仪器分析-红外吸收光谱法

仪器分析-红外吸收光谱法
仪器分析-红外吸收光谱法

第6章红外吸收光谱法

6.1 内容提要

6.1.1 基本概念

红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。

红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。

振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。

转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。

伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。

弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。

红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。

诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。

共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。

氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。

溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。

基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生

的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。

振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。

基团频率区——红外吸收光谱中能反映和表征官能团(基团)存在的区域。

指纹区——红外吸收光谱中能反映和表征化合物精细结构的区域。

分子振动自由度——多原子分子中原子振动形式的数目,称为分子振动自由度。

倍频峰——振动能级由基态跃迁至第二激发态、第三激发态……所产生的吸收峰称为倍频峰。

组(合)频峰——多原子分子中由于各种振动之间的相互作用而形成的组合频率(等于两个或多个基团频率之和或差)的吸收峰。

泛频与泛频峰——倍频与组(合)频,统称为泛频。相应的吸收峰称为泛频峰。

相关峰——表征某一基团存在的一组特征峰称为相关峰。

6.1.2 基本内容

1. 红外吸收光谱的基本原理

利用物质分子对红外辐射的吸收,并有其振动及转动引起偶极矩的净变化产生振动和转动能级由基态跃迁到激发态,获得分子振动和转动能级变化的振动-转动光谱,即红外吸收光谱。除对称分子外,几乎所有具有不同结构的化合物都有相应的特征红外吸收光谱。它反映了分子中各基团的振动特征。因此可以用以确定化学基团和鉴定未知物结构。同时,物质对红外辐射的吸收符合朗伯-比尔定律,故可用于定量分析。

2.红外吸收光谱产生的条件

(1)照射的红外光必须满足物质振动能级跃迁时所需的能量,即光的能量E = hv必须等于两振动能级间的能量差?E(?E =E振动激发态-E振动基态)。

(2)红外光与物质之间有偶合作用及分子的振动必须是能引起偶极矩变化的红外活性振动。

3.分子的振动方程

σ=

由方程可知,振动波数σ(或频率ν)随键力常数k的增加或折合相对原子质量A r的减少而增大,实际用于真实分子时应加以修正。

4.分子振动的形式和类型

分子中的基本振动形式(理论数):

对于非线性分子有(3N―6)个基本振动(即简正振动)形式;线性分子有(3N―5)个基本振动形式(N为分子中原子数目),实际上大多数化合物在红外光谱图上出现的吸收峰数目比理论数要少。

振动类型:多原子分子中有伸缩振动(对称和非对称伸缩振动)和弯曲(或变形)振动两大类。

5.红外吸收光谱与有机化合物分子结构的关系

(1)红外吸收光谱的分区:按照红外吸收光谱与分子结构的关系可将其分为基团频率区(或特征区)(4000~1300cm-1)和指纹区(1300~670cm-1)两大区域。

基团频率区包括:①X—H伸缩振动区(4000~2500cm-1),主要包括C—H,O—H,N—H和S—H键伸缩振动频率区;②三键及积累双键区(2500~1900cm-1),主要包括C≡C,C≡N键伸缩振动及C═C═C 和C═C═O等累积双键的不对称伸缩振动频率区;③双键伸缩振动区(1900~1500cm-1),主要包括C═O(1900~1650cm-1)和C═C(1680~1500cm-1)伸缩振动频率区。

指纹区包括:①1300~900cm-1振动区:主要包括C—O,C—N,C —F,C—P,C—S,P—O,Si—O等单键和C═S,S═O,P═O等双键的伸缩振动频率区以及一些弯曲振动频率区。如C—O的伸缩振动(1300~1000cm-1)和甲基的弯曲振动(~1380cm-1);②900cm-1以下振动区,主要包括一些重原子伸缩振动和一些弯曲振动频率区,δφC—H在这一区域的吸收峰可用来确定苯环的取代类型。某些吸收峰还可用来判定化合物的顺反构型。

(2)常见基团的特征频率表

表6-1 红外吸收光谱与有机化合物分子结构的关系

注:s-强吸收,b-宽吸收带,m-中等强度吸收,w-弱吸收,sh-尖锐吸收峰,v-吸收强度可变

6.影响红外吸收光谱的主要因素

(1)影响吸收峰位置(即基团频率)的因素内部因素:诱导效应、共轭效应和氢键效应;外部因素:物质的物理状态和溶剂效应。

(2)影响吸收峰数目的因素通常大多数化合物在红外光谱上出现的吸收峰数目比理论计算数目有所增减,这主要是由于:①分子中存在着红外非活性振动;②某些振动频率完全相同,即简并为一个吸收峰;有些振动频率相近,仪器分辨不出来;③某些振动吸收强度太弱,仪器检测不出来或某些振动吸收频率超出了仪器的检测范围;④倍频峰和合频峰的产生,使吸收峰增加;⑤振动偶合使得吸收峰发生分裂;⑥费米共振,倍频峰和组频峰与基频峰之间相互偶合而产生的吸收峰的分裂,使吸收峰增多。

7. 红外吸收光谱仪

用于测量和记录待测物质红外吸收光谱并进行结构分析及定性、定量分析的仪器,称为红外吸收光谱仪或红外吸收分光光度计。

仪器的类型:色散型红外吸收光谱仪和干涉型红外吸收光谱仪。

仪器的结构:红外光谱仪的基本结构与紫外光谱仪类似,也由光源、吸收池、单色器、检测器和记录系统等部分组成。干涉型(傅里叶变换型)与普通色散型红外光谱的主要区别在于它有干涉仪和计算机两部分。

8.红外吸收光谱法的应用

红外吸收光谱法广泛用于有机物的定性分析、定量分析及未知物结构的确定。

6.2 习题解答

1.红外光谱是如何产生的?红外光谱区波段是如何划分的?

答:红外光谱是由分子振动能级的跃迁同时伴随转动能级跃迁而产生的。红外光谱波段分为:近红外光(0.78~2.5μm)、中红外光(2.5~

50μm)、远红外光(50~1000μm)。

2.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么?

答:产生的条件是:①某红外光刚好能满足物质振动能级跃迁时所需要的能量;②红外光与物质之间有偶合作用。并非所有的振动都会产生红外吸收,只有当红外光的频率与分子的偶极矩的变化频率相匹配时,分子的振动才能与红外光发生偶合而增加其振动能,使得振幅增大,即分子由原来的振动基态跃迁到激发态,对于非极性双原子分子如N2等完全对称的分子其偶极矩μ为0,分子的振动并不引起μ的改变,因此,与红外光不发生偶合,不产生红外吸收。

3.多原子分子的振动形式有哪几种?

答:多原子分子的振动类型主要有:①伸缩振动,即原子沿化学键轴线的方向伸展和收缩,包括对称伸缩振动和不对称伸缩振动;②弯曲振动,即原子沿化学键轴的垂直方向的振动。振动时键长不变、键角发生变化,包括面内弯曲振动和面外弯曲振动。面内弯曲振动又包括剪式振动和面内摇摆,面外弯曲振动又包括面外摇摆和扭曲振动。

4.影响红外吸收频率发生位移的因素有哪些?

答:影响因素主要有内部因素和外部因素。内部因素:诱导效应、共轭效应和氢键效应;外部因素:物态的影响和溶剂的影响。

5.傅里叶变换红外光谱仪的突出优点是什么?

答:(1)测定速度快从而可实现与色谱的联用;

(2)灵敏度和信噪比高干涉仪部分无狭缝装置因而无能量损失、灵敏度高;

(3)分辨率高波数精度可达0.01 cm-1;

(4)测定范围广。

6.红外光谱中官能团区和指纹区是如何划分的?有何实际意义?

答:将红外光谱中4000~1300cm-1的区域称为官能团区;1300~670cm-1的区域称为指纹区。在官能团区每一个红外吸收峰都和一定的官能团相对应,可以根据红外光谱找出化合物中存在的官能团;在指纹区,各种单键伸缩振动之间及与C―H弯曲振动之间会发生偶合,使该区域的吸收带很复杂,与已知化合物图谱比较,可得出未知物与已知物结构相同或不同的结论。

7. 由下述力常数k数据,计算各化学键的振动频率(波数)。

(1)乙烷的C―H键,k=5.1N·cm-1;(2) 乙炔的C―H键,k=5.1N·cm-1 (3) 苯的C=C键,k=7.6N·cm-1;(4) 甲醛的C=O键, k=12.3N·cm-1。由所得计算值,你认为可以说明一些什么问题?

答:计算

(1)乙烷的C―H

键,11 1

3072cm σ--===

同理可得

(2)乙炔的C―H键:σ2=3304 cm-1

(3)苯的C=C键:σ3=1471 cm-1

(4)甲醛的C=O键:σ4=1750 cm-1

由此可知,①折合相对原子质量A r的平方根与化学键的振动频率(波数)成反比,与折合相对原子质量A r小的C―H键相比,C=C键和C=O 键的振动波数比较低;②键力常数k的平方根与化学键的振动频率(波数)成正比,不同的化学键有不一样的键力常数,键力常数差异决定了折合相对原子质量相近的化学键,如C=C键和C=O键的频率(波数)有明显的差异。

8. 氯仿(CHCl3)的红外光谱表明其C―H伸缩振动频率为3100 cm-1,对于氘代氯仿(CDCl3),其C―D伸缩振动频率是否会改变,如果变动,是向高波数还是低波数方向移动?

答:因为σ=1307(k1/A r)1/2,的折合相对原子质量A r1=12×1/(12+1)=12/13,而C―2H的折合相对原子质量A r2=12×2/(12+2)=12/7,显然,A r2≈2A r1,所以,与氯仿(CHCl3)红外光谱中的C―H伸缩振动频率比较,氘代氯仿(CDCl3)的C―2H伸缩振动频率会改变。从A r2≈2A r1来看,C―2H伸缩振动频率向低波数方向移动。

9.图6-1为1-辛烯的红外光谱,试给出各峰的归属。

图6-1 1-辛烯的红外光谱图

答:

(1)如═CH2的反对称伸缩振动(末端═C—H出现在3085 cm-1附近)及═CH2的对称伸缩振动(═CH2出现在2975 ±10cm-1附近),═CH—的伸缩振动(C—H伸缩振动出现在3040~3010cm-1附近)。

(2)C═C的振动(C═C伸缩振动出现在1680~1620cm-1附近)。

(3)—CH2,—CH3的反对称变形(在1460±10cm-1附近)及—CH3的对称变形(在1370~1380cm-1附近)。

(4)═C—H的面外弯曲振动(在1000~650cm-1处出现强吸收峰)。

(5)═CH2面外摇摆振动(910~890cm-1附近)

(6)—(CH2)5面外摇摆振动 [—(CH2)n—(n>4)的面内摇摆振动720cm-1]。

10. 化合物C8H10O的红外光谱如图6-2所示,推测其结构式。

图6-2 化合物C8H10O的红外光谱图

解:

11. 红外吸收光谱与拉曼光谱有何异同点?

答:红外吸收光谱与拉曼光谱都属分子光谱范畴,都属于分子振动光谱,所不同的是红外光谱是吸收光谱,拉曼光谱是散射光谱,具体地讲有以下相同与不同点:

相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量,两者都在红外光区,都反映分子的结构信息。

不同点:

(2)二者产生的机理不同,红外吸收光谱是由于振动引起分子偶极矩变化产生的,而拉曼光谱是由于电子云的移动使分子极化形成诱导偶极矩,伴有极化率变化产生的。

(3)入射光与检测光不同,红外光谱的入射光和检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光,红外光谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移。

(3)红外光谱一般不能用水作溶剂,因为水本身有红外吸收,且红外池窗片都是金属卤化物,吸水受潮影响测定。而对于拉曼光谱,水的拉曼散射是极弱的,水是拉曼光谱的一种优良溶剂。

(4)红外光谱仪的样品池需要对红外光不产生吸收的特殊材料制

作,而拉曼光谱仪只需对可见光不产生拉曼散射的普通玻璃或石英玻璃制成。

(5)一般来说,分子的极性基团或非对称振动使偶极矩发生变化,属于红外活性的,而分子的非极性基团和全对称振动使分子极化率发生变化,属于拉曼活性的,因此这两种方法是互相补充的。

12.化合物的不饱和度是如何计算的?

答:不饱和度是有机化合物分子中含有双键、三键及环的个数,即碳原子的不饱和程度,其经验公式为Ω=1+n4+1/2(n3-n1)

n4、n3、n1分别为四价元素(C,Si等)、三价元素(N,P等)和一价元素(H,F,Cl,Br等)的个数。

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案.docx

第三章紫外可见吸收光谱法 1人眼能感觉到的可见光的波长范围是( )。 A 、400nm ?760nm B 、200nm ?400nm C 、200nm ?600nm D 、360nm ?800nm 2、 在分光光度法中,透射光强度 (I )与入射光强度(∣0)之比l∕∣0称为( )。 A 、吸光度 B 、吸光系数 C 、透光度 D 、百分透光度 3、 符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置 ( )。 A 、向长波方向移动 B 、向短波方向移动 C 、不移动 D 、移动方向不确定 4、 对于符合朗伯-比尔定律的有色溶液,其浓度为 C 0时的透光度为 T 0;如果其浓度增大 1 倍,则此溶液透光度的对数为 ( )。 A 、T 0∕2 B 、2T 0 C 、2lgT 0 D 、0.5lgT 0 5、 在光度分析中,某有色物质在某浓度下测得其透光度为 T ;若浓度增大1倍,则透光度 为 ()。 2 1/2 A 、T B 、T/2 C 、2T D 、T 6、 某物质的摩尔吸光系数很大,则表明 ( )。 A 、该物质溶液的浓度很大 B 、光通过该物质溶液的光程长 C 、 该物质对某波长的光的吸收能力很强 D 、 用紫外-可见光分光光度法测定该物质时其检出下限很低 7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是 ( )。 B 、待测溶液注到比色皿的 2/3高度处 D 、将比色皿透光面置于光路中 B 、吸光度与浓度成正比 D 、玻璃棱镜适用于紫外光区 9、在分光光度分析中,常出现工作曲线不过原点的情况。与这一现象无关的情况有 ( )。 A 、试液和参比溶液所用吸收池不匹配 B 、参比溶液选择不当 C 、显色反应的灵敏度太低 D 、被测物质摩尔吸光系数太大 10、 质量相等的A 、B 两物质,其摩尔质量 M A > M B O 经相同方式发色后,在某一波长下测 得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是 ( )O A A 、 B Pel A, B ZB A B^ — A 、 B 选择题 A 、比色皿外壁有水珠 C 、光度计没有调零 8、下列说法正确的是( )。 A 、透光率与浓度成正比

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

《仪器分析》教案7 - 红外吸收光谱法

第十章红外吸收光谱法 10.1教学建议 一、从应用实例入手,介绍红外吸收光谱法的基本原理和红外光谱仪结构特征。 二、依据红外谱图确定有机化合物结构,推断未知物的结构为目的,介绍红外光谱分析方法在定性及定量分析的方面的应用。 10.2主要概念 一、教学要求: (一)、掌握红外吸收光谱法的基本原理; (二)、掌握依据红外谱图确定有机化合物结构,推断未知物的结构方法; (三)、了解红外光谱仪的结构组成与应用。 二、内容要点精讲 (一)基本概念 红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。 红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。 振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。 转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。 伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。 弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。 红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。 诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。 共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。 氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。 溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。 基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。 振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。 基团频率区——红外吸收光谱中能反映和表征官能团(基团)存在的区域。 指纹区——红外吸收光谱中能反映和表征化合物精细结构的区域。

仪器分析红外光谱法

第8章红外光谱分析法 教学时数:6学时 教学要求: 1、理解产生红外吸收的条件。 2、了解分子的振动类型,红外光谱中吸收峰增减的原因。 3、理解影响吸收峰的位置、峰数、峰强的主要因素。 4、掌握基团频率和特征吸收峰,主要有机化合物的红外吸收光谱特征。 5、理解影响基团频率位移的因素 6、掌握红外吸收光谱法的定性、定量方法。 7、了解红外光谱的构造与红外制样技术。 教学重点与难点: 重点:红外吸收的条件,影响吸收峰强度的因素,基团频率和特征吸收峰,典型有机化合物的红外光谱主要特征,定性分析。 难点:分子的振动,影响基团频率的因素,结构推断。 §8-1 概述 一、分子光谱与红外光区的划分 E分子= E电子+E振动+ E转动 其中E电子属于紫外,可见研究的范围,分子的振动,转动光谱属于红

外光谱研究的范围。其波长范围约为0.75—1000nm 根据仪器技术及应用不同,习惯上把红外光谱分成三个区: 1、近红外区(λ=0.75—2.5μm ) 主要低能电子跃迁,含氢原子团的倍频吸收,用于研究稀土及其它过渡金属化合物,含氢(-OH 、N-N 、C-H )原子团的吸收 2、中红外区(λ=2.5 —25μm ) 大多有机化合物及无机离子的基频吸收带出现在该光区,主要由分子的振动和转动跃迁引起的,最适用于定性定量分析,且仪器及分析测试技术最成熟。 3、远红外区(λ= 25—1000μm ) 主要是分子的纯转动能级跃迁以及晶体振动很少应用。红外光谱中一般以波数表示谱带的位置,而不是用波长 σ(cm 1-)=) (1cm λ 二、 红外光谱研究的对象及特点 1、研究对象: 红外光谱是振动—转动光谱,但它只能研究震动中伴有偶极矩变化的化合物。 极性分子 有偶极矩变化—红外 μ≠0

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

仪器分析_紫外可见分光光度和红外光谱法习题及参考答案

第三章紫外可见吸收光谱法 一、选择题 1、人眼能感觉到的可见光的波长范围就是()。 A、400nm~760nm B、200nm~400nm C、200nm~600nm D、360nm~800nm 2、在分光光度法中,透射光强度(I)与入射光强度(I0)之比I/I0称为( )。 A、吸光度 B、吸光系数 C、透光度 D、百分透光度 3、符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置( )。 A、向长波方向移动 B、向短波方向移动 C、不移动 D、移动方向不确定 4、对于符合朗伯-比尔定律的有色溶液,其浓度为c0时的透光度为T0;如果其浓度增大1倍,则此溶液透光度的对数为( )。 A、T0/2 B、2T0 C、2lgT0 D、0、5lgT0 5、在光度分析中,某有色物质在某浓度下测得其透光度为T;若浓度增大1倍,则透光度为( )。 A、T2 B、T/2 C、2T D、T1/2 6、某物质的摩尔吸光系数很大,则表明( )。 A、该物质溶液的浓度很大 B、光通过该物质溶液的光程长 C、该物质对某波长的光的吸收能力很强 D、用紫外-可见光分光光度法测定该物质时其检出下限很低 7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的就是( )。 A、比色皿外壁有水珠 B、待测溶液注到比色皿的2/3高度处 C、光度计没有调零 D、将比色皿透光面置于光路中 8、下列说法正确的就是( )。 A、透光率与浓度成正比 B、吸光度与浓度成正比 C、摩尔吸光系数随波长而改变 D、玻璃棱镜适用于紫外光区 9、在分光光度分析中,常出现工作曲线不过原点的情况。与这一现象无关的情况有( )。 A、试液与参比溶液所用吸收池不匹配 B、参比溶液选择不当 C、显色反应的灵敏度太低 D、被测物质摩尔吸光系数太大 10、质量相等的A、B两物质,其摩尔质量M A>M B。经相同方式发色后,在某一波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系就是( )。 A、εA>εB B、εA<εB C、εA=εB D、2εA>εB 11、影响吸光物质摩尔吸光系数的因素就是( )。 A、比色皿的厚度 B、入射光的波长

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

仪器分析-红外吸收光谱法

第6章红外吸收光谱法 6.1 内容提要 6.1.1 基本概念 红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。 红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。 振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。 转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。 伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。 弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。 红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。 诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。 共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。 氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。 溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。 基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生

红外光谱题库

F题目:红外 1009 在红外光谱分析中,用KBr制作为试样池,这是因为:( ) (1) KBr 晶体在4000~400cm-1范围内不会散射红外光 (2) KBr 在4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在4000~400 cm-1范围内无红外光吸收 (4) 在4000~400 cm-1范围内,KBr 对红外无反射 1022 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的?为什么?( ) 1023 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的,为什么? 1068 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与光谱最近于一致?

1072 羰基化合物 R C O O R ( I ) ,R C O R ? ( ¢ò) , R C O N H R ( I I I ) , A r S C O S R ( I V ) 中,C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 1075 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 1088 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C 、H 、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 1097 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括 CH 3- CH 2-CH = O 的吸收带 ( ) 1104 请回答下列化合物中哪个吸收峰的频率最高? ( ) (1) R C O R (2)C O R (3)C O (4) F C O R 1114 在下列不同溶剂中,测定羧酸的红外光谱时,C =O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 1179 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 1180 CO 2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ← → (2) →← → (3)↑ ↑ (4 ) O =C =O O = C =O O = C =O O = C = O ↓ 1181 苯分子的振动自由度为 ( ) (1) 18 (2) 12 (3) 30 (4) 31 1182 双原子分子在如下转动情况下 (如图),转动不形成转动自由度的是 ( )

最新仪器分析[第十四章红外光谱和拉曼光谱分析法]山东大学期末考试知识点复习

第十四章红外光谱和拉曼光谱分析法 1.红外光谱法及特点 (1)利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基本态到激发态的跃迁,得到分子振动能级和转动能级变化产生的振动一转动光谱,又称为红外光谱,红外光谱属于分子吸收光谱的范畴。 (2)有机化合物的红外光谱能提供丰富的结构信息,因此红外光谱是有机化合物结构解析的重要手段之一。 (3)红外吸收谱带的谱峰的位置、谱峰的数目及其强度,反映了分子结构上的特点,通过官能团、顺反异构、取代基位置、氢键结合以及配合物的形成等结构信息可以推测未知物的分子结构。吸收谱带的吸收强度与分子组成或其化学基团的含量有关。 (4)在发生振动跃迁的同时,分子转动能级也发生改变,因而红外光谱形成的是带状光谱。 2.红外光谱的产生条件 (1)照射光的能量E=hν等于两个振动能级间的能量差△E时,分子才能由低 振动能级E 1跃迁到高振动能级E 2 。即△E=E 1 一E 2 ,则产生红外吸收光谱。 (2)分子振动过程中能引起偶极矩变化的红外活性振动才能产生红外光谱。 3.分子振动模型及振动方程 可以将多原子分子看成是双原子分子的集合,采用谐振子模型来研究双原子分子的振动,体系的分子振动方程:

其中μ为折合质量,若设A和B的质量分别为m 1和m 2 ,则 通过振动方程可以看出振动频率ν随力常数k的增加或μ的减少(取决于m 1 和m 2 中较小的一个)而增大。 真实分子的振动并不完全符合胡克定律,不是理想的谐振子,所以谐振子模型应用于真实分子时应加以修正。 4.分子振动自由度 由N个原子构成的复杂分子内的原子振动有多种形式,通常称为多原子分子的简正振动。多原子分子简正振动的数目称为振动自由度,每个振动自由度对应于红外光谱图上一个基频吸收带。 在直角坐标系中,每个质点都可以在x,y,z三个方向上运动,所以N个质点运动的自由度为3N个,除去整个分子平动的3个自由度和整个分子转动的3个自由度,则分子内原子振动自由度为(3N一6)个。 对于直线形分子,若贯穿所有原子的轴是在戈方向,则整个分子只能绕y、z轴转动,因此,线性分子的振动形式为(3N一5)个。 由N个原子构成的非线性分子有(N一1)个化学键,所以伸缩振动(键长变化)有(N一1)种,剩余的(2N一5)种称为变形振动(键角变化),线性分子的伸缩振动和变形振动的个数分别为(N一1)和(2N一4)种。 5.分子的振动类型 振动类型基本上可分为两大类,即伸缩振动和变形振动。

仪器分析红外光谱实验

序号:06 仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工班 姓名:学号 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

红外光谱峰值分析的方法

傅里叶红外光谱分析 第一节一般原理 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱。 第二节紫外光谱 一、紫外光谱的基本原理 用波长围200 nm~800 nm的光照射含有共轭体系的的不饱和化合物的稀溶液时,部分波长的光被吸收,被吸收光的波长和强度取决于不饱和化合物的结构。以波长l为横座标,吸收度A为纵座标作图,得紫外光谱,或称电子光谱。 是化合物紫外光谱的特征常数。 紫外光谱中化合物的最大吸收波长λ max 可见-紫外光谱适用于分析分子中具有π键不饱和结构的化合物。 二、紫外光谱在有机结构分析中的应用 随着共轭体系的延长,紫外吸收向长波方向移动,且强度增大(π→π*),因此可判断分子中共轭的程度。 利用紫外光谱可以测定化合物的纯度或含量。 第三节红外光谱 一、红外光谱的基本原理 用不断改变波长的红外光照射样品,当某一波长的频率刚好与分子中某一化学键的振动频率相同时,分子就会吸收红外光,产生吸收峰。用波长(λ)或波长的倒数—波数(cm-1)为横坐标,百分透光率(T%)或吸收度(A)为纵坐标做图,得到红外吸收光谱图(IR)。分子振动所需能量对应波数围在400 cm-1~4000 cm-1。

二、红外吸收峰的位置和强度 分子中的一个化学键可有几种不同的振动形式,而产生不同的红外吸收峰,键的振动分为两大类。 伸缩振动,用n表示,原子间沿键轴方向伸长或缩短。 弯曲振动用δ表示,形成化学键的两个原子之一与键轴垂直方向作上下或左右弯曲。 组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。 红外光谱的吸收峰分为两大区域: 4000 cm-1~1330 cm-1区域:特征谱带区,是红外光谱分析的主要依据。 1330 cm-1~650 cm-1区域:指纹区。每一化合物在指纹区都有它自己的特征光谱,对分子结构的鉴定能提供重要信息。 (很强);s(强);m(中强);w(弱);红外吸收峰的强弱用下列符号表示:v s v (很弱);b(宽峰)。 w 凡能使键增强的因素,引起峰位向高波数方向移动,反之,则向低波数方向移动。 三、各类化合物的红外光谱举例 (一)烃类化合物 注:烷烃,即饱和烃,是只有碳碳单键和碳氢键的链烃。烷烃的通式为CnH2n+2。 烯烃是指含有C=C键(碳-碳双键)(烯键)的碳氢化合物,单链烯烃分子通式为CnH2n 炔烃,为分子中含有碳碳三键的碳氢化合物的总称,其官能团为碳-碳三键(C≡C),分子通式为CnH2n-2

仪器分析 紫外-可见分光光度和红外光谱法习题及参考答案

紫外-可见分光光度和红外光谱法习题及参考答案 一、填空题 1、分子内部的运动方式有三种,即:、和,相应于这三种不同的运动形式,分子具有能级、能级和 能级。 2、折射率是指光线在速度与在速度的比值。当温度、光波波长固定后,有机化合物折射率主要决定于物质的和。通过折射率可以测定出、以及等。 3、饱和碳氢化合物分子中只有键,只在产生吸收,在200-1000nm范围内不产生吸收峰,故此类化合物在紫外吸收光谱中常用来做。 4、在中红外光区中,一般把4000-1350cm-1区域叫做,而把1350-650区域叫做。 5、在有机化合物中,常常因取代基的变更或溶剂的改变,使其吸收带的最大吸收波长发生移动,向长波方向移动称为___________,向短波方向移动称为___________。 6、在朗伯—比尔定律I/I o = 10-abc中, I o 是入射光的强度, I是透射光的强度, a是吸光系 数, b是光通过透明物的距离,即吸收池的厚度, c是被测物的浓度,则透射比T =_________,百分透过率T% =______, 吸光度A与透射比T的关系为__________________。 7、在单色器的线色散率为0.5mm/nm的条件下用原子吸收分析法测定铁时,要求通带宽度为0.1nm,狭缝宽度要调到。 8、紫外吸收光谱分析可用来进行在紫外区范围有吸收峰的物质的________及________分析。 9、在紫外光谱中,随溶剂极性增加,R带_____移,K带_______移 10、某单色器的线色散率为0.5mm/nm,当出射狭缝宽度为0.1mm时,则单色仪的光谱通带宽度为。 11、对于紫外及可见分光光度计,在可见光区可以用玻璃吸收池,而紫外光区则用________吸收池进行测量。 12、、红外光谱是由于分子振动能级的跃迁而产生,当用红外光照射分子时,要使分子产生红外吸收,则要满足两个条件:(1)________________________________________________,(2)_______________________________________________。 13、把无色的待测物质转变成为有色物质所发生的化学反应称为所用试剂为。 二、选择题 1、符合吸收定律的溶液稀释时,其最大吸收峰波长位置()。 A. 向长波移动 B. 向短波移动 C. 不移动 D.不移动,吸收峰值降低 2、某化合物在紫外光区204nm处有一弱吸收带,在红外特征区有如下吸收峰: 3400cm-1~2400 cm-1宽而强的吸收,1710 cm-1。则该化合物可能是:() A.醛 B.酮 C.羧酸 D.酯 3、光学分析法中,使用到电磁波谱,其中可见光的波长范围为_____。 A. 10~400nm; B. 400~750nm; C. 0.75~2.5mm; D. 0.1~100cm 4、棱镜或光栅可作为______。 A.滤光元件; B.聚焦元件; C.分光元件; D.感光元件. 5、红外光谱法中的红外吸收带的波长位置与吸收谱带的强度,可以用来__ _____。 A.鉴定未知物的结构组成或确定其化学基团及进行定量分析与纯度鉴定; B.确定配位数; C.研究化学位移; D.研究溶剂效应. 6、某种化合物,其红外光谱上3000-2800cm-1,1460 cm-1,1375 cm-1和720 cm-1等处有主要吸收带,该化合物可能是 ______。

相关文档
最新文档