材料科学和工程基础第三章答案解析

材料科学和工程基础第三章答案解析
材料科学和工程基础第三章答案解析

3.8 铁具有BCC晶体结构,原子半径为0.124 nm,原子量为55.85

g/mol。计算其密度并与实验值进行比较。

答:BCC结构,其原子半径与晶胞边长之间的关系为:

a = 4R/3= 4?0.124/1.732 nm = 0.286 nm

V = a3 = (0.286 nm)3 = 0.02334 nm3 = 2.334?10-23 cm3

BCC结构的晶胞含有2个原子,

∴其质量为:m = 2?55.85g/(6.023?1023) = 1.855?10-22 g

密度为ρ= 1.855?10-22 g/(2.334?10-23 m3) =7.95g/cm3 3.9 计算铱原子的半径,已知Ir具有FCC晶体结构,密度为22.4

g/cm3,原子量为192.2 g/mol。

答:先求出晶胞边长a,再根据FCC晶体结构中a与原子半径R的关系求R。FCC晶体结构中一个晶胞中的原子数为4,

ρ= 4?192.2g/(6.023?1023?a3cm3) = 22.4g/cm3,求得a = 0.3848 nm

由a = 22R求得R = 2a/4 = 1.414?0.3848 nm/4 = 0.136 nm

3.10 计算钒原子的半径,已知V 具有BCC晶体结构,密度为5.96

g/cm3,原子量为50.9 g/mol。

答:先求出晶胞边长a,再根据BCC晶体结构中a与原子半径R的关系求R。BCC晶体结构中一个晶胞中的原子数为2,

ρ= 2?50.9g/(6.023?1023?a3cm3) = 5.96 g/cm3,求得a = 0.305 nm

由a = 4R/3求得R = 3a/4 = 1.732?0.305 nm/4 = 0.132 nm

3.11 一些假想的金属具有图3.40给出的简单的立方晶体结构。如

果其原子量为70.4 g/mol,原子半径为0.126 nm,计算其密度。

答:根据所给出的晶体结构得知,a = 2R =2?0.126 nm = 0.252 nm 一个晶胞含有1个原子,

∴密度为:ρ= 1?70.4g/(6.023?1023?0.2523?10-21cm3)

= 7.304 g/cm3

3.12 Zr 具有HCP晶体结构,密度为6.51 g/cm3。

(a) 晶胞的体积为多少? 用m3表示

(b) 如果c/a之比为1.593,计算c和a值。

答:

V c=nM Zr

A

对于HCP,每个晶胞有6个原子,M Zr = 91.2g/mol. 因此:

V c=

6×91.2

6.51×106×6.02×1023

=1.396×10-28m3/晶胞

(b) V c=3×a×sin60×a×c=3×a2×√3×1.593a=4.1386a3

=4.1386a3=1.396×10-28,

求得a =3.231?10-10 m = 0.323 nm, c=1.593a =0.515 nm

3.13 利用原子量,晶体结构,和书中给出的原子半径数据,计算Pb, Cr, Cu和Co的理想密度,并与书中的实验数据做比较。Co的c/a 之比为1.623。

3.14 铑(Rh)的原子半径为0.1345 nm,密度为12.41 g/cm3。确定其晶体结构是否为FCC或BCC晶体结构。

3.15 下面列出的表为3种假定合金的原子量,密度和原子半径。判断每种合金,其晶体结构是否为FCC,BCC,或简单立方,并证明你的结论。简单立方晶胞示在图3.40中。

合金

原子量

(g/mol)

密度

(g/cm3)

原子半径

(nm)

A 77.4 8.22 0.125

B 107.6 13.42 0.133

C 127.3 9.23 0.142

答:(1)单个原子质量:77.4/(6.02?1023) = 1.2857?10-22 g 则:n/V C = 8.22?10-21g/(1.2857?10-22 g ?nm3) = 63.934 nm-3

(2)单个原子质量:107.6/(6.02?1023) = 1.787?10-22 g 则:n/V C=13.42?10-21g/(1.787?10-22g ?nm3) = 75.098 nm-3

若为简单立方:V C= a3 =(2R)3 =(2?0.133)3 = 0.01882 nm3

则:n = 1.41 与简单立方晶胞存在1个原子不符,

故不是简单立方结构。

若为面心立方:V C = a3 =(2√2R)3 =(2?1.414?0.133)3 = 0.0532 nm3

则:n = 3.996 与面心立方晶胞存在4个原子相符,

因此是面心立方结构。

3.16 锡晶胞具有四方(tetragonal)对称,晶格常数a和b各为0.583和0.318 nm。如果其密度,原子量和原子半径各为7.30 g/cm3,118.69 g/mol和0.151 nm,计算其原子致密度。答:晶胞体积为:V C= a2b =0.5832?0.318 = 0.1081 nm3 四方晶胞有几个独立原子:

3.17 碘具有正交晶胞,其晶格常数a, b, 和c各为0.479, 0.725 和0.978 nm。(a) 如果原子致密度和原子半径各为0.547和0.177 nm, 确定晶胞中的原子数。(b) 碘的原子量为126.91 g/mol;计算其密度。

答:(a) 单个原子体积:

V = 4

3πR

3= 4×3.14×0.177

3

3

=0.0232 nm3

晶胞体积:V C= ab c = 0.479?0.725?0.978 = 0.3396nm3晶胞中的原子数为:

n = APF×V C

V =

0.547×0.3396

0.0232

= 8原子/晶胞

(b) 单个原子体积:

ρ = n×m

V C = 8×126.91

0.3396×6.02×1023

=4.96×10-21g/nm3 = 4.96g/cm3

3.18 Ti具有HCP晶胞,其晶格常数之比c/a为1.58。如果Ti原子的半径为0.1445 nm,(a) 确定晶胞体积,(b) 计算Ti的密度,并与文献值进行比较。

3.19 Zn具有HCP晶体结构,c/a之比为1.856,其密度为7.13

g/cm3。计算Zn的原子半径。

3.20 Re具有HCP晶体结构,原子半径为0.137 nm, c/a之比为

1.615。计算Re晶胞的体积。

答:Re具有HCP晶体结构,则a = 2R = 2?0.137 = 0.274nm 六边形底面积A:A = a sin60??a?3 = 0.2742?3?√3/2 =

0.195 nm2

晶胞的体积:A ? c = 0.195?1.615 a =0.195?0.274? 1.615

= 0.0863 nm3

3.21 下面是一个假想金属的晶胞,(a) 这一晶胞属于哪个晶系?

(b) 属于哪个晶体结构?(c) 计算材料的密度,已知原子量为141 g/mol。

答:属正方晶系,体心正方结构。晶胞体积:0.4?0.3?0.3 = 0.036 (nm3)

单个原子质量:141g/(6.02?1023) = 2.342? 10-22 (g)

密度:2.342? 10-22/0.036 =

3.22金属间化合物AuCu3晶胞为:

(1)边长为0.374 nm的立方晶胞

(2)Au原子位于立方体的所有8个角上

(3)Cu原子位于立方体6个面的中心。

3.23 金属间化合物AuCu晶胞为:

(1)四方晶胞,边长a = 0.289 nm;c = 0.367 nm

(2)Au原子位于立方体的所有8个角上

(3)Cu原子位于立方体中心。

3.24 画出体心和正交晶体结构的草图。

3.25 对于陶瓷化合物,决定晶体结构的组元离子的两个特征是什么?

答:离子半径和电荷决定晶体结构

3.26 证明配位数为4时,阳离子与阴离子半径之比最小值为0.225。答:

∠CBD =109?28'

∠BCD =∠BDC = (180?-109?28')/2=35?16'

BC = BD = r A + r C;CD = 2r A

sin109.47

CD =

sin35.27

BD

0.944 2r A= 0.577 r A+r c

1.154 r A = 0.944 r A + 0.944 r C

等式两边用r A相除,并整理得:0.21 = 0.944(r C/r A)

即有:r C/r A = 0.223

3.27证明配位数为6时,阳离子与阴离子半径之比最小值为0.414。提示:利用NaCl晶体结构,并假设阴离子和阳离子在立方体边和面对角线相切。

答:如图所示:考虑GHF三角形,

则有:

GH = r A + r C = HF

GF =2 r A ;

GFsin45?= GH,

则有2 r A?√2/2 = r A + r C

B

等式两边用r A相除:

√2=1+ r C/r A,即有:r C/r A = 1.414-1 = 0.414 3.28证明配位数为8时,阳离子与阴离子半径之比最小值为0.732。答:

3.29 根据离子电荷和离子半径预测下列材料的晶体结构:

(a) CsI (b) NiO (c) KI (d) NiS,证明结果。

答:r(Cs+):0.170;r(Ni2+):0.069;r(K+):0.138;

r(I-):0.220;r(O2-):0.140;r(S2-):0.184;

(1)0.732 < r Cs+

r

I-=0.170

0.22

=0.773 < 1.0;根据阳离子与阴离子之比,

每个阳离子的配位数是8,预测的晶体结构是氯化铯型晶体结构。

(2)0.414 < r(Ni+)/r(O2-) = 0.069/0.14 = 0.493 < 0.732;根据阳离子与阴离子之比,每个阳离子的配位数是6,预测的晶体结构是氯化钠型晶体结构。

(3)0.414 < r(K+)/r(I-) = 0.138/0.220 = 0.627 < 0.732;根据阳离子与阴离子之比,每个阳离子的配位数是6,预测的晶体结构是氯化钠型晶体结构。

(4)0.225 < r(Ni2+)/r(S2-) = 0.069/0.184 = 0.375 < 0.414;根据阳离子与阴离子之比,每个阳离子的配位数是4,预测的晶体结构是闪锌矿型。

3.30 表3.4中哪些阳离子能够形成氯化铯型晶体结构的碘化物。

氯化铯型晶体结构中,阳离子的配位数为8,要求阳离子与阴离子的半径之比的范围在 0.732

则 0.732?0.220

3.31 计算阳离子与阴离子半径之比为r A /r C = 0.732的氯化铯型晶

体结构的致密度。

答:r A /r C = 0.732表明,阴离子与阳离互为相切,阴离子之间也相切。因此立方体八个角上的阴离子与体心的阳离子组成的晶胞的边长a=2r C ,则晶胞的体积为V = (2r C )3 = 8r C 3,晶胞中有一个独立的阳离子和阴离子,它们所占的体积为:

43π(r A 3+r C 3) = 43

π[(0.732r C )3+r C 3] = 5.829r C 3

致密度:

APF =

5.829r C 38r C

3 = 0.73

3.32 表3.4给出了K +和O 2-离子半径各为0.138和0.140 nm 。每

个O2-离子的配位数为多少?简单描述K2O的晶体结构。解释为什么称为反荧石结构?

3.33 画出PbO的三维晶胞:

(1)四方晶胞,a = 0.397 nm,c = 0.502 nm;

(2)氧离子位于立方体中心及两个正方形面中心;

(3)一个氧离子位于其他两个相对面(长方形)上坐标为(0.5a, 0.237c)坐标的位置。

(4)其他两个相对的正方形面上,氧离子位于(0.5a, 0.763c)坐标的位置。

3.34 计算FeO的密度,给出其具有岩盐结构。

答:0.414 < r(Fe2+)/r(O2-) = 0.077/0.140 = 0.55 < 0.732 阳离子的配位数为6,具有岩盐结构。

3.35 MgO具有岩盐晶体结构,密度为3.58 g/cm3。

(a) 确定晶胞边长

(b) 假定Mg2+和O2-沿着边长正好相切时的边长长度为多少?

答:(a) ρ = (m A+ m C)/a3 = 3.58;

4×(24.312+15.999)

= 3.58×10-21

6.02×1023×a3

3 = 0.421nm

求得:a = √0.0748

(b) a= 2(r Mg2++r O2-) = 2?(0.072+0.140) =2?0.212 =

0.424 nm

3.36 计算金刚石的理论密度。C—C键长与键角为0.154 nm和

109.5°。理论值与测理值进行比较。

答:首先我们需要根据键长确定晶胞的边长,图中给出了立方体晶胞的8分之1处C原子的八面体键合情况。

φ =109.5?/2 = 54.75?

X =a/4,Y = 键长= 0.154

nm

则Y cos(54.75?) = a/4

求得:a=

4?0.154?cos(54.75?)

= 0.356 nm

金刚石晶胞中存在8个独立原子,其质量为:

m=8?12.011/(6.02?1023) = 1.5961?10-22 (g)

晶胞的体积为: V = a3 =0.3563 = 0.0451 nm3

∴密度为:m/V = 1.5961?10-22/(0.0451?10-21) = 3.54 g/cm3实验测量的密度为3.51 g/cm3

3.37 计算ZnS的理论密度。Zn—S键长与键角为0.234 nm和109.5°。理论值与测量值进行比较。

答:ZnS的晶体结构与金刚石

结构相同。

求得:a=

4?0.234?cos(54.75?)

= 0.540 nm

ZnS的晶体结构中有4个独立的ZnS分子。晶胞中分子的质量为:

m=4?(65.37+32.064)/(6.02?1023) = 6.474?10-22 (g) 晶胞的体积为: V = a3 =0.543 = 0.157 nm3

∴密度为:ρ = m/V = 6.47?10-22/(0.157?10-21) = 4.12 g/cm3实验测量值为:ρ = 4.10 g/cm3

3.38 CdS具有立方晶胞,从X—射线衍射数据可知,晶胞边长为0.582 nm。如果测量的密度值为

4.82 g/cm3,每个晶胞中的Cd2+和S2-离子数量为多少?

答:晶胞的体积为: V = a3 =0.5823 = 0.197 nm3

一个晶胞所含分子的质量为:

m =ρ V= 4.82?10-21?0.197 = 0.950?10-21 g CdS的分子量为:112.4+32.064 = 144.464 g/mol

∴晶胞中的分子个数为:

0.950?10-21?6.023?1023

=3.96 ≈ 4

144.464

即每个晶胞中含有4个Cd2+和4个S2-离子。

3.39 (a) 利用表3.4中的离子半径计算CsCl密度。提示:修改3.4题中的结果。(b) 密度测量值为3.99 g/cm3,如何解释密度的计算值和测量之间的差异。

答: A(Cs) Cs 位于体心,Cs 和Cl 相切,

故AB = r Cs + r Cl = 0.170+0.181 = 0.351 nm

(Cl)B C AC = a /2 BC = √2a /2 根据勾股定理:AB 2 = AC 2 + BC 2

0.3512 = (a /2)2 + (√2a /2)2 = 3a 2/4,求得:a = 0.405 CsCl 的分子量为:132.91+35.45 = 168.36 g/mol , 晶胞体积为:V = 0.4053 = 0.0664 nm 3 每个晶胞含有1个CsCl 分子,则密度为:

ρ =

168.36 g

6.023×1023

×0.0664×10

-21

cm 3

=4.21 g/cm 3

3.40 利用表3.4中的数据,计算具有荧石结构的CaF 2的密度。 答:r Ca = 0.100 nm r F = 0.181 nm

AC = 2r F + 2r Ca =2?(0.100+0.181) = 0.562 nm

AC = a /2, BC = √2a /2 根据勾股定理:AC 2 = AB 2 + BC 2

0.5622 = (a /2)2 + (√2a /2)2 =

3a 2/4,

求得:a = 0.487 nm

晶胞体积为:V = (0.487nm)3 = 0.1155 nm 3 =1.155?10-22

cm 3

1个晶胞中含有8个Ca 和4个F ,

A B

C

质量为:m = 8?40.08+4?18.998=396.632 g/mol

ρ =

396.632 g

6.023×1023×1.155×10-22cm3

=5.70 g/cm3

3.41 假想的AX类型陶瓷,其密度为2.65 g/cm3,立方对称的晶胞边长为0.43 nm。A和X元素的原子量各为86.6和40.3 g/mol。由此判断,其可能的晶体结构属于下列哪一种:岩盐结构,氯化铯结构或者闪锌矿结构?

答:晶胞的质量为:

m= 2.65?10-21?0.433 = 0.211?10-21g

晶胞中的独立分子数为:

0.211×10-21×6.023×1023

(86.6+40.3)

=1

因此,属于氯化铯结构。

3.42 具有立方对称的MgFe2O4(MgO-Fe2O3)的晶胞边长为0.836 nm。如果材料的密度为

4.52 g/cm3,根据表3.4中的离子半径数据计算其原子致密度。

答:晶胞的质量为:m= 4.52?10-21?0.8363 = 2.64?10-21g MgFe2O4的分子量为:

M= 24.312+2?55.847+4?15.999=200.002g/mol

晶胞中的独立分子数为:

2.64×10-21×6.023×1023

200.002

≈ 8

根据表3.4中的离子半径数据,得出:

r Mg= 0.072 nm,r Fe= 0.077 nm,r O= 0.140 nm

各对应的原子体积为:V Mg = 4π?(0.072)3/3= 1.562?10-3 nm3

V Fe = 4π?(0.077)3/3= 1.911?10-3 nm3

V O = 4π?(0.140)3/3= 1.149?10-2 nm3晶胞体积为:V = (0.836nm)3 = 0.5843 nm3

APF=8×(V Mg+2V Fe+4V O)

V

=

8×(1.562+2×1.911+4×11.149)×10-3

0.5843

=0.68

3.43 Al2O3具有六方晶系,晶格常数为a = 0.4759 nm, c = 1.2989 nm。如果材料的密度为3.99 g/cm3,根据表3.4中的离子半径数据计算其原子致密度。

答:晶胞体积为:

a sin60??a?3?c = 0.4759?0.4759?√3/2?1.2989=0.2548 nm3

晶胞的质量为:m= 3.99?10-21?0.2548 = 1.017?10-21g Al2O3的分子量为:

M = 2?26.982+3?15.999=101.961g/mol 晶胞中的独立分子数为:

1.017×10-21×6.023×1023

101.961

≈ 6

根据表3.4中的离子半径数据,得出:

r Al= 0.053 nm,r O= 0.140 nm

各对应的原子体积为:V Al = 4π?(0.053)3/3= 6.233?10-4 nm3

V O = 4π?(0.140)3/3= 1.149?10-2 nm3

APF=6×(2V Al+3V O)

V

=

6×(2×6.233+3×114.9)×10-4

0.2548

= 0.84

3.44 计算金刚石立方晶体结构的原子致密度(图3.16)。假定成键

原子相互接触,键角为109.5?,晶胞内部的每个原子与最近邻晶胞面心之间的距离为a/4(a为晶胞边长)。

答:φ =109.5?/2 = 54.75?

X =a/4,

Y = 2r C

则Y cos(54.75?) = a/4

求得:

a= 4?2r C?cos(54.75?) = 4.617 r C

晶胞的体积为: V = a3 = (4.617r C)3 = 98.419 r C3

金刚石晶胞中存在8个独立原子,其体积为:

V C=8?4π? r C3/3 = 33.493r C3

∴ APF = 33.493r C3/98.419 r C3= 0.340 g/cm3

3.45 利用表3.4的离子半径数据,计算氯化铯的原子致密度。假设

离子沿着体对角线相切。

答:

r Cs= 0.170 nm,r Cl = 0.181 nm

AC = 2r Cs + 2r Cl = 0.702 nm,A

AC = √2a AB = a

根据勾股定理:AC2 = AB2 + BC2

0.7022 = a2 + (√2a)2,求得:a = 0.405 nm

每个晶胞中含有一个独立的分子,其体积为:

V CsCl= 4?π?(r Cs)3/3 + 4?π?(r Cl)3/3 = 4?π?(0.170)3/3 + 4?π?(0.181)3/3

= 4?π?0.00491/3 + 4?π?0.00593/3 = 0.0454 nm3

晶胞体积为:V = a3 = (0.405)3 nm3 = 0.0664 nm3

∴ APF = V CsCl/V = 0.0454/0.0664 = 0.68

3.46 根据成键,解释硅酸盐材料为何具有相对低的密度。

答:空间结构不如金属的空间结构排列的那么紧密;O,Si的结合有空间键而且较长,但金属就不同,他们结合的键极短,并且原子量较大,所以没有金属那样较高密度。

3.47 确定SiO44-四面体中共价键之间的键角。

答:共价键之间的键角为:109.5?

3.48 画出正交晶胞及其中的[121?]晶向和(210)晶面。

C

B

3.49 画出单斜晶胞及其中的[01?1]晶向和(002)晶面。

3.50 (a)给出两个向量的指数

晶向1:

x y z

投影:0a 1/2b c 以a,b,c为单位的投影:0 1/2 1 化简为整数:0 1 2 用中括号围起来:[012]

O

z

x

y

晶向2:

x y z

投影:1/2a1/2b-c 以a,b,c为单位的投影:1/2 1/2 -1

化简为整数: 1 1 -2 用中括号围起来:]2

11[

(b)给出两个晶面的指数

晶面1:

x y z

截距:∞a 1/2b ∞c

以a,b,c为单位的截距:

∞1/2 ∞

取倒数:0 2 0

用圆括号围起来:(020)

晶面2:

x y z

截距:1/2a -1/2b c

以a,b,c为单位的截距:

1/2 -1/2 1

取倒数: 2 -2 1

用圆括号围起来:(22?1)

3.51 立方晶胞中画出下列晶向:

3.52 确定下列立方晶胞中的晶向指数:答:

材料科学基础简答题(doc 12页)

简答题 第一章材料结构的基本知识 1、说明结构转变的热力学条件与动力学条件的意义。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 2、说明稳态结构与亚稳态结构之间的关系。 答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 3、说明离子键、共价键、分子键和金属键的特点。 答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。 分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。 第二章材料的晶体结构 1、在一个立方晶胞中确定6个表面面心位置的坐标。6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。

解八面体中的晶面和晶向指数如图所示。图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。 ABF面平行CDE面,其晶面指数为; ABE面平行CDF面,其晶面指数为; ADF面平行BCE面,其晶面指数为; ADE面平行BCF面,其晶面指数为(111)。 棱边,,,,, ,其晶向指数分别为[110],,[011],,[101]。 对角线分别为,其晶向指数分别为[100],[010],[001] 图八面体中的晶面和晶向指数 2、标出图中ABCD面的晶面指数,并标出AB、BC、AC、BD线的晶向指数。 解:晶面指数: ABCD面在三个坐标轴上的截距分别为3/2a,3a,a, 截距倒数比为 ABCD面的晶面指数为(213) 晶向指数: AB的晶向指数:A、B两点的坐标为 A(0,0,1),B(0,1,2/3) (以a为单位) 则,化简即得AB的晶向指数 同理:BC、AC、BD线的晶向指数分别为,,。

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

材料科学基础第三章答案

第三章 1. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。 2. 如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol) 3. 已知Cu的熔点tm=1083℃,熔化潜热Lm=1.88×103J/cm3,比表面能σ=1.44×105 J/cm3。(1)试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。 4. 试推导杰克逊(K.A.Jackson)方程 5. 铸件组织有何特点? 6. 液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么? 7. 已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10. 分析纯金属生长形态与温度梯度的关系。 11. 什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12. 简述纯金属晶体长大的机制。13. 试分析单晶体形成的基本条件。 14. 指出下列概念的错误之处,并改正。(1) 所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2) 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。(3) 在任何温度下,液体金属中出现的最大结构起伏都是晶胚。

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

材料科学基础作业解答

第一章 1.简述一次键与二次键各包括哪些结合键这些结合键各自特点如何 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别稳态与亚稳态结构的区别 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度 为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与 点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度 为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系 是 ;hcp 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 , 致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数 为 ,四面体间隙数为 。 3. 纯铁冷却时在912e 发生同素异晶转变是从 结构转变为 结构,配位数 , 致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平面上的 方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径 R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间 隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ;(2) ; (3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑 性 ,导电性 。 6)间隙固溶体是 ,间隙化合物 是 。 二、 问答 1、 分析氢,氮,碳,硼在a-Fe 和g-Fe 中形成固溶体的类型,进入点阵中的位置和固 溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼: 0.091nm ,a-Fe :0.124nm ,g-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空

材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r 与时 间t 的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、 _____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、 _____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl 晶胞中(001)面心的一个球(Cl- 离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008. 一个立方晶系晶胞中,一晶面在晶轴X 、Y 、Z 上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O 含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 2+进入到KCl 间隙中而形成0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca 点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。 0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel 缺陷时,晶体体积_________,晶体密度_________;而有Schtty 缺陷时,晶体体积_________, 晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大 时,_________是主要的。 0016.少量CaCl2 在KCl 中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其 缺陷反应式为_________。 0017.Tg 是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg 比慢冷时_________ ,淬冷玻璃比 慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的 三种熔体,其粘度大小的顺序为_________。 0019.三T 图中三个T 代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2 组成的熔体,若保持Na2O 含量不变,用CaO 置换部分SiO2 后,电导_________。 0022.在Na2O-SiO2 熔体中加入Al2O3(Na2O/Al2O3<1), 熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2 的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 2

材料科学基础习题与答案

第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因? 2. 从结构、性能等面描述晶体与非晶体的区别。 3. 谓理想晶体?谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数? 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。)谓配位数?谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等面比较有异同? 5. 固溶体和中间相的类型、特点和性能。谓间隙固溶体?它与间隙相、间隙化合物之间有区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么? 6. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3 Cu 的原子数。 7. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。当铁由bcc 转变为fcc 时,其密度改变的百分比为多少? 9. 谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如? 10. 在面心立晶胞中画出[012]和[123]晶向。在面心立晶胞中画出(012)和(123)晶面。 11. 设晶面()和(034)属六晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个

材料科学基础课后作业第三章

3-3.有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的w Ni=90%,另一个铸件的w Ni=50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重?为什么?找出消除偏析的措施。 答: 合金在凝固过程中的偏析与溶质原子的再分配系数有关,再分配系数为k0=Cα/C L。对一给定的合金系,溶质原子再分配系数与合金的成分和原子扩散能力有关。根据Cu-Ni合金相图,在一定成分下凝固,合金溶质原子再分配系数与相图固、液相线之间的水平距成正比。当w Ni=50% 时,液相线与固相线之间的水平距离更大,固相与液相成分差异越大;同时其凝固结晶温度比w Ni=90%的结晶温度低,原子扩散能力降低,所以比偏析越严重。 一般采用在低于固相线100~200℃的温度下,长时间保温的均匀化退火来消除偏析。 3-6.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,w Bi=50%的合金在520℃时开始凝固出成分为w Sb=87%的固相。w Bi=80%的合金在400℃时开始凝固出成分为w Sb=64%的固相。根据上述条件,要求: 1)绘出Bi-Sb相图,并标出各线和各相区的名称; 2)从相图上确定w Sb=40%合金的开始结晶终了温度,并求出它在400℃时的平衡相成分及其含量。

解:1 )相图如图所示; 2)从相图读出结晶开始温度和结晶终了温度分别为495℃(左右),350℃(左右) 固、液相成分w Sb(L) =20%, w Sb(S)=64% 固、液相含量: %5.54%10020-6440-64=?=L ω %5.45%100)1(=?-=L S ωω 3-7.根据下列实验数据绘出概略的二元共晶相图:組元A 的熔点为1000℃,組元B 的熔点为700℃;w B =25%的合金在500℃结晶完毕,并由73-1/3%的先共晶α相与26-2/3%的(α+β)共晶体所组成;w B =50%的合金在500℃结晶完毕后,则由40%的先共晶α相与60%的(α+β)共晶体组成,而此合金中的α相总量为50%。 解:由题意由(α+β)共晶含量得 01.03226--25.0?=+)()()(αβααωωωB B B 6.0--5.0=+)()()(αβααωωωB B B

上大材料科学基础简答题

A1(fcc)密排面:(100)密排方向:【110】h+k+l全基或全偶衍射 A2(bcc)密排面:(110)密排方向:【111】h+k+l为偶数衍射 A3(hcp)密牌面:(001)密排方向:【100】 2dsinθ=λ 性质、结构成分(研究对象)、合成/制备=效用 1.如何理解点缺陷是一种热力学平衡缺陷? 随着点缺陷数量增加,熵增加导致自由能下降,但是同时内能增加导致自由能增加,所以有一个平衡浓度,此时有最低的自由能值。 2.何谓位错的应变能。何谓位错的线张力,其估算值为多少。 位错在晶体中引起畸变,使晶体产生畸变能,称之为位错的应变能或位错的能量。

线张力的定义为:位错线增加一个单位长度时,引起晶体能量的增加。 通常用Gb2/2作为位错线张力的估算值。 请问影响合金相结构的因素主要有哪几个。 原子尺寸、晶体结构、电负性、电子浓度。 3.请简要说明:(1)刃型位错周围的原子处于怎样的应力状态(为切应力还是正应力,为拉应力还是压应力);(2)若有间隙原子存在,则间隙原子更容易存在于位错周围的哪些位置(可以以图示的方式说明)。 (1)刃型位错不仅有正应力同时还有切应力。所有的应力与沿位错线的方向无关,应力场与半原子面左右对称,包含半原子面的晶体受压应力,不包含半原子面的晶体受拉应力。 (2)对正刃型位错,滑移面上方的晶胞体积小于正常晶胞,吸引比基体原子小的置换式溶质原子或空位;滑移面下方的晶胞体积大于正常晶胞,吸引间隙原子和比基体原子大的置换式溶质原子。 4.铁素体钢在拉伸过程中很易出现屈服现象,请问:(1)产生屈服的原因?(2)如何可以消除屈服平台? 由于碳氮间隙原子钉扎位错,在塑性变形开始阶段需使位错脱离钉扎,从而产生屈服延伸现象;当有足够多的可动位错存在时,或者使间隙原子极少,或者经过预变形后在一段时间内再拉伸。 5.如何提高(或降低)材料的弹性?举例说明,并解释。 选择弹性模量小的材料、或者减小材料的截面积、或者提高材料的屈服强度都可以提高弹性。 6.何谓加工硬化、固溶强化、第二相强化、细晶强化,说明它们与位错的关系 加工硬化:晶体经过变形后,强度、硬度上升,塑性、韧性下降的现象称为加工硬化。随着变形的进行,晶体内位错数目增加,位错产生交互作用,使位错可动性下降,强度上升。 固溶强化:由于溶质原子的存在,导致晶体强度、硬度增加,塑性、韧性下降的现象叫固溶强化。由于溶质原子的存在阻碍或定扎了位错的运动,导致强度的升高。 第二相强化:由于第二相的存在,导致晶体强度、硬度上升,塑性、韧性下降的现象叫第二相强化。由于第二相的存在,导致位错移动困难,从而使强度上升。 细晶强化:由于晶粒细化导致晶体强度、硬度上升,塑性、韧性不下降的现象叫细晶强化。 由于晶粒细化,使晶界数目增加,导致位错开动或运动容易受阻,使强度上升;又由于晶粒细化,使变形更均匀,使应力集中更小,所以,细晶强化在提高强度的同时,并不降低塑性和韧性。 7.说明金属在塑性变形后,其组织和性能将发生怎样的变化 金属塑性变形后,组织变化包括晶粒和亚结构的变化,其中,晶粒被拉长,形成

【考研】材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r与时间t的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、_____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel缺陷时,晶体体积_________,晶体密度_________;而有Schtty缺陷时,晶体体积_________,晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大时,_________是主要的。 0016.少量CaCl2在KCl中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其缺陷反应式为_________。 0017.Tg是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg比慢冷时_________ ,淬冷玻璃比慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的三种熔体,其粘度大小的顺序为_________。 0019.三T图中三个T代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2组成的熔体,若保持Na2O含量不变,用CaO置换部分SiO2后,电导_________。0022.在Na2O-SiO2熔体中加入Al2O3(Na2O/Al2O3<1),熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。

材料科学基础试题库

一、单项选择题(请在每小题的4个备选答案中,选出一个最佳答案, 共10小题;每小题2分,共20分) 1、材料按照使用性能,可分为结构材料和 。 A. 高分子材料; B. 功能材料; C. 金属材料; D. 复合材料。 2、在下列结合键中,不属于一次键的是: A. 离子键; B. 金属键; C. 氢键; D. 共价键。 3、材料的许多性能均与结合键有关,如大多数金属均具有较高的密度是由于: A. 金属元素具有较高的相对原子质量; B. 金属键具有方向性; C. 金属键没有方向性; D.A 和C 。 3、下述晶面指数中,不属于同一晶面族的是: A. (110); B. (101); C. (011- );D. (100)。 4、 面心立方晶体中,一个晶胞中的原子数目为: A. 2; B. 4; C. 6; D. 14。 5、 体心立方结构晶体的配位数是: A. 8; B.12; C. 4; D. 16。 6、面心立方结构晶体的原子密排面是: A. {111}; B. {110}; C. (100); D. [111]。 7、立方晶体中(110)和(211)面同属于 晶带 A. [110]; B. [100]; C. [211]; D. [--111]。 6、体心立方结构中原子的最密排晶向族是: A. <100>; B. [111]; C. <111>; D. (111)。 6、如果某一晶体中若干晶面属于某一晶带,则: A. 这些晶面必定是同族晶面; B. 这些晶面必定相互平行; C. 这些晶面上原子排列相同; D. 这些晶面之间的交线相互平行。 7、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A. 4, 2, 6; B. 6, 2, 4; C. 4, 4, 6; D. 2, 4, 6 7、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为: A. 肖脱基缺陷; B. 弗兰克缺陷; C. 线缺陷; D. 面缺陷 7、两平行螺旋位错,当柏氏矢量同向时,其相互作用力:

《材料科学基础》考研—简答题常考题型汇总

材料科学基础简答题考研常考题型汇总 1.原子间的结合键共有几种?各自的特点如何?【11年真题】 答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。 (2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。因此,七熔点和硬度均较高。离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。 (3)共价键:有方向性和饱和性。共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。共价结合的材料一般是绝缘体,其导电能力较差。 (4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。它没有方向性和饱和性,其结合不如化学键牢固。 (5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。 2.说明间隙固溶体与间隙化合物有什么异同。 答:相同点:二者一般都是由过渡族金属与原子半径较小的C、N、H、O、B等非金属元素所组成。 不同点:(1)晶体结构不同。间隙固溶体属于固溶体相,保持溶剂的晶格类

型;间隙化合物属于金属化合物相,形成不同于其组元的新点阵。 (2)间隙固溶体用α、β、γ表示;间隙化合物用化学分子式MX、M2X 等表示。 间隙固溶体的强度、硬度较低,塑性、韧性好;间隙化合物的强度、熔点较高,塑性、韧性差。 3.为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能? 答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。溶质与溶剂原子尺寸相差较大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,溶解度越小。一般来说,间隙固溶体中溶质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。 4.试述硅酸盐的结构和特点? 答:(1)硅酸盐结构的基本单元是[SiO4]四面体。Si原子位于O原子的四面体间隙内,Si、O之间的结合不仅有离子键还有共价键 (2)每一个氧最多被两个[SiO]四面体共有 (3)[Si]四面体可以孤立存在,也可以共顶点互相连接。 (4)Si-O-Si形成一折线。 分类:含有有限硅氧团的硅酸盐、岛状、链状、层状、骨架状硅酸盐。 5.为什么外界温度的急剧变化可以使许多陶瓷件开裂破碎? 答:由于大多数陶瓷由晶相和玻璃相构成,这两种相的热膨胀系数相差很大,高温很快冷却时,每种相的收缩程度不同,多造成的内应力足以使陶瓷器件开裂或破碎。 6.陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊

最新材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

相关文档
最新文档