贮氢材料简介

贮氢材料简介
贮氢材料简介

几种纳米贮氢材料研究现状

班级姓名学号:

【摘要】贮氢材料是在一般温和条件下,能反复可逆地(通常在一万次以上)吸入和放出氢的材料。又称贮氢合金或储氢金属间化合物。这种材料在一定温度和氢气压强下能迅速吸氢,适当加温或减小氢气压强时又能释放氢。目前储氢材料有金属氢化物、碳纤维碳纳米管、玻璃储氢微球、纳米贮氢材料等。由于纳米材料比表面积大、表面能高及反应活性强等特性,将纳米技术与贮氢材料结合起来,可以有效提高贮氢合金对氢原子的吸附能力,显著改变材料的贮氢性能。本文简要叙述了纳米贮氢材料相关研究进展。

一、纳米贮氢材料贮氢机制

氢分子与纳米贮氢材料的相互作用有物理吸附和化学吸附两种机制。借助化学吸附的贮氢材料具有较高的体积和质量贮氢能力,但涉及复杂的化学键断裂与形成以及原子的传输过程,焓变较大,这给实际应用会造成一定的技术困难。在物理吸附机制中,氢的贮存是以分子的形式,借助物理吸附的贮氢材料的化学效应较小,但其缺点在于体积贮氢密度较低,即单位体积内氢分子的贮存位置较少。此外,由于氢分子与表面的作用能较低,为0.01~0.1 eV,因此物理吸附机制的工作温度很低,这也给实际应用带来困难。

金属簇是一种基于化学吸附的纳米贮氢材料。业已发现,尺寸小于20 nm的纳米晶态金属和合金,具有与粗大颗粒材料不同的性质。与块状Pd 相比,簇状材料中氢在口相中的溶解度有着显著的增加,但在α相中的溶解度降低,且两相共存区域明显变窄。溶解度间隙窄化现象的出现是由于纳米晶体和大颗粒晶体在吸氢反应中的熵变和焓变的不同。与大颗粒合金相比,纳米晶粒的外壳层可能不发生相转变,而晶粒内部的氢行为不变,这就说明纳米晶粒的表面存在氢的富集。Pd.H的临界转变温度会随着尺寸的减小而下降,同时提出溶解度间隙的变化可通过热力学效应来解释。以Pd81Au19为例,在纳米晶粒边界处氢的富集区和贫化区,导致了与尺寸有较大依赖关系的附加界面压力,此附加压力必须由材料内部压力来补偿,因此颗粒和微晶边界处的长程弹性作用改变了热力学平衡,进而改变了氢的溶解度和总含量。总之,当颗粒减小至纳米量级时,附加界面压力同晶格常数一样,不仅影响氢含量,也可改变临界转变温度。

二、纳米贮氢材料制备方法

纳米贮氢合金的制备方法是贮氢合金纳米化研究的基础。纳米颗粒的生产制备应该满足以下5项基本要求:(1)颗粒尺寸纳米级;(2)团聚少或无团聚现象;

(3)粒度分布窄;(4)表面接近球型;(5)材料成分可控。一般认为凡是满足上述要求的材料制备方法都可以用于纳米贮氢合金材料制备过程。纳米贮氢合金的制备方法按照制备过程的性质可以划分为物理方法和化学方法两大类。

(一)物理法

物理制备方法主要包括机械合金化、快速凝固法、热蒸发沉积法等方法。

1.机械合金化。这是制备纳米贮氢合金最常用的方法,具有设备简单、生产效率高等优点。有研究者利用高能球磨方法制备了纳米Mg2Ni贮氢合金粉末,用于高容量MH/Ni电池氢化物电极性能的研究。机械合金化方法制备纳米级Mg2Ni 合金粉主要经历了“合金化一非晶化一纳米晶化”3个阶段,球磨时间直接影响形成的纳米Mg2Ni合金粉的结构。此法不仅简单易行,可以规模制备具有非平衡相的多组分合金,而且同时可以解决材料的合成和处理过程中的诸多困难。首先是可改善活化性能。机械合金化过程不仅可以破坏表面的氧化层,还可以产生各向同性或异性的晶格应力,形成数量级为1012 cm-2的高密度位错。这些将降低氢化物形成时的弹性应变能,促进相转变。其次,许多氢化物材料需要在苛刻条件或复杂过程下合成,而机械合金化法除可以降低反应条件外,得到的材料也表现出较好的吸放氢动力学性能。反应球磨法是一种合成三元氢化物的新方法。它将起始材料在高压氢气下球磨,所生成的氢化物比起始材料更脆,因此可以缩短合成时间。很多复杂的氢化物均可通过这种方法制备。机械合金化方法存在的问题主要在于生产能耗高、材料成分难以准确控制、颗粒畸变严重以及粒度分布不均等,有待进一步改善工艺生产条件。

2.快速凝固法。即通过制造极端过冷度条件获得纳米颗粒的方法。国外有人在氩气保护下采用单辊旋淬法成功制备出纳米LaNi5系列贮氢合金颗粒,研究表明其贮氢性能及耐蚀性能明显优于常规电弧熔炼得到的蝎型贮氢合金。目前,快速凝固法有望成为二次细化贮氢合金从而达到使常规贮氢合金纳米化的方法,但其缺点主要是设备投入成本高、产量较低、难以规模化生产。

3.热蒸发沉积法。即利用金属在保护气氛下加热蒸发后冷凝形成纳米级颗粒的方法。采用气相沉积法于H2气氛下可制备出20nm左右的TiFeH x颗粒,电化学测试表明该纳米化过程明显克服了TiFe贮氢合金活化困难的缺点。该方法制备的纳米颗粒不仅成分均匀、杂质少,而且可以用于制备具有较高熔点的贮氢合金;其缺点主要是产率前期设备投入成本较高、反应条件控制难度大。

(二)化学法

纳米贮氢合金的化学制备方法主要包括以下3种方法。(1)有机合成法:即以金属有机化合物为基础,通过微乳缩聚等形式得到纳米金属颗粒的方法。美国研究人员采用丁二烯混合四氢呋喃为溶剂,溶解微量镁粉直接制得50nm的MgHx。

(2)均相催化法:即在温和条件下以有机物为催化剂制备纳米颗粒的方法。(3)电化学沉积法:即通过控制电解液浓度、pH值、电流密度、电流波形等电化学参数形成高成核率、低长大速度的沉积条件以获得纳米颗粒的方法。电化学沉积法制备纳米贮氢材料工艺简单、成本低廉,被认为是适合大规模工业化生产纳米贮氢电极材料的理想方法之一。

三、纳米贮氢合金材料特性

储氢合金纳米化提高储氢特性主要表现在以下几个方面原因。(1)对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低。(2)纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定。金属氢化物能够大量生成,单位体积吸纳的氢的质量明显大于宏观颗粒。(3)纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子,有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶体缺陷和位错处的原子具有较高的能量可视为反应的活性中心,从而降低析氢过电位。(4)晶粒的细化使其硬度增加,贮氢合金的整体强度随晶粒尺寸的增加而增强,这对于抗酸碱及抗循环充放粉化,以及抵抗充放电形成的氧压对贮氢基体的冲击大有裨益,并且显著提高了贮氢合金耐腐蚀性。

结语

总体看来,利用纳米结构材料作为贮氢载体还处于探索性阶段,评估其吸放氢的动力学、热力学和循环寿命等与实际应用相关的性能的工作甚少。因此,期待纳米结构的贮氢材料投入实际应用为时尚早。最近几年将纳米技术应用到贮氢材料研究中所取得的创新性成果,不仅更新了研究思路,拓宽了材料设计及其功能化范围,而且使我们有理由相信,随着进步的不断扩大,有希望实现工业界所提出的质量分数5%~6.5%的预期目标。问题的关键是如何在保证高容量的前提下,实现材料热力学和动力学性能的最优化。要解决这一问题需要学科间的多

层次的交叉和融合,而纳米技术正是具有这样的技术特点,它为我们提供了能够在深层次的水平上,认识氢在材料中的微观化学和物理性质,也为进一步“裁剪”出性能优良的贮氢材料提供了可靠的技术支撑。

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

储氢材料

储氢材料 摘要:作为一种新型的清洁能源,氢的廉价制取、安全高效储存与运输及其模型应用,将是今后研究的重点。本文介绍了储氢材料的结构、性能、制 备及应用;展望了储氢材料的发展趋势。 关键字:氢;储氢材料;清洁能源 1引言 随着传统能源的日渐枯竭,致使人类面临着能源、资源和环境危机的严峻挑战,同时人们环保意识的日益增强,开始大力寻找新的洁净能源己成为科研工作的焦点[l]。在这些过程中,氢以其独有的优点逐渐得到人们的公认。氢作为洁净能源具有以下优点:(l) 氢的燃烧产物是水,对环境不产生任何污染;(2) 氢可以通过太阳能、风能等分解水而再生,是可再生能源;(3) 燃烧1g氢放出的热量是等量汽油的3倍左右;(4) 氢资源丰富,可通过水、碳氢化合物等电解或分解生成。由此可见,氢是一种清洁,高效的能源,在未来有着广阔的应用前景。在氢能利用过程中,有两个重要的方面,即氢能的制备和储运。在氢能的制备方面:人类通过利用太阳能光解海水可以制得大量的氢;故氢的储存和运输是其发展和应用中遇到的难点之一。 2 氢的存储标准与现状 “储氢材料”顾名思义是一种能够储存氢的材料。衡量储氢材料性能的标准主要有2个:体积储氢密度(kg/m3)和储氢质量分数(%)。体积储氢密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的比值。另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数[2]。 和其它物质一样,氢的存在状态也是固态、液态、气态。气态时存储方式较为简单方便,也是目前储存压力低于17MPa氢气的常用方法。但其密度较小,体积大;由于是易燃气体在运输和使用过程中存在安全隐患是该方法的不足之处。液态储氢方法的体积密度高(70kg/m3),但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%~45%。液态氢不仅储存成本高,而且使用条件苛刻,目前只限于在航天技术领域中应用。因此这些传统的储氢方法根本无法满足现代社会对氢能利用的要求。为此世界各国纷纷投人大量精力来解决这一难题。随着研究的深入进展,在储氢材料领域中逐渐出现了多样化,其中最典型的有三大类:金属储氢材料、多孔吸附储氢材料、有机液态储氢材料等。

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.360docs.net/doc/a91705176.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

碳基和有机物储氢材料的研究进展_吕丹

碳基和有机物储氢材料的研究进展 吕 丹1,2,刘太奇1 (1.北京石油化工学院环境材料研究中心,北京102617;2.北京化工大学,北京100029) 摘 要:日益严峻的能源危机和环境污染,使得发展清洁的可再生能源成为各个国家的重要议题。氢能源以其可再生性和良好的环保效应成为未来最具发展潜力的能源载体。氢的储存是发展氢能技术的难点之一。本文介绍了目前很受关注的两种储氢材料:碳基储氢材料和有机物储氢材料。其中碳基储氢材料主要介绍了活性炭、碳纤维、碳纳米管及碳化物的衍生物;而有机物储氢材料主要介绍了有机液体和金属有机物。同时对碳基及有机物储氢材料的研究进展进行了综述。指出了碳基储氢材料的未来研究方向,提出了金属有机多孔材料的逐步发展,是开发新型多孔材料的一个关键,也是探索新型的金属有机物储氢材料的关键。 关键词:碳基储氢材料;有机物储氢材料;金属有机物 中图分类号:TQ127.12 文献识别码:A 随着环境污染的日趋严重以及石油、煤等能源的逐渐枯竭,世界各国都已开始致力于新能源的研究与开发。氢气是一种高能量密度、清洁且资源丰富的绿色新能源,它在燃料电池以及高能可充放电电池等方面展现了很好的应用前景,从而有望成为未来世界的主要能源。在利用氢能的过程中,氢气的储存和运输是关键问题。目前所用的储氢材料主要有合金、碳材料、有机化合物以及玻璃微球和某些络合物。本文主要讨论碳基及有机物储氢的储氢功能特点,综述了它们的近期研究进展。 1 碳基储氢材料 1.1 活性炭储氢 Carpetis是最早研究在活性碳中吸附储存氢的学者,他在论文中第一次提到将低温吸附剂运用到大型储氢系统中,指出氢气在活性炭中吸附储存的容积密度和液态氢的容积密度相当。当温度为78 K和65K,压力为4.20×105Pa时,氢气在活性炭上的储氢质量分数分别为6.37%和7.58%[1]。但是普通活性炭储氢,即使在低温下储氢量也达不到质量分数1%,对氢气的储存能力不太明显,只是活性炭便宜且容易制得。周理等用比表面积3000 m2/g,微孔容积1.5mL/g的超级活性炭,在-196℃,3MPa下储氢量达到质量分数5%。但随温度提高,储氢量越来越低[2]。詹亮等用高硫焦制备了一系列的活性炭,研究表明氢在超级活性炭上的储存量,在较低压力下随压力升高而显著增加;在较高压力下,活性炭的比表面积对其影响较为明显。在293K/5MPa,94K/6M Pa下,超级活性炭上的储氢质量分数达1.90%,9.80%[3]。 活性炭贮氢主要用于低压吸附贮氢,如作为汽车燃料的贮存。由于该技术具有压力低、贮存容器自重轻、形状选择余地大、成本低等优点,已引起广泛关注。但美国能源部(DOE)要求,对燃料电池电动汽车,其体积储氢密度必须达到63kg/m3,质量分数6.50%。从已有的应用研究证明,各种分子筛和超级活性炭均达不到DOE的要求[4]。 1.2 碳纤维储氢材料 碳纳米纤维表面具有分子级细孔,内部直径大约10nm的中空管,比表面积大,而且可以合成石墨层面垂直于纤维轴向或与轴向成一定角度的鱼骨状特殊结构的纳米碳纤维,大量氢气可以在纳米碳纤维中凝聚,从而可能具有超级贮氢能力[5]。 石墨纳米纤维由含碳化合物经所选金属颗粒催化分解产生。Chambe rs等用鲱鱼骨状的纳米炭纤维在12MPa,25℃下竟然得到的储氢质量分数为67%,但至今无人能重复此结果。最近Angela等人报道了进行各种预处理的石墨纳米纤维,在预处理阶段具有显著的储氢水平。最好的预处理能导致在7.04M Pa和室温下储存氢气的质量分数为3.80%[6]。 范月英等用纳米炭纤维于12M Pa,25℃下储存了质量分数13.60%的氢气[7]。毛宗强等用自制的碳纳米纤维在特制的不锈钢高压回路中进行了吸附储氢的验证实验,发现在室温条件下,经适当处理的碳纳米纤维的储氢能力最高可达9.99%[8]。 螺旋形炭纤维是20世纪90年代初日本的Mo-tojima等以镍作催化剂,采用催化热解乙炔方法制备而得并能很好地重复[9]。螺旋炭纤维由于具有不同手性的特殊螺旋结构(手性材料的最大特点是具有电磁场的交叉极化性能),从而使其有可能在储能材料、微电子器件、电磁波吸收剂等诸多领域得到应 14《新技术新工艺》纳米材料、新材料研究进展综述 2006年 第8期

储氢材料概述 (1)

课程论文 储氢材料概述Hydrogen storage material in the paper 作者姓名:关体红 年级专业: 2010 级应用化学 课程名称:化工实用技术 学号: 20105052006 指导教师:许东利 完成日期: 2012-06-15 成绩: 信阳师范学院 Xinyang Normal University

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1 碳基储氢材料 (2) 1.1活性炭储氢 (2) 1.2 碳纤维储氢材料 (3) 1.3 碳纳米管储氢材料 (3) 1.4 碳化物的衍生物作为储氢材料 (4) 2 有机物储氢材料 (4) 3 储氢合金 (5) 3.1 镁系 (5) 3.2 稀土系 (6) 3.3 钛系 (6) 3.4 锆系 (6) 3.5 V基固溶体储氢合金 (6) 4 配位氢化物储氢材料 (7) 结束语 (7) 参考文献 (8)

信阳师范学院化学化工学院学年论文 储氢材料概述 学生姓名:关体红学号:20105052006 化学化工学院2010级应用化学 课程名称化工实用技术 摘要:氢能是21世纪主要的新能源之一。作为一种新型的清洁能源 ,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题 ,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢 ,在氢的储存与输送过程中是一种重要载体。本文综述了目前研究最广的四大类储氢材料:碳基储氢材料、有机物储氢材料、储氢合金、配位氢化物储氢材料。 关键词:储氢;碳基;有机液体;储氢合金;配位氢化物 Hydrogen storage material in the paper Abstract:In the 21st century, the hydrogen is one of the major new energy. As a new type of clean energy, the cheap hydrogen production, storage and transportation safety and efficiency and scale of application is the key research subject, and hydrogen storage is the key of hydrogen application. Hydrogen storage material can absorb a large reversibly put hydrogen, in hydrogen storage and transport process is a kind of important carrier. This paper summarized the present study is the most extensive four categories of hydrogen storage material: carbon hydrogen storage material and organic hydrogen storage material, hydrogen storage alloy, coordination hydride hydrogen storage material. Keywords:Hydrogen storage; Carbon; Organic liquid. Hydrogen storage alloy; Coordination hydride 引言 人类进入21世纪,节能环保不再只是一句口号。随着能源紧张与环境污染问题的日益凸显,新能源和清洁能源的开发利用受到人们越来越多的关注。在众多新能源中,氢能被人们寄予了厚望。

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.360docs.net/doc/a91705176.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

储氢材料与方式

储氢材料的研究概况与发展方向 随着社会发展、人口增长,人类对能源的需求将越来越大。以煤、石油、天然气等为代表的化石能源是当前的主要能源,但化石能源属不可再生资源,储量有限,而且化石能源的大量使用,还造成了越来越严重的环境污染问题。因此,可持续发展的压力迫使人类去寻找更为清洁的新型能源。氢能作为一种高能量密度、清洁的绿色新能源,氢能的如何有效利用便引起了人们的广泛研究。 目前来看,氢能的存储是氢能应用的主要瓶颈。氢能工业对储氢的要求总的来说是储氢系统要安全、容量大、成本低、使用方便。美国能源部将储氢系统的目标定为:质量密度为6.5%,体积密度为62kgH2/m3。瞄准该目标,国内外展开了大量的研究。本文综述了目前所采用或正在研究的主要储氢材料与技术,包括金属氢化物、碳质材料、配位氢化物、水合物,分析了它们的优缺点,同时指出其相关发展趋势。 1金属氢化物 金属氢化物储氢具有安全可靠、储氢能耗低、储存容量高(单位体积储氢密度高)、制备技术和工艺相对成熟等优点。此外,金属氢化物储氢还有将氢气纯化、 压缩的功能。因此,金属氢化物储氢是目前应用最为广泛的储氢材料。 储氢合金是指在一定温度和氢气压力下,能可逆地大量吸收、储存和释放氢气的金属间化合物。储氢合金由两部分组成,一部分为吸氢元素或与氢有很强亲和力的元素(A),它控制着储氢量的多少,是组成储氢合金的关键元素,主要是I A~ VB族金属,如Ti、Zr、Ca、Mg、V、Nb、Re(稀土元素);另一部分则为吸氢量小或根本不吸氢的元素(B),它则控制着吸/放氢的可逆性,起调节生成热与分解压力的作用,女口Fe、Co、Ni、Cr、Cu、Al等。图1列出了一些金属氢化物的储氢能力。 目前世界上已经研制出多种储氢合金,按储氢合金金属组成元素的数目划分,可分为:二元系、三元系和多元系;按储氢合金材料的主要金属元素区分,可分为:稀土系、镁系、钛系、钒基固溶体、锆系等;而组成储氢合金的金属可分为吸氢类(用A表示)和不吸氢类(用B表示),据此又可将储氢合金分为:AB5型、AB2 型、AB 型、A2B 型。 1.1稀土系储氢合金

储氢材料

目录 前言 (2) 1.储氢材料分类 (3) 1.1储氢合金 (3) 1.1.1稀土系储氢合金 (3) 1.1.2镁系储氢合金 (3) 1.1.3钛系储氢合金 (3) 1.2络合物储氢材料 (4) 1.3纳米材料 (4) 1.4玻璃微球储氢 (4) 2.储氢材料的制备方法 (5) 2.2机械合金化法 (5) 2.3氢化燃烧合成法 (5) 2.4化学合成法 (6) 2.5烧结法 (6) 3.储氢材料的应用 (6) 3.1 氢气的“固态化”储存与运输 (6) 3.2氢气的超纯净化 (7) 3.3 氢气的压缩 (7) 3.4 空调制冷与热泵 (7) 3.6 真空技术 (7) 3.7 氢化物-镍电池 (8) 4.结语与展望 (8) 参考文献 (9)

前言 随着石油资源的日渐匮乏和生态环境的不断恶化,氢能被公认为人类未来的理想能源。这是因为:a.氢燃烧释能后的产物是水,是清洁能源;b.氢可通过太阳能、风能等自然能分解水而再生,是可再生能源;c.氢能具有较高的热值,燃烧1 kg氢气可产生1.25×106kJ 的热量,相当于3kg汽油或4.5 kg 焦炭完全燃烧所产生的热量;d.氢资源丰富,氢可以通过分解水制得。另外,在化工与炼油等领域副产大量氢气,尚未充分利用。可以预见,未来世界将从以碳为基础的能源经济形态转变为以氢为基础的能源经济形态(简称“氢经济”)。 氢能的开发和利用涉及氢气的制备、储存、运输和应用4大关键技术。本文讨论氢气的储存技术。[1]其中能量的储存和转换一直是能量有效利用的关键所在。传统的储氢手段主要是用钢瓶来储存氢气,其缺点是效率低,同时需要钢瓶具有耐高压、防泄漏的特性,比较苛刻。储氢材料由于其具有很高的氢气存储密度而受到人类的瞩目因此成为材料科学中研究的重点功能材料之一。储氢材料就作为一种极其重要的功能材料,在二次能源领域内具有不可替代的作用,特别是在燃料电池、可充电电池研究中,具有举足轻重的地位。储氢材料的研究直接关系着电动汽车的应用,也同样对潜艇、航天器等领域有着重要的影响。近几十年来世界各国都投入了巨大的人力、物力、财力对储氢材料进行研究,力图抢占这一基础材料研究的制高点。[2]

储氢材料研究现状和发展前景

储氢材料研究现状和发展前景摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的 重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是 氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材 料, 如镁基储氢材料、碳基储氢材料、纳米储氢材料、稀土储氢材料、氨硼烷基 储氢材料的研究进展、发展前景和方向。 关键词:储氢材料、研究现状、发展前景、研究方向 Research and development prospects of the hydrogen storage materials Abstract: As a new type of green energy with high energy density, hydrogen has at tracted extensive attentionon research and applicat ions al l over the world. Consequently, hydrogen storage materials, which are important carriers in hydrogen storage and transport , are one of the hot research topics nowadays.This article reviews the hydrogen storage materials ,such as magnesium based hydrogen storage materials, carbon-based hydrogen storage materials, nanotechnology, hydrogen storage materials, rare earth hydrogen storage materials, ammonia boron alkyl hydrogen storage materials. we review the development prospects and direction. Keywords: hydrogen storage materials; Research; Prospects for development; Research Orientation 引言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体, 正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视, 以期在21 世纪中叶进入氢能经济时代。氢能的利用需要解决三个问题:

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属氢化→MHx+ΔH(生成热)。 物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

储氢材料介绍

储氢材料简介 摘要:化石能源的大规模开发利用带来了严重的能源和环境问题,新能源开发是解决能源危机和环境污染问题的一条出路,氢能因其独特优势而倍受青睐。但氢的储存是氢能利用的瓶颈,高效、安全的储氢方式一直是氢能工作者的不懈追求。储氢材料的研究开发有助于消除储氢的技术障碍,从而促使整个氢工业的发展。本文通过介绍氢的储存方式、一些常用的储氢材料,特别是储氢合金,使读者对储氢材料的储氢原理、分类、各自的优缺点以及应用有个初步的了解。 关键词:氢能储氢材料储氢合金 目录 第一章绪论----------------------------------------------------------------------------- 第二章储氢方式----------------------------------------------------------------------- 2.1 气态储存----------------------------------------------------------------------- 2.2液化储存------------------------------------------------------------------------ 2.3固态储存------------------------------------------------------------------------ 第三章储氢材料------------------------------------------------------------------------ 3.1 储氢合金------------------------------------------------------------------------ 3.1.1金属储氢原理---------------------------------------------------------- 3.1.2 储氢合金的要求------------------------------------------------------ 3.1.3储氢合金的分类------------------------------------------------------- 3.1.4储氢合金的应用-------------------------------------------------------- 3.2配位氢化物储氢材料---------------------------------------------------------- 3.3碳质储氢材料------------------------------------------------------------------- 3.3.1活性炭-------------------------------------------------------------------- 3.3.2碳纤维-------------------------------------------------------------------- 3.3.3有机液体氢化物-------------------------------------------------------- 第一章绪论 人类进入21世纪,节能环保不再只是一句口号。随着能源紧张与环境污染问题的日益凸显,新能源和清洁能源的开发利用受到人们越来越多的关注。在众多新能源中,氢能被人们寄予了厚望。

相关文档
最新文档