简述输电线路纵联差动保护的原理

简述输电线路纵联差动保护的原理

输电线路纵联差动保护是一种常用的保护方式,用于检测和定位输电线路的故障。其原理是通过比较线路两端的电流差值,来判断是否有故障发生,并且能够定位故障发生的位置。

具体而言,纵联差动保护是基于基尔霍夫电流定律和分流器原理设计的。在一条正常工作的输电线路中,线路两端的电流是相等且方向相反的。如果发生了线路故障,比如短路或接地故障,会导致电流产生偏差。纵联差动保护通过监测线路两端的电流差值来判断故障的存在。

纵联差动保护通常由保护继电器和电流互感器组成。电流互感器用于测量线路两端的电流,并将测得的电流信号传输给保护继电器。保护继电器会比较线路两端的电流差值,如果差值超过设定的阈值,则判断为故障发生。

纵联差动保护不仅能够检测到线路上的故障,还能够定位故障的位置。当故障发生时,保护继电器会通过测量电流差值的大小来判断故障的位置。根据不同的故障类型,可以采用不同的定位方法,如使用方向元件或差动比率定位等。

总的来说,纵联差动保护通过比较线路两端的电流差值来检测和定位输电线路上的故障。它具有响应速度快、可靠性高等优点,被广泛应用于输电线路的保护系统中。

纵联差动保护

6.2 纵联差动保护 6.2.1 基本原理 6.2.1.1 定义 差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 6.2.1.2 基本原理 变压器纵差保护是按照循环电流原理构成的 变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2• ''I =0,保证纵差保护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。 (a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布 (图6.4 变压器纵差保护原理接线图) 在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2• ''I ,即 2•'I =2•''I = 11i n I •'=21i n I • '' (6.1) 即 12i i n n =1 1•• '''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。 若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为 K I •=2•'I -2• ''I =0 (6.3) 当区内故障时,2•''I 反向流出,则流入差动继电器的电流为

差动保护线路的工作原理

差动保护线路的工作原理 差动保护是一种常见且重要的电力保护装置,广泛应用于电力系统的高压线路、变压器等设备中。差动保护的主要作用是保护被保护设备免受劣质或故障电流的影响,以防止设备因电流过载、短路等故障而受损。下面将从差动保护线路的工作原理、结构、特点和应用方面进行解析。 差动保护线路的工作原理是通过比较电流输入和输出,判断设备正常还是存在故障,并根据判断结果触发保护动作。其基本原理是基于法拉第定律,即从线圈周围的总磁通等于通过该线圈的电流的积分。差动保护线路通过将需要保护的电流通过互感器转化为电压信号,然后将这些信号输入到差动保护装置中进行比较。当输入信号之和等于输出信号时,系统认为设备正常;当输入信号之和不等于输出信号时,系统判断设备存在故障,此时差动保护装置将触发保护动作,如跳闸或断开故障设备。 差动保护线路的结构通常由互感器、匝数比较器、差动继电器和输出装置组成。互感器将电流信号转换成电压信号,匝数比较器将输入信号之和与输出信号进行比较,差动继电器根据比较结果触发保护动作,输出装置负责将触发信号发送到断路器等保护设备,以进行相应的操作。 差动保护线路的特点有以下几个方面。首先,差动保护具有高灵敏度和快速动作的特点,能够在故障发生的瞬间进行准确判断和保护动作,有效地防止设备故障的扩大。其次,差动保护具有较强的适应性和稳定性,能够适应不同类型和容量

的电气设备,并能够在复杂的电力系统环境中稳定运行。此外,差动保护具有一定的误动特性,能够排除外界因素的影响,确保准确判断故障信号。 差动保护在电力系统中有着广泛的应用。首先,差动保护广泛应用于高压线路和变压器等重要设备中,可以及时发现和隔离设备故障,确保电力系统的正常运行。其次,差动保护还广泛应用于电气设备的原理保护和后备保护中,可以提高电力设备的可靠性和安全性。此外,差动保护还可以与其他保护装置相结合,形成多重保护系统,提供全面的保护措施,从而降低设备的维修和更换成本。 总之,差动保护线路是一种常见且重要的电力保护装置,通过比较输入和输出电流信号,判断设备正常与否,并根据判断结果触发相应的保护动作。差动保护具有高灵敏度、快速动作、稳定性和可靠性的特点,在电力系统中有着广泛的应用,能够有效防止设备故障的扩大,提高电力设备的可靠性和安全性。

继电保护及原理归纳

主要的继电保护及原理 一、线路主保护纵联保护 纵联保护:利用某种通信通道将输电线路两端的保护装置纵向连接起来,将各端的电气量传送到对端,将各端的电气量进行比较,一判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路; 任何纵联保护总是依靠通道传送的某种信号来判断故障的位置是否在被保护线路内,信号按期性质可分为三类:闭锁信号、允许信号、跳闸信号; 闭锁信号:收不到这种信号是保护动作跳闸的必要条件; 允许信号:收到这种信号是保护动作跳闸的必要条件; 跳闸信号:收到这种信号是保护动作与跳闸的充要条件; 按输电线路两端所用的保护原理分,可分为:纵联差动保护、纵联距离保护、纵联方向保护; 通道类型:一、导引线通道;二、载波高频通道;三、微波通道;四、光纤通道; 1)纵联差动保护 纵联差动保护:原理是根据基尔霍夫定律,即流向一个节点的电流之和等于零; 差动保护存在的问题: 一、对于输电线路 1、电容电流:电容电流从线路内部流出,因此对于长线路的空载或轻载线路容 易误动; 解决办法:提高启动电流值牺牲灵敏度;加短延时牺牲快速性;必要是进行电容电流补偿;

注:穿越性电流就是在保护区外发生短路时,流入保护区内的故障电流;穿越电流不会引起保护误动; 2、TA断线,造成保护误动 解决办法:使差动保护要发跳闸命令必须满足如下条件:本侧起动原件起动;本侧差动继电器动作;收到对侧“差动动作”的允许信号; 保护向对侧发允许信号条件:保护起动;差流元件动作 3、弱电侧电流纵差保护存在问题变压器不接地系统的弱电侧在轻载或空载时 电流几乎没有变化 解决办法:除两侧电流差突变量起动元件、零序电流起动元件和不对应起动元件外,加装一个低压差流起动元件; 4、高阻接地是保护灵敏度不够 在线路一侧发生高阻接地短路时,远离故障点的一侧各个起动元件可能都不启动,造成两侧差动保护都不能切除故障; 解决办法:由零序差动继电器,通过低比率制动系数的稳态相差元件选相,构成零序1 段差动继电器,经延时动作; 注:比率制动差动即一个和电流差动,一个差电流制动,两者综合考虑,差电流越大,才能动作; 5、采样不同步 解决办法:改进技术 6、死区故障 解决办法:远跳 线路M、N侧;将M侧母线保护动作的接点接在电流差动保护装置的“远跳”端

纵联差动保护原理

纵联差动保护原理 纵联差动保护是一种常用的电力系统保护方式,它主要用于保护输电线路和变电站设备,对于电力系统的安全稳定运行起着至关重要的作用。纵联差动保护原理是基于电流的比较和判断,通过对电流进行差动比较,实现对设备内部故障的快速检测和定位,从而保护电力系统的安全运行。 首先,我们来了解一下纵联差动保护的基本原理。在电力系统中,设备的正常运行需要保证电流的平衡和稳定。当设备发生故障时,会导致电流不平衡,纵联差动保护就是利用这一点来实现对故障的检测和保护。纵联差动保护装置会对设备的电流进行采样,并将采样值进行差动比较,当检测到电流不平衡时,就会发出保护动作信号,从而实现对设备的保护。 其次,纵联差动保护的实现需要考虑一些关键因素。首先是采样精度和速度,高精度和快速的采样对于准确判断电流是否不平衡至关重要。其次是保护装置的可靠性和稳定性,保护装置需要能够在各种复杂的工作环境下可靠地工作,确保对设备故障的快速响应。另外,对于纵联差动保护的设计和参数设置也需要进行合理的考虑,以确保其在实际运行中能够有效地保护设备。 最后,纵联差动保护在实际应用中需要与其他保护装置配合工作。在电力系统中,除了纵联差动保护外,还需要考虑过流保护、接地保护等其他保护方式,这些保护装置需要协同工作,共同保护电力系统的安全稳定运行。因此,在设计和应用纵联差动保护时,需要考虑其与其他保护装置的配合,并进行合理的设置和调试,以实现对电力系统全面的保护。 综上所述,纵联差动保护原理是基于电流的差动比较,通过对电流的差异进行判断,实现对设备故障的快速检测和保护。在实际应用中,需要考虑采样精度、保护装置可靠性、与其他保护装置的配合等关键因素,以确保纵联差动保护能够有效地保护电力系统的安全稳定运行。

浅谈输电线路的纵联保护

浅谈输电线路的纵联保护 摘要:本文首先就输电线路纵联保护原理、概念、分类进行了介绍,而后进一 步深入,对纵联差动保护应解决的主要问题及解决措施展开了剖析。 关键字:纵联保护;故障;光纤纵联差动保护 一、纵联保护 (一)基本原理 纵联保护是将线路两侧测量信息进行判断实现全线速动保护,其基本原理有 如下三种: (二)概念和分类 将线路两侧测量信息传到对侧进行比较构成的全线速动保护,称作线路纵联保护。线路 纵联保护不需与其他保护配合,不受负荷电流的影响,不反应系统震荡,有良好的选择性。 通常用高频通道组成的纵联保护称高频保护,用光纤通道组成的纵联保护称光纤纵联差动保护。 二、纵联差动保护应解决的主要问题及措施 (一)纵联差动保护应解决的主要问题 1、输电线路电容电流的影响 电容电流是从线路内部流出的电流,因此它构成动作电流。由于负荷电流是穿越性的电流,它只产生制动电流。所以在空载或轻载下电容电流最容易造成保护误动。 2、外部短路或外部短路切除时产生的不平衡电流 外部短路或外部短路切除时,由于两端电流互感器的变比误差不一致、暂态过程中由于 两端电流互感器的暂态特性不一致、二次回路的时间常数的不一致产生不平衡电流。 3、重负荷线路区内经高阻接地时灵敏度不足的问题 4、正常运行时电流感器(TA)断线造成纵联电流差动保护误动作 正常运行时当输电线路一端的TA断线时差动继电器的动作电流和制动电流都等于未断线一端的负荷电流。由于差动继电器的制动系数小于1,起动电流值又较小,因此工作点将落 在比率制动特性的动作区内造成差动继电器动作。 5、弱电端拒动的问题 当线路有一端背后无电源或为小电源时该端称为弱电端。 6、输电线路两端保护采样时间不一致所产生的不平衡电流的问题 引起两侧采样不同步的原因:(1)两侧装置上电时刻的不一致;(2)一侧数据传送到 另一侧有通道时延和数据接收时延;(3)两侧装置晶振存在固有偏差; (二)解决措施 1、防止电容电流造成保护误动的措施 (1)提高差动继电器比率制动曲线中的起动电流Iqd的定值来躲电容电流的影响。当然 提高定值的方法是以牺牲内部短路的灵敏度作为代价的。(2)加短延时。保护动作加一个 短延时(40ms)。用 1.5倍的电容电流作为起动电流的定值再加延时躲电容电流的影响。(3)进行电容电流的补偿。计算出本线路的电容电流IC,然后在求动作电流时将该电流减去,实 现电容电流补偿。 2、解决外部短路或外部短路切除时产生的不平衡电流的措施 从整定值上、从动作特性上的制动系数取值上考虑这些影响。 3、解决重负荷线路区内经高阻接地时灵敏度不足的问题的措施 经高电阻短路,短路电流很小,因此动作电流很小,可能造成灵敏不够。解 决的办法:采用工频变化量继电器和零序差动继电器。

110KV供电系统中的各种保护

1、纵联差动保护,即输电线的纵联差动保护,是用某种通信通道 将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路范围外,从而决定是否切断被保护线路。 2、差动保护 差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 特性 由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。以前由于受辅助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,由于光纤的广泛使用,纵联差动保护已可作为长线路的主保护。对于发电机、变压器及母线等,均可广泛采用纵联差动保护实现主保护。 保护原理 所谓变压器的纵联差动保护,是指由变压器的一次和二次电流

的数值和相位进行比较而构成的保护。纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。对于变压器线圈的匝间短路等内部故障,通常只作后备保护。 联差动保护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到保护作用。变压器纵差保护原理接线图 变压器纵差保护是按照循环电流原理构成的,变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差保护不动作。但由于变压器高压侧和低

差动保护基本原理

差动保护基本原理 母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流之差,也就是说差动继电器是接在差动回路的。从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。 为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不相同 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护 也有采用两套光纤电流,两套高频的比较少了

高压线路纵联保护基本原理

概述输电线的纵联保护,就是用某种通信通道(简称通道)将输电线两端或 各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在个线路范围内还是在线路范围之外,从而决定是否切断被保护线路。因此,理论上这种纵联保护具有绝对的选择性。 基本原理利用比较两侧的电流相位或功率方向判断故障是否在区内按照纵联保护构成原理分类 单元式纵联保护 将输电线看作一个被保护单元如同变压器和发电机一样。 这种保护方式是从输电线的每一端采集电气量的测量值,通过通信通道传送到其他各端。在各端将这些测量值进行直接比较,以决定保护装置是否应该动作跳闸。如比较 电流相位的相位差动保护、比较电流波形(幅值和相位)的电流差动保护 非单元式保护 也是在输电线各端对某种或某几种电气量进行测量,但并下将测量值直接传送到其他各端,直接进行比较。而是传送根据这些测量值得到的对故障性质(如故障方向、故障位置等)的判断结果。如方向比较式纵联保护、距离纵联保护等 按照传送的通信信号分类 任何纵联保护都是依靠通信通道传送的某种信号来判断故障的位置是否在被保线路内。因此信号的性质和功能在很大程度上决定了保护的性能。 信号按其性质可分为三种; 闭锁信号、允许信号和跳闸信号。 这三种信号可用任一种通信通道产生和传送。 闭锁信号 以两端线路为例,所谓闭锁信号就是指:“收不到这种信号是保护动作跳闸的必要条件”。就是当发生外部故障时,由判定为外部故障的一端保护装置发出闭锁信号,将两端的保护闭锁。而当内部故障时,两端均不发、因而也收不到闭锁信号,保护即可动作于跳闸。 允许信号 所谓允许信号是指:“收到这种信号是保护动作跳闸的必要条件”。因此,当内部故障是,两端保护应同时向对端发出允许信号,使保护装置能够动作于跳闸。而当外部故障时,则因接近故障点端判出故障在反方向而不发允许信号,对端保护不能跳闸,本端则因判出故障在反方向也不能跳闸。 跳闸信号 跳闸信号是指:“收到这种信号是保护动作于跳闸的充要条件”。实现这种保护时,实际上是利用装设在每一端的瞬时电流速断、距离I段或零序电流瞬时速断等保护,当其保护范围内部故障而动作十跳闸的同时,还向对端发出跳

纵联保护原理

纵联保护原理 对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。 因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。 为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。快速性、选择性都得到了保证。 在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护的方式: 1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频

信号采用收发不同频率,即双频制。 3、直跳式:也就是说收到高频信号是保护跳闸的充分必要条件。一般应用于欠范围式纵联保护。 4、差动式:也就是说将对侧电气量转化为数字信号传送到本侧进行直接计算 二、故障时允许式信号、闭锁式信号的特点 闭锁式信号主要在非故障线路上传输 允许式信号主要在故障线路上传输 所以说,对于闭锁信号可以利用电力线路相-地通道构成闭锁式保护;而允许信号由于主要在故障线路上传输,则只能采用相-相通道或者是复用载波、复用微波、专用光纤通道。

差动保护基本原理

精心整理差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 I1与I2之和,即 3、 现在 4、 1 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得

正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应 使 1.全线速动保护在高压输电线路上,要求继电保护无时限地切除线路上任一点发生的故障。 2.单侧测量保护无法实现全线速动所谓单侧测量保护是指保护仅测量线路某一侧的母线电压、线路电流等电气量。单侧测量保护有一个共同的缺点,就是无法快速切除本线路上的所有故障,最长切除时间 为0.5秒左右。由上图可以看出本线路末端故障k1与下线路始端故障k2两种情况下,保护测量到的电流、电压几乎是相同的。如果为了保证选择性,k2故障时保护不能无时限切除,则本线路末端k1故障时也就无法无时限切除。可见单侧测量保护无法实现全线速动的根本原因是考虑到互感器、保护均存在误差,

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为 11TA I n - 22 TA I n =1I ' - 2I ' ≈0 ,故KD 不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为: 11TA I n + 22TA I n =1I ' + 2I ' =2k TA I n 当 2k TA I n 大于KD 的整定值时,即 1I ' - (3) m a x m a x /u n b s t u n p i k T A I K K f I n =≠0 ,KD 动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的 电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时, 2 k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取0.5; Kunp ——非周期性分量影响系数,取为1~1.5; fi ——TA 的最大数值误差,取0.1。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流Iunb.max ,即Iop=KrelIunb.max (Krel 为可靠系数,取1.3)。Iunb.max 越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg

差动保护工作原理

差动保护工作原理 差动保护是电力系统中常用的一种保护方式,其主要作用是检测和定位电力系统中的故障,保护电力设备的安全运行。差动保护通过对电流进行比较来判断电力系统中是否存在故障,从而触发保护动作,切断故障电路,保护设备不受损害。 差动保护的工作原理是基于电流的差值来进行判断和保护动作。差动保护装置通常由一个比较单元和一个触发单元组成。比较单元负责对电流进行比较,触发单元负责根据比较结果触发保护动作。 在差动保护中,通常会选择一对或多对与故障电路相连的电流互感器,将其输出电流接入比较单元。比较单元会将这些输入电流进行比较,并计算出它们之间的差值。如果差值超过了设定的阈值,就意味着电流之间存在差异,可能是电力系统中发生了故障。触发单元会根据比较结果判断是否触发保护动作。 差动保护的精度和可靠性是其工作原理的关键。为了保证差动保护的精度,通常会对比较单元进行校准和调试,确保其能够准确地计算电流的差值。同时,还需要对阈值进行设置和调整,以适应不同故障类型和电力设备的需求。 差动保护在电力系统中的应用非常广泛。它可以用于保护发电机、变压器、母线以及输电线路等电力设备。在故障发生时,差动保护能够迅速切断故障电路,避免故障扩大,保护设备的安全运行。同

时,差动保护还可以帮助定位故障的位置,为故障的排除提供有力的依据。 差动保护的工作原理可以通过以下步骤来概括:首先,将电流互感器的输出电流接入比较单元;其次,比较单元对输入电流进行比较,并计算出电流的差值;然后,触发单元根据比较结果判断是否触发保护动作;最后,触发动作会切断故障电路,保护设备的安全运行。 差动保护是一种常用的电力系统保护方式,其工作原理是基于电流的差值来进行判断和保护动作。差动保护通过对电流进行比较,判断电力系统中是否存在故障,并采取相应的保护措施。差动保护在电力系统中的应用广泛,并且具有精度高、可靠性强的特点,能够有效保护电力设备的安全运行。

第四章 电网差动保护和高频保护

第四章 电网差动保护和高频保护 4.1纵联差动保护 (一)线路纵联差动保护原理 阶段式保护不能够瞬时切除全线任意处故障,为实现全线速动,应该采用差动保护。如图4.1所示, 图4.1 线路纵联差动保护 (a) (b) 其原理是比较线路两侧电流的大小和相位。当区外短路(k 1)时,流入继电器的电流d I 为零;当区内短路(k 2)时,流入继电器的电流d I 为总的短路电流。线路纵联差动保护瞬时动作,且动作电流可以整定得很小,灵敏度很高。差动保护不受系统振荡的影响。因为需 要辅助导线,所以其不适用于长线路。 (二)不平衡电流 在正常情况或外部故障时由于线路两侧的电流互感器特性不可能完全相同,或受暂态过 程的影响,继电器中会有电流存在,该电流被称为不平衡电流unb I 。 稳态不平衡电流 发生在正常情况或外部故障时, ⎪⎪⎭ ⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=---='-'=m TA m TA TA TA m TA m TA unb I K I K I K I K I I K I I K I I I 22112211221111211111)(1)(1 (4.1-1) 式中,m I 1 和m I 2 是两侧电流互感器的励磁电流。式(4.1-1)中,第一部分是两侧电流互感器的传变特性差异,第二部分是两侧电流互感器的励磁特性差异。 暂态不平衡电流 主要源于非周期分量的影响。

综合考虑上述情况,一般在外部三相短路的情况下计算最大不平衡电流 , TA k np er st unb K I K K K I ) 3(max .max .= (4.1-2) 式中,st K 是同型系数,两侧电流互感器型号相同时取0.5,否则取1;er K 是电流互感器最大误差,取0.1; np K 是非周期分量影响系数,取1~1.5。 (三)整定原则和灵敏度校验 ①按躲过保护区外故障时的最大不平衡电流整定 max .unb rel op I K I = (4.1-3) 式中,可靠系数取1.2~1.3。 ②按躲过最大负荷时二次侧断线的不平衡电流整定 TA L rel op K I K I max .= (4.1-4) 式中,可靠系数取1.2~1.3。 整定值选择式(4.1-3)和(4.1-4)中最大者。 ③灵敏系数 op k sen I I K min .min .= (4.1-5) 式中,min .k I 是被保护线路末端短路时的最小电流,要求灵敏系数不小于1.5~2。 4.2 横联差动保护 (一)横联差动保护原理 为提高系统稳定性和传输容量,常常采用平行双回线,每回线路参数相同,其保护采用横联差动保护。如图4.2所示:

纵联和横联差动保护的原理

纵联和横联差动保护的原理~! 电网的纵联差动保护电流、电压和距离保护属于单端保护,不能瞬时切除保护范围内任何地点的故障。这就不能满足高压输电线路系统稳定的要求。如何保证瞬时切除高压输电线路故障?解决办法:采用线路纵差动保护线路纵差动保护是利用比较被保护元件始末端电流的大小和相位的原理来构成输电线路保护的。当在被保护范围内任一点发生故障时,它都能瞬时切除故障。-、纵联差动保护的工作原理电网的纵联差动保护反应被保护线路首末两端电流的大小和相位,保护整条线路,全线速动。纵联差动保护原理接线如下图所示。,即为电流互感器二次电流的差。差回路:继电器回路。正常'流入继电器的电流为I2—I2运行:流入差回路的电流外部短路:流入差回路中的电流为指出:被保护线路在正常运行及区外故障时,在理想状态下,流入差动保护差回路中的电流为零。实际上,差回路中还有一个不平衡电流Ibp。差动继电器KD的起动电流是按大于不平衡电流整定的,所以,在被保护线路正常及外部故障时差动保护不会动作。内部短路:流入差动保护回路的电流为被保护线路内部故障时,流入差回路的电流远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。结论: 1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动 4、不能作相邻元件的后备保护二、纵联差动保护的不平衡电流 1.稳态情况下的不平衡电流该不平衡电流为两侧电流互感器励磁电流的差。差动回路中产生不平衡电流最大值为式中 KTA一电流互感器 10%误差; max—被保护线路外部短路时,流过保护线路的最大短路电流。∙Ktx—电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l; Id 2.暂态不平衡电流纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流,其最大值为 2。三、纵联差动保护的整定计算~式中Kfz——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5 差动保护的动作电流按躲开外部故障时的最大不平衡电流整定为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定灵敏度校验:四、纵联差动保护的评价优点:全线速动,不受过负荷及系统振荡的影响,灵敏度较高。缺点:需敷设与被保护线路等长的辅助导线,且要求电流互感器的二次负载阻抗满足电流互感器10%的误差。这在经济上,技术上都难以实现。需装设辅助导线断线与短路的监视装置,辅助导线断线应将纵联差动保护闭锁。在输电线路中,只有用其它保护不能满足要求的短线路(一般不超过5~7km 线路)才采用。应用:第二节平行线路横联差动方向保护一、横联差动方向保护的工作原理横差方向保护:是用于平行线路的保护装置,它装设于平行线路的两侧。其保护范围为双回线的全长。横差方向保护的动作原理是反应双回线路的电流及功率方向,有选择性地瞬时切除故障线路。正常运行及外部发生短路:两线路中的电流相等。两电流互感器差回路中的电流仅为很小的不平衡电流,小于继电器的起动电流,电流继电器不会起动。内部故障时:如在线路XL-l的d点发生短路,M侧电流继电器中的电流当Ij>Idz时,电流继电器1动作。功率方向继电器2承受正方向功率动作,功率方向继电器3承受负功率不动作,因而跳开1QF。线路N侧:流过差回路中的电流当Ij>Idz

差动保护基本原理

差动保护根本原理 1、母线差动保护根本原理 母线差动保护根本原理,用通俗的比喻,就是按照收、支平衡的原理进展判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位一样。如果母线发生故障,这一平衡就会破坏。有的保护采用比拟电流是否平衡,有的保护采用比拟电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组部与其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,那么将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行与外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零〔无电源侧〕,这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的围是构成变压器差动保护的电流互感器之间的电气设备、以与连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不一样 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比拟常用的就是一套光纤电流差动以与一套高频距离保护 也有采用两套光纤电流,两套高频的比拟少了 4、变压器差动保护的根本原理 1、变压器差动保护的工作原理与线路纵差保护的原理一样,都是比拟被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不一样。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,与各侧电流相位的补偿

差动保护基本原理

差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器.如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的. 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为Ik=I1—I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不相同 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护 也有采用两套光纤电流,两套高频的比较少了 4、变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次

相关主题
相关文档
最新文档