流量变得合理高效。重新更换集中供热管网系统,会产生水力系统不平衡,最终导致水利失调。 3、集中供热管网系统结构单一 在供暖系统中,许多用户都选择单管顺序式管网,但是,供热半径太长会使集中供热管网系统操作和控制起来很困难,由于以前的集中供热管网系统没有合适而精确的调控设备,使集中供热管网系统产生杂乱和没有秩序的现象,这是集中供热管网系统发生水力失衡的最重要的原因之一。 二、集中供热管网系统改进水力失调的措施和方法 集中供热管网系统相关管理人员应该对水力失调有侧重点,根据集中供热管网系统的特点,对集中供热管网系统进行探讨和分析,寻找集中供热管网系统运行的不足之处,制定集中供热管网系统优良运行的方案和操作方法,从而提高整个系统运行的质量和效率。 1、做好集中供热管网系统的设计 在集中供热管网的设计过程中,对集中供热管网系统进行改良和优化。应加强设计联系环节,把集中供热管网系统出现水力不平衡现象作为先决条件之一。在对集中供热管网系统的实践过程中,不能忽视以前的集中供热管网系统设计中的水力计算步骤,明确集中供热管网系统的有效信息和综合数据,经过水力计算找到水力不平衡的主要原因,提出合理的解决方法,有效地预防和治理集中供暖管网系统的水力不平衡。当开展集中供热管网系统的具体工作的时候,首先要对系统水泵的设置进行完善,在集中供热管网系统中增加功能性强的水泵,采用综合集中供热管网系统,提高经济效益,有效防止集中供热管网系统产生水力失调问题。 2、增加集中供热管网系统自用压头的数量 对于集中供热管网系统循环能力低下,水泵功率不足引起的水力失调,从两个方面着手解决:第一,对集中供热管网系统的压力进行改良和完善,第二,增加水泵的数量。根据集中供热管网系统的特点和用热用户的需求,充分发挥系统的循环功能,选择功率强、大扬程水泵提升集中供热管网系统的循环效果,提高集中供热管网系统的调控效果,最终有效的防止集中供热管网系统产生水力失调问题。以集中供热管网系统和用户需求为出发点,解决自用压头数量不足和电力短缺的问题,首先要在集中供热管网系统关键地方和供暖较弱的地方增加压头的数量和扬程,经过对集中供热管网系统进出口的操控,使用不同的电压压头,使集中供热管网系统的内阻和热力均衡,管理和控制供热管网系统和自用压头的耗电情况,解决水力不充足、不平衡引起的集中供热管网系统水力失调问题。为了防止集中供热管网系统中由于抢水而出现的水力失调,应该用增多自用压头的方法对供暖不足的用户提高供热程度,管理集中供热管网系统的分布,对集中供热管网系统中不合格的加压水泵进行改良,调整加压头的个数和所在位置,通过调节压头使集中供热管网系统的水力得到改善,防止集中供热管网系统出现抢水问题,解决集中供热管网系统水力不平衡的问题。 3、提高集中供热管网系统的调节功能 集中供热管网系统只有经过正确的调整,才能提高效率,而集中供热管网系统水力失调问题的防范和治理要通过提高集中供热管网系统的调节功能来完成。 目前,在集中供热管网系统设计改造过程中,可以把两个管子一同供暖的思想运用到供热系统建设中,根据双管网的优点,精确测量集中供热管网系统的热量,强化集中供热管网系统的流量控制功能,把集中供热管网系统中一些重要数据的管理设置在调整和控制工作中,加大对水力的控制力,保证集中供热管网系统的流量和压力,把造成水力失调的剩下的压头清理掉,掌握和控制集中供热管网整个系统的经济运行。在集中供热管网系统建设中,同时也要增加对机械化设施和数字调节装置的使用,并使用局域网络和光纤打造一个集中供

采暖设计计算书1

设计题目:某住宅采暖系统设计

目录 第一章绪论 设计内容及原始资料、设计目的 第二章热负荷计算 围护结构基本传热量、附加传热量、 冷风渗透传热量计算 第三章散热器计算选型 散热器面积、片数计算、设备选型 第四章采暖系统水力计算 系统布置、水力计算 第五章设计成果 参考文献

第一章绪论 一、设计内容 本工程为哈尔滨市一民用住宅楼,住宅楼为六层,每一层有 8个用户,建筑总面积为 5740 ㎡。 二、原始资料 1.设计工程所在地区:哈尔滨 45°41′N 126°37 ′E 2.室外设计参数:冬季大气压 100.15KPa 供暖室外计算温度 -26℃ 冬季室外平均风速 3.8m/s 冬季主导风向东南风 供暖天数 179 天 供暖期日平均温度 -9.5℃ 最大冻土层深度 205cm 3.建筑资料 (1)建筑每层层高 3m; (2)建筑围护结构概况 外墙:砖墙,厚度为 240mm,保温层为水泥膨胀珍珠岩 l190mm,双面抹灰δ20mm;K0.45W/m2K 地面:不保温地面,K 值按地带划分,一共为四个地带; 屋顶:钢筋混凝土板,砾砂外表层 5mm,保温层为沥青膨胀岩l150mmK0.47W/(m2K) 外窗:单层钢窗,塑料中空玻璃(空气 12mm)K2.4 W/(m2K)

外门:木框双层玻璃门(高 2.0 米),K2.5W/m2.K。2100mm×1500mm,门型为无上亮的单扇门。 4.室内设计参数: 室内计算温度:卧室、起居室 18℃厨房 10℃ 门厅、走廊、楼梯间 16℃盥洗室 18℃ 三、设计目的 对该建筑进行室内采暖系统的设计,使其能达到采暖设计标准,同时符合建筑节能规范。 第二章热负荷计算 一、围护结构基本传热量 1.外围护结构的基本耗热量计算公式如下: Q= KF( tn- t w) a q ——围护结构的基本耗热量,W; K——围护结构的传热系数, F——围护结构的面积 tn——冬季室内计算温度 t w ——供暖室外计算温度 α——围护结构的温差修正系数 整个建筑的基本耗热量 Q1. j 等于它的围护结构各部分基本耗热量

供热管网节能技巧

集中供热存在的主要问题 我国的集中供热,对城市建设和改善人民生活带来不可估量的收益,但是,由于长期受计划经济的制约,存在着供热体制、供热成本和供热技术方面的问题,本文主要研究技术方面的问题,对于技术方面存在的问题如下: (1)管网敷设方式落后。供热管网的敷设方式普遍采用管沟方式,这种敷设方式占地比较多,在城市规划管线综合安排上有一定的困难,施工周期长,对城市交通影响大。尤其在城市中心会遇到大量的拆迁问题,增加了大量的投资,在供热管网建设施工中,经常会与城市的整体建设规划产生冲突,与相关部门的协调配合存在较大问题,增加了施工难度,阻碍了施工进度,甚至无法实施,减缓了城市集中供热的发展速度,导致供热管道及热源的建设赶不上城市发展的需要。 (2)运行的室外管网多为支状管网,供热管网末端缺乏必要的调节手段,水力失调严重,同时大部分用户未采热计量的手段,能源浪费现象严重。如何有效的保证供热管网的水力平衡是亟待解决的问题,另外管网水力调节需要大量的资金、设备和人力投入,在实际操作中仍存在困难。 (3)供热系统的控制水平和调节水平落后。供热管网经过多年的发展已经形成规模,但是由于大多数系统没有热网监控系统,热源、热力站自动化程度低,大大降低了系统的经济性和可靠性。 (4)供热系统不能适时的有效调节供热流量和供水温度。现有的供热系统只是针对设备的粗放型管理,很少考虑对整个系统主要运行参数进行监控,更没有实现对用户室温的远程检测,无法准确掌握系统供热水平和质量,操作人员只能凭借经验调节供热量。另外,由于没有采用气候补偿技术,在实际运行过程中依然只能采用“看天烧火”的传统方式,即通过人工手动方式来调节供热量,不能自动的适时的进行分时按需供热,造成采暖初末期造成大量浪费热量。 影响管网的输送效率有以下三个方面: 水力失调损失、系统失水和保温损失,其中水力失调损失所占的比例最大,也是供热系统普遍存在的现象。 供热管网水力失调 2.1.1 水力失调的概念 供热系统中热水热网各热力站(或热用户)在运行中的实际流量与设计流量之间的不一致性,称为供热系统的水力失调。换句话说,热网不能按热用户需要的流量(热量)分配给各个热用户,导致不同位置的冷热不均的 现象。 2.1.2 水力失调的分类 水力失调一般可分为三种情况,即系统的一致失调、系统的不一致失调和系统的等比失调。 a.系统的一致失调是指各个用户的水力失调度分别都大于或小于l。即各个用户流量都大于或者都小于规定流量的现象称为一致失调的情况;流量过大导致采暖房间过热,浪费能源,流量过小导致采暖房间温度达不到舒适标准要求,影响用户的生活质量。 b.系统的不一致失调是指各个用户的水力失调度有的大于l,有的小于1。即出现用户流量有的大于规定流量,有的小于规定流量的现象称为不一致失调情况;流量过大导致采暖房间过热,流量过小导致房间过泠。 c.系统的等比失调是指各个用户的水力失调度分别都相等。即各个用户的流量大于或小于规定流量,但其比值是相同的现象称为等比失调情况;等比失调导致采暖房间过热或过泠程度是一样的。 2.1.3 水力失调形成的原因 水力失调的根本原因是管网阻力不平衡造成的,即系统在运行时管网特性不能在用户需要的流量下实现各用户环路阻力相等。产生水力失调的客观原因有很多,主要有以下几方面: (1)循环水泵选择不当,流量或扬程选择过大、过小都会使水泵工作点偏离设计工况点从而导致水力失调。(2)供热管网的用户增加或停运部分热用户,要求系统中的流量重新分配导致全网阻力特性改变进而导致水力失调。 (3)系统中用户的用热量的增加或减少,会引起管网中的流量发生变化,从而要求系统中的流量重新分配进而导致水力失调。 (4)流量调节阀的选择不当,导致水力失调。

水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i = R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

供热管网水力平衡

供热管网水力平衡

保障供热管网水力平衡的关键环节 引言 集中供热系统在采暖季运行初期存在水力平衡问题,其调试期的长短与精度不仅关系到供暖质量,更涉及节能减排与社会和谐。水力平衡主要包括供热系统的充水及排气、管网水力调节、系统的运行管理三个方面。根据多年运行管理经验认为,抓好这三个关键环节;可极大地促进供热节能减排。 1、供热系统充水、排气是管网良性循环的首要工作 1.1确保系统充水、排气顺序系统的充水、排气是开始供暖前的必备条件,正确的充水顺序为:锅炉——一次网——换热站——二次网——热用户。系统充水顺序一定要正确,否则在管道中会产生“空气塞”,这是造成局部热用户不热的主要原因。 用补水泵进行系统充水,所用水质应符合GBl576《低压锅炉水质标准》。对于目前普遍采用的补水泵间歇补水定压方式的定压系统来讲,维持定压点压力的稳定是供热系统正常运行的基本前提。电接点压力上下限的设定应满足运行要求。 锅炉充水是从锅炉迸水口开始充水,当其顶部集气罐放气阀经过数次排气后有大量水冒出时,关闭放气阀,锅炉充水完毕。 外管网充水前,应关闭所有泄水阀,同时打开各支线阀门及管线末端连接供回水管的旁通阀门。在关闭所有热用户人口阀门的条件下,将水由回水压入网路,当其最高点上排气阀经数次排气后有大量水冒出时,表明管网已充满水,外管网充水完毕。 楼内充水时,应由回水压入系统中,先将热力入口处的所有泄水阀门关闭,并缓慢打开热力入口处的回水阀门。充水速度不宜太快,

以便从系统中排出空气。然后将供水阀门打开,同时迅速开启楼道内立管顶部排气阀进行排气,当立管顶部排气阀排出大量的水时,立管充水完毕。 热用户充水启动的顺序必须按先远后近、先打开回水阀再打开供水阀的原则进行。当每个楼栋的热用户的水满后,对最末端的热用户进行l——2次排气。这样可避免大量空气带入热用户系统中,减少运行期排气次数。 系统应边充水边排气,最好把系统内气体一次排净,以免造成气塞现象。对热用户本着“先远后近”的原则进行排气,有利于将系统中的空气赶向近端,减少维修人员往返路程,避免重复劳动,缩短调试时间,同时避免大量热水排放,节约能源。 1.2 保证循环系统顺利启动,维持稳定压差 在循环水泵启动前应再次确认一、二次网补水泵的上下限定压点数值是否在合理范围内;另外还应确认管网各支线末端连接供、回水的旁通阀门是否开启,将二次网高点排若干次气后,打开楼栋口的回水阀门,再打开供水阀门,才可启动循环水泵。这样做可避免将大量空气通过循环泵带入热用户系统中。循环水泵启动完毕后,须将末端旁通阀门关闭。运行初期,必须严密注意网路中的压力,随时调整变频大小或调节循环泵阀门的开启度,楼栋口平衡阀的开启度,使集、分水器压差保持稳定。经多年运行经验,分、集水器供回水压差范围为O.1~0.2MPa。 2、供热系统调节是管网水力平衡的核心工作 供热管网调节分为系统的初调节和运行调节以间接供暖为例,其调节顺序为:一次网——换热站——二次网——热力入口——热用户。

采暖系统水力计算

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?

实例:

附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容;树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变化,时时更新,计算完成后,

可通过【绘图】菜单中的【绘原理图】将其插入到dwg中,并可根据计算结果进行标注;数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上; [工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

浅谈供热管网热平衡调节技术

浅谈供热管网热平衡调节技术 摘要:本文首先概述了供热管网水力失调,然后分析了水力失调产生的原因和供热管网水力平衡常用调节装置,最后探讨了供热管网热平衡调节技术。 关键词:供热管网;热平衡;水力失调;调节技术 近年来,随着经济的腾飞,我国供热事业也取得了较大的发展,其中供热管网在规模和技术方面都实现了长足的进步。但是,伴随着逐渐加大的能源消耗,我国的供热系统也出现了若干问题,一直存在供热管网水力失调的现象,限制了供热管网的输送效率,导致热损失较大。在供热系统中,水力失调现象极为普遍,从而造成各热用户之间室内温度偏差较大、冷热不均等问题,用户投诉较多。为缓解供热系统水力失调问题,使用户满意,传统的做法是增大热网管径、增大循环泵的流量,采用“大流量、小温差”供暖运行方式,因而又造成了能源极大浪费。因此,必须采取有效措施解决供热系统中水力失调问题。 1供热管网水力失调概述 1.1水力失调概念 在进行热网系统的水力工况计算时,由于管道内热媒的流速不允许超过限定流速和可供选择的管道管径规格有限等各种因素的限制、网路未进行初调节以及运行工况的变化等造成了热用户实际流量偏离要求的流量。把热水供热系统中各热用户的实际流量与要求的流量(即规定的流量)之间的不一致性,称为该热用户的水力失调。 在供热管网中,水力失调主要表现是:各管段流量输配不合理,致使各个用户的室温冷热不均,靠近热源近端的用户过热,室温高达25℃以上,用户被迫开窗散热,使大量热能流失;而远离热源的末端,则常常达不到设计室温,有的甚至低于10 ℃(我国室温设计要求一般为18 ℃),严重影响了热用户日常生活和工作,为供热管理带来很多问题。 1.2水力失调的分类 1.2.1根据水力失调度来划分 1.2.1.1一致失调 供热管网系统各用户的水力失调度全部大于1或全部小于1,称为一致失调。凡属于一致失调的情况,各热用户的流量全部增大或全部减小,前者导致采暖房间过热,后者导致房间过怜。 1.2.1.2不一致失调

集中供热管网水力失调及应对措施探究

集中供热管网水力失调及应对措施探究 摘要:水力平衡失调严重扰乱了用户的正常生活,对供热企业也产生了极大的影响。探究供热管网体系水力失衡的内因,详述了水力系统管理的基本准则,例举了几类有效的管网水力失衡的解决方案与方法。 标签:供热管网;水力失调;原因;措施 1 供热管网水力工况失调原因分析 管网生产管理的好坏对整个城市集中供热管网系统运行效率与质量有着重要的影响,而实际管网运行管理中都存在不同程度水力工况失调问题,使得城市集中供热质量颇受用户质疑,同时对供热公司造成较大的经济损失。供热管网体制水力失衡的因素是多方面的。对城市集中供热系统进行分析,得到供热管网水力工况失调的原因主要为以下几个方面[1,2]: (1)供热管网系统中管道的类型有很多种,造成整个系统在用户使用情况下出现失调现象,因此需要通过人为方式进行调试,但调试的结果并不乐观。在供热管网最初构建的时候,它的构想是要满足最低级用户的需求,而且其余的用户供热要正常使用。如采用此种流量分配方式,而不进行人为的控制调节,将会造成严重的水力失调现象。 (2)系统环路中使用较多的循环水泵,而所使用循环水泵规格型号并不一定满足功能需求,存在流量或扬程不搭配的问题。循环水泵不搭配容易造成工作点的偏离,使得管网水力工况不能处于有效工作区间,产生水力失调问题。 (3)用户对于热量的使用量的不断改变,造成供热管网网络一直处于变化状态,使得网络流量进行再次分配,所以出现管网水力系统失衡。 (4)对于取暖的系统大多数客户都使用了单管顺序式,而且缺少有效调节设备,这也是出现水力失衡的因素之一。 2 集中供热管网系统水力失调治理 集中供热管网系统水力失调问题的解决原则为:针对系统实际情况,采用单项或多项联合技术手段,确保供热质量以及技术经济的可行性。水力失衡的处理方式有重新购买设备管道或者更换其余配件、附加阻力、压头技术等,但在实际操作过程中应首先完成如下两个方面: 一是校核性水力计算。校核性水力计算是发展和解决问题,制定出正确方案的宗旨。在旧系统改造项目中经常会使用这种计算方法,其相关数据都已经掌握,有利于水力计算后迅速找出问题所在。

集中供暖过程中供热管网水力失调与对策探索

集中供暖过程中供热管网水力失调与对策探索 目前,民众在集中供暖方面提出的要求持续提升,同时还出现了大量的问题。在这些问题当中,最为突出并且十分重要的是供热管网出现的水力失调现象,对该问题的解决对策进行研究,借此方式实现集中供暖最终达成效果的显著提升,优化民众的生活质量。 标签:集中供暖;供热管网;水力失调;对策探索 水力失调是在集中供热管网处于正常运行期间频繁发生的一个问题,其重要程度是不是会对企业收获的利益产生损害,同时还极易导致资源的实际利用效率减小、增加环境出现的污染问题。所以,必须让这一问题得到高效的解决。 一、水力失调概念介绍 1.集中、统一对热量实施供应出现了不均衡现象,其实质为需要进行供热的数量和实际生活期间使用的具体数量存在差异。也可以理解为,我国供热单位未根据民众实际生活中的需求对热量实施供应,此现象就导致居民正常生活期间出现了热量不均衡这一情况。 2.对供热系统当中的水利现象进行检测时,发生不均衡问题的这部分介质,代表的就是水力发生不平等的具体程度。在实际生活中,在对水力失调进行定义时,是居民的具体使用流量和标准流量之间的比值,用数学公式对其进行表达为:X=G/Ga,在这一等式中,X指代的是水力失調度,G指代的是居民使用的具体流量,单位是m3/h,Ga指代的是标准流量,单位是m3/h. 二、原因探讨 (一)循环水泵部分的功率不达标 在具体开展集中供热期间,为了保证管路当中的水处于正常的循环状态,普遍需要借助于大量的循环水泵。若是供热管网本身系统内部的所有循环水泵当中的流量等存在不相配的问题,必然导致工作点发生偏离现象,最终导致管网当中水力的具体情况大于其实际的有效工作时间,最后造成水力失调情况的发生[1]。 (二)不能达成用户提出的多样化需求 在对集中类型的供暖供热管网开展相应设计工作期间,普遍将广大民众视为一类宽泛并且呈现为均一形态的这一状态,不注重其存在的多样化这一因素。由于城市内部使用集中类型的供热管网范围持续扩散,推动着实际用户人数持续加大。还有,实际对热量进行应用的方法出现了更改,导致供热管路这一系统频繁发生大量全新现象。为确保开展的集中供热这项工作能够顺利实施,一定要准确调整系统。

浅议热水供暖系统水力失调的成因与解决方法

浅议热水供暖系统水力失调的成因与解决方法 作者:杨艳红 摘要:随着生活品质提高,冬季采暖不仅是刚性需求还有品质要求,供暖达不要求对于老弱病幼就成为一个大麻烦;要保障供暖,就必须合理设计、供水稳定性。本文对生活中产生的供热问题进行技术分析,希望能够在实践过程中能提供有效的解决途径。 关键词:热水供暖系统;水力失调成因;解决途径 引言: 我国地域主要在温带地区,取暖是北方必备生活条件;近几年华南、华东地区冬季最低温度也在零度左右,供暖工程也逐步提上了日程,供暖工程承受了前所未有压力。由于北方城镇地区有至少超过一半用户采用集中供热系统,集中热力管网的用户越来越多,对热水管网系统的稳定性、合理性要求日益提高。而实际状况并不尽如人意,有很多片区居民存在室温偏低或者根本不热的情况,因供暖不理想拒绝交费之类的事情频频发生。本文主要通过分析热水供暖系统水力失调的成因,对于解决系统失调的问题提出思路,以期达到抛砖引玉的效果,能为解决供暖问题贡献绵薄之力。 1、热水供暖系统 热水供热系统包括热源、管网、末端三部分组成;管网连接热源、输送热源达到热源用户,管网呈树状分布;末端用户要求、热源供热情况决定了管网设计路由及参数,热源供水压力、末端阻力及系统整体安装运行的经济性决定了管网设计要求。 目前国内常采用单管系统、双管系统及单双管混合系统,从形式上又分为上供下回系统、上供上回、下供下回、下供上回系统及辐射状系统,由于主管线布位置不同因此产生水力失调情况也不同。但对于形式简单、规模较小的建筑,由于水力失调而引起的供热不均或不理想的情况都表现不明显。如果建筑规模庞大、热用户情况复杂,系统选用不合理引起的水力失调问题就不能忽视了。因此合理选择设计系统对于解决水力失调问题是根本途径。 2、热水供暖系统中水力失调的成因 供热系统水力失调主要是指在供暖系统中理论供热流量和实际系统流量之间存在较大的差值,而引起末端用户用热无法达到设计要求。可能引起系统水力失调,供热效果差的因素有:

采暖管道水力计算

采暖供热管道水力计算表说明 1 电算表编制说明 1.1 采暖供热管道的沿程损失采用以下计算公式: ΔP m =L λρ?v 2 d j ?2 (1.1) ;式中:△Pm——计算管段的沿程水头损失(Pa) L ——计算管段长度(m); λ——管段的摩擦阻力系数; d j ——水管计算内径(m),按本院技术措施表A.1.1-2~A.1.1-9编制取值; 3 ρ——流体的密度(kg/m),按本院技术措施表A.2.3编制取值;v —— 流体在管内的流速(m/s)。 1.2 管道摩擦阻力系数λ 1.2.1采用钢管的采暖供热管道摩擦阻力系数λ采用以下计算公式: 1 层流区(R e ≤2000) λ=

64 Re 2 紊流区(R e >2000)一般采用柯列勃洛克公式 1 ?2. 51K /d j =?2lg?+?λ?Reλ3.72 ?K 68? ?λ=0.11?+??d ?j Re? 0. 25 ???? 简化计算时采用阿里特苏里公式 雷诺数 Re= v ?d j γ 以上各式中 λ——管段的摩擦阻力系数;Re ——雷诺数; d j ——管子计算内径(m),钢管计算内径按本院技术措施表A.1.1-2取值;

- K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m,室外供热管网 - K =0.5×103m ; v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s); ,根据供回水平均温度按按本院技术措施表A. 2.1取值。γ—— 热媒的运动粘滞系数(m2/s) 1.2.2塑料管和内衬(涂)塑料管的摩擦阻力系数λ,按下式计算: λ={ d j ? b 1. 312(2 lg 3. 7??b 0. 5?+ lg Re s?1?2 ?? 3. 7d j lg K ?????? }2

供热管网水力平衡失调的表现及原因

供热管网水力平衡失调的表现及原因 摘要:近几年来,我国城市的集中供暖事业又了迅猛发展,然而供热系统在实际运行中存在诸多问题,水力失调便是其中的突出问题。所以保证供热管网的水力平衡是供暖设计工作中的一个重要环节。本文归纳了供热管网水力平衡失调的表现及原因,对目前国内普遍采用的几种调节方法进行了比较,并提出了供热管网水力平衡的保证措施。 关键词:供热管网,水力失调,水力平衡,调节 前言 供热管网的水力平衡十分关键,她决定着系统运行效果的好坏,一般来说水力平衡的调节工作是在系统运行之前完成,这是系统正常运行的基本保障,也是节能运行的前提条件。但由于种种原因,水力平衡难以实现,尽管各种调控设备已应用了很多年,水力失调依然普遍存在。 一、供热管网水力平衡失调的表现及原因 (一)供热管网水力平衡失调的表现 在集中供热系统的室外管网中,水力失调主要表现是:各个环路的流量输配不均衡,致使各个用户的室温冷热不均,距循环泵较近的室温偏高,用户被迫开窗散热,大量热能流失;距循环泵较远的用户却因室温偏低经常投诉,甚至拒交采暖费;另外一些问题也和水力失调密切相关,例如系统在大流量小温差的工况下运行,锅炉或换热器等热源设备难以达到其额定出力,投入运行的设备超过实际负荷的需求,水泵的工作点偏离高效区,能量输配效率低,无法进行整体调控和节能运行,燃料和输热电能的消耗过高等等,水力失调已成为集中供热系统中普遍存在又难以治愈的顽疾。 (二)供热管网水力平衡失调的原因 1、实际施工与设计存在偏差 工程设计人员在进行供热工程设计时,已经进行了精确的管网水力平衡计算,选定了适当合理的管径,但是由于施工人员在实际施工中没有严格按照设计图纸要求和施工规范进行安装施工,造成实际施工情况和理论设计之间出现较大偏差。这些人为因素都将造成水力失调。 2、设计人员设计时存在设计不合理的问题 工程设计是根据水力学理论进行计算而选取相应的数据,而实际管材的数值与标准是有差别的。设计图纸中采取的管网管径普遍偏大,造成管网建成后近端用户和远端用户的水力不平衡问题非常突出,近端用户供热系统水流量远大于设计流量,远端用户供热系统水流量远小于设计流量已必须通过管网的初调节才能使近端用户和远端用户趋于平衡。 3、供热管网的老化 供热管网长期运行中有部分管网附件(阀门)会出现磨损,甚至失灵,供热管网的锈蚀、结垢严重,使管网阻力系数增大。破坏管网原有平衡,供热管网的“跑冒滴漏”也同样会造成水力的失调。 4、供热系统改造时的随意性 在供热系统维修、改造时,忽视系统的设计工况,随意改变管道的敷设线路、管径,改变系统的连接方式,随意加设管道阀门,以普通闸阀代替调节阀。 5、个别用户的偷窃行为 个别热用户偷窃系统供热用水、擅自改动室内管线布置、擅自对室内的散热器加片等情况。这些都将增大管网的阻力系数,加大管路实际流量与理论设计流量的偏差,对供热管网的水力工况产生很大影响。 二、国内供热管网水力平衡调节的方法 (一)温差法

浅谈供热管网二级网水力失调的危害及措施方案

龙源期刊网 https://www.360docs.net/doc/a911959222.html, 浅谈供热管网二级网水力失调的危害及措施方案 作者:曲小秋 来源:《科技风》2020年第13期 摘;要:本文着重分析了供热二级管网水利失调产生的危害,依据二级网水力平衡调节的基本原则,作者根据自身工作经验,提出有效解决方案。 关键词:水力平衡;水力失调;能效管理 当前我国供热行业,区域发展差异大。小区二次网内由于楼层,户型,距离换热站距离等差异,造成用户采暖不均衡,水利失调严重。《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)5.9.12条规定:室内供暖系統设计必须进行水力平衡计算。 一、水力失调的危害 供热系统中各热用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。 (1)供暖效果不理想,二级网水力失调严重,导致热力失调严重,冷热不均,个别远端用户室温不达标。(2)为保证不利用户的供热质量而加大总的供热量,会导致多数用户室温过高,供热系统能耗偏大。(3)为掩盖水力失调现象,错误地加大供暖系统的循环流量即大流量小温差运行,导致供热系统的单位输热电耗偏大。 二、水力平衡意义 水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力。 (一)节约热耗 (1)大多二次网无水力平衡调节措施,水力失调严重,保证最不利用户的供热质量而不得不增加总的供热量,导致多数用户室温过高,供热系统能耗偏大;(2)供暖系统80%的热损失在二级网侧,供热末端之间水力不平衡而导致的热耗损失占总热耗的20%左右。 (二)节约输送能耗(电耗) (1)为了掩盖末端用户过冷的问题,错误的加大循环流量后,导致热耗偏大,能耗(电耗)也相应增加。(2)根据水泵特性,流量、扬程、轴功率与转速的关系;

热力管网水力失调的表现与解决措施

热力管网水力失调的表现与解决措施 发表时间:2018-12-17T15:34:26.870Z 来源:《基层建设》2018年第33期作者:王星 [导读] 摘要:随着城市化进程的加快,我国热力管网工程越来越多。 陕西延长中煤榆林能源化工有限公司陕西靖边 718500 摘要:随着城市化进程的加快,我国热力管网工程越来越多。但是随着建筑物数量的增多、建筑结构的复杂、供热系统的多样性,热力管网中出现水力失调的可能性正在增加。在传统的常见部位和环节上,在热源系统、单体建筑间、不同单元、一户一环等方面表现出各类水力失调的问题,这会严重影响热力管网的供热效果,而且会给热力管网带来不稳定和不安全的隐患。应该从热力管网的结构与各类问题部位的分析入手,确定热力管网水利失调的原因,有针对性地建立起热力管网维护和检修体系,确保热力管网对水力失调的预防,在确保热力管网供热质量的同时,实现热力管网的安全与稳定。 关键词:热力管网;水力失调;解决措施 引言 集中供热管网系统出现水力失调的原因有很多,在集中供热管网系统建设中要立足化解水力失调问题,要认识到水力失调对集中供热管网系统的危害,分析集中供热管网系统产生和出现水力失调的原因,从集中供热管网系统的设计、建设等环节出发,探寻对集中供热管网系统的改造和集中供热管网系统运行的方法,使集中供热管网系统的压力、温度合理化和科学化,全面防治和化解水力的失调。 1概述 在我国北方地区,由于冬季气温较低,必须进行供暖以提高室内温度。近年来,对环境保护的呼声愈来愈高,集中供暖已经成为北方地区最主要的供暖形式。然而,由于城市化进程的不断推进,对集中供暖的供热管网提出了更高的要求,也出现了很多问题。集中供暖管网水力失调是其中最具代表性,危害较大的一个问题,文章着重从其定义、危害、成因和解决措施等方面进行全面阐述,以求彻底解决此问题。在进行集中供暖的过程中,会出现热量供应不平衡的情况,即供热公司实际向居民供暖的热量与设计供暖的热量不一致,使得居民供暖热量出现差异,出现个别居民家中暖气过热,而个别居民家中暖气热量不足的情况。 2热力管网水力失调的主要表现 2.1热力管网热源系统水力失调 在城市化进程加快的背景下,集中供热的面积和数量呈现迅速增加的态势,原有的热源系统已经不能满足日益迫切的供热需求,特别是传统的锅炉存在发热效率低、额定功率不足、热媒参数不同,导致热力管网的热源系统之间出现压力和阻力不尽相同的局面,导致锅炉实际运行时产生循环水量与实际定额之间的巨大差距,不但影响了锅炉的供热效率,而且也造成了锅炉运行效率一直不高,甚至给锅炉的安全运行带来严重的隐患。 2.2一户一环系统水力失调 新建筑多采用一户一环的室内系统形式,这种形式产生水力失调的原因是相同的,在供热的初、末寒期,由于供回水的温差比较低,顶层用户很少受温差动力的影响,流量略低于底层用户,当严寒期到来,供热循环水的供回水温差加大,顶层用户由于温差动力的影响,流量增加了,所以产生了供热初、末寒期顶层不热,供热的严寒期顶层热和供热初、末寒期底层热,供热的严寒底层期不热的现象。 2.3热力管网改造后水力失调 当分户改造后,原来的暖气片还是原来的配置,作为顶层热用户,除第一组暖气片的进水温度达到原设计要求外,其它各组暖气片的进水温度都低于原设计要求,即散热量都低于原来的设计,所以造成了顶层用户室内温度不达标。 2.4热力管网不同单元水力失调 不同单元数量大于4个后,末端单元的温度普遍低于前端单元,造成同一建筑不同单元间供热效果差异,产生这一问题的主要原因是前后单元在距离上出现差异而引起的水平失调,进而导致热力管网水利失调,最终导致供热效果不良。 3热力管网水利失调的解决措施 3.1做好集中供热管网系统的设计 设计集中供热管网系统过程中,进行集中供热管网系统改造,要强化设计环节,将集中供热管网系统出现水力失调现象列为设计的前提之一。在设计集中供热管网系统的实际操作中,避免忽略传统集中供热管网系统设计中对水力的计算问题,掌握集中供热管网系统的关键信息和全面数据,通过水力计算找出水力失调的原因,积极预防集中供热管网系统的水力失调。在设计集中供热管网系统的具体工作中要优化系统水泵的设置,在集中供热管网系统中添加必要的功能水泵,全面提高集中供热管网系统的经济性,有效预防集中供热管网系统出现的水力失调问题。 3.2增加系统自用压头的数量 集中供热管网系统水力失调的一个主要原因就是系统循环能力不足,而这与循环水泵之间的流量与扬程不相匹配直接相关。结合供热管网实际的供热循环问题进行分析,应采用大功率、大扬程循环水泵来解决管网循环慢的问题。同时,采用大功率、大扬程循环水泵也可以对整个集中供热管网系统进行调节,增大循环流量,提高循环效果,有效解决水力失调问题。在增加集中供暖供热管网系统自用压头数量前,应全面调查管网系统存在的问题及其准确部位。应该从用户的需要出发,综合考虑系统内部阻力和热量平衡的影响,合理选择水泵的数量、功率和扬程,以达到预期的供热效果。对于过冷用户,应适当增加自用压头,提高局部管网的供热效率,提高用户的供热温度,进而解决水力失调问题。 3.3热力管网单体建筑水力失调的解决措施 根据热力管网维护和维修实际,一般对电梯建筑水力失调采用静态节流装置为主,在单体建筑末端安装节流板、调节阀、控制阀,调整热力管网中流量,实现水力的有效平衡。当前自动式流量控制器的出现为单体建筑间水平失调和水利失调提供了解决的新方向,其原理是通过对热力管网压力的感知来调整控制阀的大小,使热力管网流量得到精确控制,不但具有良好的节能效果,而且也大大提升热力管网的运行效率。 3.4选择双管采暖系统 现阶段,我国仍有部分城市小区内采用单管顺序式管网,由于其供热半径较大,管网结构过于复杂,调节和控制困难。而采用双管采

供热管网水力平衡

保障供热管网水力平衡的关键环节 引言 集中供热系统在采暖季运行初期存在水力平衡问题,其调试期的长短与精度不仅关系到供暖质量,更涉及节能减排与社会和谐。水力平衡主要包括供热系统的充水及排气、管网水力调节、系统的运行管理三个方面。根据多年运行管理经验认为,抓好这三个关键环节;可极大地促进供热节能减排。 1、供热系统充水、排气是管网良性循环的首要工作 1.1确保系统充水、排气顺序系统的充水、排气是开始供暖前的必备条件,正确的充水顺序为:锅炉——一次网——换热站——二次网——热用户。系统充水顺序一定要正确,否则在管道中会产生“空气塞”,这是造成局部热用户不热的主要原因。 用补水泵进行系统充水,所用水质应符合GBl576《低压锅炉水 质标准》。对于目前普遍采用的补水泵间歇补水定压方式的定压系统 来讲,维持定压点压力的稳定是供热系统正常运行的基本前提。电接点压力上下限的设定应满足运行要求。 锅炉充水是从锅炉迸水口开始充水,当其顶部集气罐放气阀经过数次排气后有大量水冒出时,关闭放气阀,锅炉充水完毕。 外管网充水前,应关闭所有泄水阀,同时打开各支线阀门及管线末端连接供回水管的旁通阀门。在关闭所有热用户人口阀门的条件下,将水由回水压入网路,当其最高点上排气阀经数次排气后有大量水冒出时,表明管网已充满水,外管网充水完毕。 楼内充水时,应由回水压入系统中,先将热力入口处的所有泄水阀门关闭,并缓慢打开热力入口处的回水阀门。充水速度不宜太快,

以便从系统中排出空气。然后将供水阀门打开,同时迅速开启楼道内立管顶部排气阀进行排气,当立管顶部排气阀排出大量的水时,立管充水完毕。 热用户充水启动的顺序必须按先远后近、先打开回水阀再打开供水阀的原则进行。当每个楼栋的热用户的水满后,对最末端的热用户进行l——2次排气。这样可避免大量空气带入热用户系统中,减少 运行期排气次数。 系统应边充水边排气,最好把系统内气体一次排净,以免造成气塞现象。对热用户本着“先远后近”的原则进行排气,有利于将系统中的空气赶向近端,减少维修人员往返路程,避免重复劳动,缩短调试时间,同时避免大量热水排放,节约能源。 1.2保证循环系统顺利启动,维持稳定压差 在循环水泵启动前应再次确认一、二次网补水泵的上下限定压点数值是否在合理范围内;另外还应确认管网各支线末端连接供、回水的旁通阀门是否开启,将二次网高点排若干次气后,打开楼栋口的回水阀门,再打开供水阀门,才可启动循环水泵。这样做可避免将大量空气通过循环泵带入热用户系统中。循环水泵启动完毕后,须将末端旁通阀门关闭。运行初期,必须严密注意网路中的压力,随时调整变频大小或调节循环泵阀门的开启度,楼栋口平衡阀的开启度,使集、分水器压差保持稳定。经多年运行经验,分、集水器供回水压差范围为O.1~0.2MPa。 2、供热系统调节是管网水力平衡的核心工作 供热管网调节分为系统的初调节和运行调节以间接供暖为例,其调节顺序为:一次网——换热站——二次网——热力入口——热用户。 2.1调节系统回水温度,使其流量分配合理在锅炉房集水器上安

相关文档
最新文档